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Diffusion, subdiffusion, and localization of active colloids in random post lattices
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Combining experiments and theory, we address the dynamics of self-propelled particles in crowded
environments. We first demonstrate that motile colloids cruising at constant speed through random lattices
undergo a smooth transition from diffusive to subdiffusive to localized dynamics upon increasing the obstacle
density. We then elucidate the nature of these transitions by performing extensive simulations constructed from
a detailed analysis of the colloid-obstacle interactions. We evidence that repulsion at a distance and hard-core
interactions both contribute to slowing down the long-time diffusion of the colloids. In contrast, the localization
transition stems solely from excluded-volume interactions and occurs at the void-percolation threshold. Within
this critical scenario, equivalent to that of the random Lorentz gas, genuine asymptotic subdiffusion is found only
at the critical density where the motile particles explore a fractal maze.
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I. INTRODUCTION

From intracellular transport to the motion of living creatures
in natural habitats, virtually all instances of active transport
at small scales occur in crowded environments, see, e.g.,
Refs. [1,2]. These observations together with potential ap-
plications of synthetic active matter have resulted in a surge of
interest in self-propulsion through heterogeneous media [3,4].
However, apart from rare exceptions [5—7], most studies have
focused on the two-body interactions between self-propelled
particles and isolated obstacles or walls [3,4,8—12].

In contrast, a different line of research has been devoted
to the dynamics of ballistic tracers and random walkers in
extended crowded media; see, e.g., Refs. [13—16]. From a the-
oretical perspective, the gold standard is the random Lorentz
gas model, where passive tracers move ballistically, or diffuse,
through a random lattice of hard-core obstacles [17]. The
salient features of this minimal model have been quantitatively
explained, from transient subdiffusion, to the localization
transition occurring at the void percolation threshold; see
Refs. [18-22] and references therein. From an experimental
perspective, the Lorentz localization scenario has been quali-
tatively confirmed only very recently using Brownian colloids
[23]. However, unlike passive colloids, self-propelled particles
couple to their environment not only via their position, but
also via their intrinsic orientation, which chiefly dictates their
active dynamics. As a consequence the interactions between
motile bodies and fixed obstacles can result in counterintuitive
behaviors such as collision and avoidance at constant speed
[24-26]. Considering the dynamics of self-propelled particles
steadily moving in random lattices of repelling obstacle, Chep-
izhko et al. found a phenomenology that qualitatively differs
from that of the Lorentz gas [6]. Numerical simulations indeed
suggest that active particles undergo genuine subdiffusion as
a result of transient trapping over a range of obstacle densities
while localization was not reported. In any realistic setting both
reorientation at a distance and excluded volume would affect
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the particle trajectories. However, until now no experiment has
addressed the localization of self-propelled bodies in crowded
environments. We rectify this situation.

In this article, we combine quantitative experiments and
extensive numerical simulations to elucidate the dynamics
of self-propelled particles in disordered lattices. We first
investigate the trajectories of noninteracting active colloids
moving at constant speed through repelling obstacles. We
quantitatively demonstrate how disorder hinders their dif-
fusion and ultimately confines their trajectories to compact
regions. The very nature of this localization transition is
then identified by disentangling the contributions of finite-
range deflection and hard-core repulsion. We evidence that
both excluded volume and deflection at a distance result
in finite-time subdiffusion. However, at long times, deflec-
tion at a distance merely renormalizes the particle diffu-
sivity while hard-core repulsion results in a localization
transition a la Lorentz, from diffusive to fully localized
behavior.

II. EXPERIMENTS
A. Exploration of random lattices by colloidal rollers

The experimental setup is thoroughly described in Ap-
pendix A. Briefly, by taking advantage of the so-called Quincke
electrorotation, we turn polystyrene beads of radius a =
2.4 pm immersed in hexadecane (viscosity n ~ 2 mPa/s) into
self-propelled colloidal rollers [27-30]. The basic mechanism
of Quincke electrorotation is recalled in Appendix B. When
let to sediment on a flat surface, the colloids roll at constant
speed vo = 225 um/s along a direction ¥, which diffuses on
the unit circle with an angular diffusivity D = 1.5s~!. Note
that thermal diffusion would yield a much lower value of the
order of ~5 x 1073s~!. We believe the particle roughness
to be chiefly responsible for the spontaneous orientational
diffusivity of the rollers. Disorder is introduced by adding
UV-lithographied cylindrical posts of radius » = 10 um on
the surface; see Fig. 1 and Ref. [26]. The obstacles are placed
at random and can overlap. The obstacle density, defined as
the number of obstacle centers per unit area, is varied from
o =0to p =1.1/(wb*). We focus on a situation opposite to
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FIG. 1. Colloidal rollers in random obstacle lattices. (a) Top panel: Superimposed pictures taken at equal time intervals of a colloidal
roller deflected by a lithographied post of radius » = 10 um. Note that the direction of motion is changed at constant speed. Bottom panel:
Radial density of colloidal rollers propelling around an isolated obstacle. Circles, experiments; dark lines, simulated radial densities; solid line,
B{/vy = 5; dashed line, B£/vy = 100, as defined in Eq. (2). £ is defined as the value where the density plateaus. In all our experiments we
find £ ~ 2b. Error bars: binning size. (b, ¢, d) Trajectories of colloidal rollers (red and yellow) superimposed to the pictures of the obstacle
lattices. Scale bar: 500 um. Total time: 300 s. (b) p = 0.21/(7b?), the trajectories form a single percolating cluster. (¢) p = 0.45/(b?), the
trajectories form disconnected clusters. The largest cluster (in red) percolates through the observation region. (d) p = 0.89/(75?), none of the
disconnected clusters percolate, and no macroscopic transport is observed. The largest cluster of maximal dimension /. is colored in red. (e)
Variations of the normalized maximal cluster size with the obstacle density. L is the width of the observation window. The dashed line indicates
the critical density p.. Experimental errors on the determination of the cluster sizes are smaller than the figure markers. Defining a statistical
error on this extremal quantity would require a number of independent realisations beyond our experimental reach.

Ref. [26], where we considered high roller densities leading to
collective flocking motion in dilute obstacle lattices. Here,
in all experiments, we minimize the interactions between
the rollers by keeping their packing fraction far below the
onset of collective motion [27,31]. In this regime the rollers
behave as independent persistent random walkers [27,31].
We simultaneously track the trajectories of ~100 colloids
in a square observation window of size L = 2.4 mm, and
all quantities reported below correspond to ensemble and
time averages. The trajectories are recorded at 188 fps over
5 min. During this time interval, particles rolling along
straight lines would move over distances of about half a
meter.

As illustrated in Fig. 1(a) the obstacles repel the rollers
at a finite distance while leaving their speed unchanged. We
stress that this behavior is typical of active particles and cannot
be observed with passive colloids at thermal equilibrium.
The range of the interaction, £ ~ 2b, is measured from the
roller density around isolated obstacles, Fig. 1(a). Appendix B
provides a detailed analysis of the roller-obstacle interaction
(see also the Supplemental Material of Ref. [26] for a thorough
experimental characterization). Typical trajectories in random
lattices are shown in Figs. 1(b)-1(d) and in a Supplemental
Material video [32]. At low obstacle densities, the rollers
freely propagate through the entire system. The ensemble of
their trajectories forms a single connected cluster covering
most of the free space left around the obstacles. Increasing
p, the trajectories form disconnected and increasingly sparse
clusters: a finite fraction of the colloids remains trapped in
compact regions. The extent of the largest cluster is plotted
for all obstacles densities in Fig. 1(e). In agreement with our
qualitative observations, above p = 0.45/(wb?) none of the
colloids is observed to cruise through the entire field of view,
and the extent of the largest cluster decreases very sharply at
pe ~ 0.75/(b?).

B. Localization of colloidal-roller trajectories

The obstacles clearly hinder the exploration of space by
the active colloids. However, unlike the situation theoretically
considered in Ref. [7], the rollers do not behave as active
Brownian particles. They rarely contact the obstacles and
are not slowed down by the collisions. The distribution
of their instantaneous speed is peaked at the same value,
vo = 250 um/s, for all obstacle densities, Fig. 2(a). Even more
surprisingly, the distribution broadens toward high speeds as
p increases. This observation alone would imply a faster
exploration of space at high obstacle densities in obvious
contrast with our experimental observation, Figs. 1(b)-1(d).
We therefore conclude that disorder predominantly impedes
the motion of the rollers by altering their orientational
dynamics.

In Fig. 2(b), we plot the roller orientational diffusivity
D, defined as the inverse of the velocity decorrelation time,
Fig. 2(b) inset. D increases linearly with p. This scaling is
expected for uncorrelated collisions with scatterers all con-
tributing identically to the deflection of the roller trajectories.
Within this simple picture the reduction of the cluster size
would merely translate the algebraic decay of the translational
diffusivity: Dt ~ v%/ D, see, e.g., Refs. [4,33,34]. However,
the inspection of the mean-squared displacements, Ar2, in
Fig. 2(c) invalidates this hypothesis.

At small times, the colloids undergo ballistic motion;
however, we do not find a universal scaling of the MSDs at
long times. The growth exponent « defined as Ar? ~ t% is a
decreasing function of the obstacle density, Fig. 2(d). Increas-
ing p from O to p, the long-time dynamics smoothly evolves
from normal diffusion (¢ = 1) to subdiffusion (x < 1).
Above p. the dynamics slows down abruptly and the rollers un-
dergo a localization transition (o« = 0). The rollers propelling
at constant speed, this rich behavior is necessarily encoded
in the long-time decay of the orientational correlations and
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FIG. 2. From active diffusion to localization. (a) Probability distribution function of the roller speed for three obstacle densities. p =
0.21/(mb?), p = 0.45/(xb?), and p = 0.89/(;rb*). The three distributions are peaked at the same typical speed value: vy = 250 um/s. (b)
The angular diffusivity D increases with the obstacle fraction. D is measured as the inverse of the time of half decorrelation of the velocity
autocorrelation shown in the inset. Error bars: 1 sd. Inset: Autocorrelation function of the instantaneous orientation of the rollers velocity
VACF = (¥(ty) - ¥(to + 1))y,. (c) Mean-squared displacements of the rollers as a function of time. The colors indicate the obstacle density. The
rollers are localized in finite regions at high obstacle densities. (d) Variations of the dynamical exponent « defined as Ar? ~ t*. « is estimated
using power-law fits of the mean-squared displacements. For each obstacle density, independent fits have been performed in seven intervals of
width vot/(2b) = 50 in the shaded region in (c). o represents the mean of the fitted exponents and error bars represents one o. The vertical
dashed line indicates the value of the critical density p. defined in the last section. The horizontal dashed lines indicates the value o = 0.66

corresponding to an ideal overlapping Lorentz gas.

therefore cannot be captured by a mere description in terms of
an effective orientational diffusivity [35,36].

The central question we aim at answering now is whether
the continuous evolution from normal diffusion to subdiffusion
to localization is an asymptotic behavior or a finite-time
trend. Recent simulations of active particles ignoring excluded
volume contributions indicate that finite-range repulsion bend
the trajectories to form long-live closed orbits. This dynamical
trapping results in genuine asymptotic subdiffusion [6]. In
contrast, within the geometrical picture of the Lorentz gas,
subdiffusion should be only observed over finite time scales
diverging only at a critical obstacle fraction ¢, [37]. At ¢,
the asymptotic value of o would discontinuously jump from
1 to 0, thereby reflecting a transition toward a fully localized
dynamics [7,18,19].

Clear anticorrelations typical of trapped trajectories are
seen in Fig. 2(b) inset, yet they are not sufficient to distinguish
between the two possible scenarios [35]. Elucidating the
exact nature of the localization transition requires accessing
much longer time scales out of range of our experiments. We
resolve this situation by confronting our findings to extensive
numerical simulations.

III. NUMERICAL SIMULATIONS
A. Roller-obstacle interactions

Let us first build a simplified phenomenological description
of the roller dynamics. Details on the numerical resolution
of this model are given in Appendix A. We need to capture
three central features: (i) the obstacles repel the active colloids
isotropically, (ii) the interaction range is finite, (iii) collisions
consist in reorientations at constant speed. We also discard
spontaneous angular diffusion as it yields minute corrections
to the obstacle scattering contributions as ,071192 > 0.1; see
Fig. 2(b). Assuming pairwise additive interactions, these
observations are sufficient to introduce a general form for the
equations of motion of both the roller position r and orientation

Vv = (cos @, sinf):
o, = vo¥(0), (1)

%0 = —08 Yy _ B(r;)orj- . )

J

where r; is the position of the jth obstacle, and érj = r; —r.
For the sake of simplicity, B(dr;) is chosen to be a positive
constant, B, for ér; < £ and 0 otherwise. We present in
Appendix B a series of experiments complemented by a micro-
scopic theoretical model that ascertains this phenomenological
description.

Before presenting the results of our simulations, let us gain
some insight into the roller-obstacles scattering: (1) reflects
motion at constant speed along ¥; (2) has a simple meaning:
the rollers turn their back to the obstacles in a typical time B~.
In agreement with the trajectory shown in Fig. 1(a), a roller
interacting with an obstacle experiences a torque that orients
its velocity in the direction opposite to the vector connecting
the roller to the obstacle center. One important comment is
in order. The repelling torques cannot fully exclude the active
particles from the interaction regions. Take for instance two
obstacles with overlapping interaction disks. In the overlap
region, the two repulsive torques compete to bend the particle
trajectory in opposite directions. As a result, there always
exist a finite channel between the obstacles through which
the particle can almost freely proceed as illustrated in Fig. 3.
Such interaction-free channels would not exist if the particles
were repelled by an isotropic force (as opposed to an isotropic
torque).

B. Strong repulsion torque and overlapping Lorentz gas

The particle dynamics is parametrized by a single di-
mensionless number that compares the time spent in the
vicinity of an obstacle (£/vy) and the reorientation time
B~!. To see whether repulsion torques can yield subdiffusion
and localization as observed in our experiments, it is worth
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FIG. 3. Channeling through the obstacles. Ensemble of numerical
particle trajectories crossing two obstacles through a narrow channel.
Bl/vy = 5. The initial velocity is transverse to the line joining the
centers of the two discs. The black trajectory indicates the direction
of propagation. Note that particle trajectories nearly equidistant to the
obstacles are hardly deflected. All trajectories are spanned at constant
speed.

analyzing first the asymptotic case where B{/vg > 1. The
MSD corresponding to B£/vy = 100 are plotted in Fig. 4(a).
At short times (short distances), the dynamics is ballistic. At
intermediate time scales, as in the experiments, we observe
a continuous slowing down of the dynamics in the form of
subdiffusion as p increases. However, a careful inspection of
the long-time dynamics reveals that this apparent subdiffusion
is merely a transient behavior. Figure 4(b) shows how the
instantaneous value of the exponent «(p,t) evolves with
time and obstacle density, where a(p,f) = %gt log Ar?. The
a(p) curves converge toward a step function as r — co. For
p < pe = 0.3725,a(p) converges to 1. The particles undergo
normal diffusion at long times. Conversely, for p > p.,o0 —
0 and particle motion is localized. As it turns out, the
active-particle dynamics is genuinely subdiffusive only at
0 = pe, which corresponds to a fixed point of the «(p,?)
curves. At pe, Ar? ~ t% with o, = 0.6 & 0.02; see Fig. 4(b).
Surprisingly, both the value of this anomalous exponent and of
pem£? = 1.17 suggest that this localization transition belongs
to the universality class of the overlapping Lorentz gas model
[17,19]. The predictions of the overlapping Lorentz gas would
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be o = 0.66 and p.¢> = 1.13. This hypothesis is further
confirmed by Fig. 4(c), which shows the collapse of the
MSD curves when time and distances are suitably rescaled
by the distance to the critical density € = (p — p.)/p. using
the Lorentz hyperscaling relations [18,19].

The universality of the Lorentz localization transition stems
from an underlying percolation transition [21]. Localization
occurs as the voids separating impenetrable obstacles stop
percolating through the system. In contrast, we have neglected
the hard-core repulsion from the obstacles in Eqs. (1) and
(2), and the repelling torques cannot fully exclude active
particles from the interaction regions. However, in practice,
when B{ /vy = 100 the channels allowing the penetration of
the interaction discs become so narrow that we do not observe a
single obstacle-crossing event in our simulations; see Fig. 4(a)
inset. The particles merely penetrate the interaction discs over
minute distances of the order of vo/B = £/100 before being
strongly repelled. This small yet finite penetration explains the
slight discrepancies with the values of the critical density and
exponent compared to the ideal Lorentz-gas scenario [23,38].
Both «. and p. exceed the Lorentz-gas value by 10%. The
latter difference consistently corresponds to smaller hard-core
particles of radius £ — 2(vo/B). Is this localization scenario
relevant to our experiments? To answer this question, we now
need testing the robustness of this phenomenology to finite
repulsion strength.

C. Finite repulsion: Diffusion through disorder

The comparison between the numerical and experimental
densities around isolated obstacles indicates that B£/vy = 5
correctly approximates the repulsion strength of the lithogra-
phied obstacles; see Fig. 1(a). The MSDs corresponding to
B¢/vy = 5 are plotted in Fig. 5(a). Surprinsingly, although
Bl/vy > 1, they show a stark difference with the strong
repulsion limit discussed in the previous section. From
prr €% = 0.95to prr £> = 7.8, where the interaction disks cover
about 99.96% of the simulation box, we do not observe
any sign of localization. Whereas repulsion still results in

() 10?

prl?
1.6
1.4
1.2
]
08
06
10° 10° 108
Vo t /f

10° 10°
vt ‘5‘2(1/7:1/2)/11[

FIG. 4. Localization transition in the large repulsion limit: B€/v, = 100. (a) Numerical mean-squared displacements of the active particles.
The color codes for the obstacle density. Dashed lines correspond to power laws with exponents 2, 1, and 0. Inset: normalized density map
of the active particles around two overlapping interaction discs (log-scale histogram). (b) Instantaneous dynamical exponent plotted versus
the obstacle density. The different colors correspond to measurements of ¢« at increasing times (expressed in unit of £/vy). The dashed lines
locate the localization transition. (c) Scaled MSDs. p. and o, are measured from (b) and € = (p — p.)/p.. B and v correspond to the classical
percolation exponents. The theoretical values for the overlapping Lorentz gas yield 2(v — /2)/a. = 4.2. The best collapse is obtained for
2(v — B/2)/a. = 4.5. This discrepancy is very likely to stem from the finite penetration in the obstacles.
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FIG. 5. No localization at finite repulsion: B{/vy = 5. (a) Nu-
merical mean-squared displacements of the active particles. The color
indicates the obstacle density. The dashed lines correspond to power
laws with exponents 2, 1, and 0. Inset: normalized density map of the
active particles around two overlapping interaction discs (log-scale
histogram). (b) Time variations of the instantaneous dynamical
exponent at different obstacle densities. All exponents converge
toward o« = 1 at long time. The asymptotic dynamics corresponds
to normal diffusion.

subdiffusion at intermediate time scales, the instantaneous
dynamical exponent « converges to 1 at long times even for
the highest obstacle densities, Fig. 5(b). Disorder does not
yield asymptotic subdiffusion, and only slows down the rollers
motion by reducing their translational diffusivity.

Repulsion at finite B fails in building effective barriers
as illustrated in Fig. 5(a) inset. For B{/vg = 5, we see that
the width of the channel going through a pair of obstacles
compares to the interobstacle distance thereby preventing any
form of long-time trapping. As a result, at long times, neither
localization nor subdiffusion can be achieved as both processes
rely on the formation of traps with diverging escape times [14].

D. Origin of the localization transition
in colloidal-roller experiments

We infer from the above analysis that the localization
transition must arise from the excluded-volume interactions as
it cannot stem from hydrodynamic and electrostatic repulsions
alone. To test this final hypothesis, we add steric repulsion to
the finite-range repulsion torque (keeping B¢/vy = 5). Given
the observations reported before, a simple implementation of
steric interactions is achieved in adding a repulsion torque of
magnitude B = 100vy/£ and range b < £ to Eq. (2).

We do recover the experimental phenomenology, which
turns out to be qualitatively similar to that of the Lorentz model,
Figs. 6(a) and 6(b). For packing fractions (computed with
the hard core radius) smaller than the critical fraction at the
Lorentz transition, pnb2 < @1, a ballistic regime is followed
by a transient subdiffusive dynamics. However, we see that at
long times the dynamics ultimately crosses over toward pure
diffusion. Approaching ¢; the extent of the transient regime
diverges and yields asymptotic subdiffusion with @ = 0.5 £
0.02. Above ¢ the particles explore finite regions of space
and o converges to 0. The gross features of the dynamics are
well captured by a Lorentz scenario, as further confirmed by
taking into account the finite size of the rollers when computing
the critical fraction: p.7 (b + a)* = ¢r. This correction gives
pctb? = 0.73 where we expect 0.5 < a(p.) < 0.66 from our
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FIG. 6. Disentangling the roles of hard-core interactions and
finite-range repulsion. (a) Numerical mean-squared displacements
of the active particles. The color indicates the value of pmb?
and each curve corresponds to a different value of b at constant
p =2.05/(w¢?) and B = 5vy/¢. The three dashed lines correspond
to power laws with exponents 2, 1, and 0. Inset: Normalized histogram
of the roller density (log-scale histogram). (b) Time variations of the
instantaneous dynamical exponent corresponding to the MSD plotted
in (a). Localization occurs only above the percolation threshold of
the hard-core obstacles, viz for pb? > ¢;.

simulations. Both values are in excellent agreement with our
experimental findings, as shown in Figs. 1(e) and 2(d).

IV. CONCLUSION

We have combined quantitative experiments and extensive
simulations to elucidate the dynamics of active particles in
random lattices of repelling obstacles. We conclude from
this analysis that both repulsion at a distance and excluded
volume hinders the exploration of random lattices in the form
of transient subdiffusion. We show that active colloids cruising
through disordered lattices provide a prototypical realization
of a random Lorentz gas undergoing a genuine localization
transition at the void percolation threshold.
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APPENDIX A: EXPERIMENTAL AND NUMERICAL
METHODS

1. Experiments

The rollers are fluorescent Polystyrene colloids of diameter
2a = 4.8 um dispersed in a 0.11 mol.L~" AOT-hexadecane
solution (Thermo scientific G0500). The suspension is injected
in a wide microfluidic chamber made of two parallel glass
slides coated by a conducting layer of Indium Tin Oxyde
(ITO) (Solems, ITOSOL30, thickness: 80 nm) [27]. The two
electrodes are assembled with double-sided scotch tape of
homogeneous thickness (110 um). The colloids are confined
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in a lcm x 1cm square chambers, by walls made of a
positive photoresist resin (Microposit S1818, thickness: 2 um).
Identical cylindrical obstacles of radius b = 10 um made
of the same material are included in the chambers. Their
position is uniformly distributed with a density p. Therefore
the obstacles can overlap. This geometry is achieved by means
of conventional UV lithography.

The colloids are observed at a 4.8x magnification with
a fluorescent Nikon AZ100 microscope. The movies are
recorded with a CMOS camera (Basler ACE) at frame rates of
188 fps. The particles are detected to subpixel accuracy, and the
particle trajectories and velocities are reconstructed using the
Crocker and Grier algorithm [39] using an improved version
of the Blair and Dusfresne MATLAB code. Measurements
are performed in 2.4 mm x 2.4 mm observation windows.

The Quincke electro-rotation of the colloids is controlled
by applying a homogeneous electric field transverse to the
two electrodes E = E(z. The field is applied with a voltage
amplifier (TREK 609E-6). All the reported results correspond
to an electric field Ey = 1.1Eq, where Eq is the Quincke
electrorotation threshold Eq = 0.9 V/um.

2. Simulations

We numerically solve Eqs. (1) and (2) using a forward
Euler integration scheme with an adaptive time step. The time
step 8¢ is chosen to be 87 = 107°/B x min[1,1/ )", 8ty - V1
in Eq. (2). The summation over the obstacles is performed
by first updating the list of the obstacles interacting with
each self-propelled particle. £ and vy set the length and time
units. Simulations are performed in 200 x 200 or 1000 x 1000
square boxes. The code is parallelized assigning one trajectory
to each independent core. Statistics are performed on 320 to
3200 noninteracting particles for a number of independent
realizations of disorder ranging from 1 (low densities) to 128
(high densities). Typical simulations are launched on 32 to 128
independent cores for hours to weeks on Intel E5S-2670 sandy
bridge octacore 2.60 GHz processors.

APPENDIX B: ROLLER-OBSTACLE INTERACTIONS

In this Appendix, we first review the self-propulsion of the
colloidal rollers. Then, combining experiments and theory, we
explain the response of the rollers to external electric and
hydrodynamic driving fields. We finally exploit this result
to account for the effective repelling interactions with the
cylindrical obstacles.

1. Quincke motorization

The principle of the Quincke motorization is thoroughly
discussed in Refs. [27] and [29]. Briefly, when a homogeneous
DC electric field is applied to an insulating sphere immersed
in a conducting fluid, the conduction charges in the solution
polarize the solid surface. For fluids and insulating bodies
with standard permittivities, the orientation of the resulting
electric dipole points in the direction opposite to the electric
field. This situation turns out to be unstable above a critical
field amplitude Eq. Above Eq any infinitesimal perturbation
of the dipole orientation is exponentially amplified. The finite
angle made by the electric dipole P with the electric field Eg

PHYSICAL REVIEW E 96, 042611 (2017)
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FIG. 7. Sketch of a colloidal roller propelling near an obstacle.
Top panel: Side view. Bottom panel: Top view. The tilted electric
dipole at the surface of the roller stems from the Quincke instability.
The resulting electric torque drives the roller at constant speed vy.
The dielectric obstacle induces radial perturbations to the electric
field (red dashed lines) and to the fluid-velocity field (blue dashed
line).

results in a net electric torque f—(‘)P x Eg, where ¢ is the liquid
permittivity, Fig. 7. Ignoring inertia, mechanical equilibrium is
reached when the rotational viscous drag acting on the sphere
balances the electric torque. Angular momentum conservation
then reads n = :—(‘)P x Eg, where € is the angular velocity,
and 7 is the drag coefficient. Similarly, charge conservation
implies the balance between the Ohmic current and the advec-
tion of the free charges by the rotation of the sphere. Together,
these conservation laws set the rotation speed of the sphere to

E 2
Q= Q (-") 1, (B1)
Eg

when Ey > Eq, and to 0 otherwise. €2 is the inverse of the
so-called Maxwell relaxation time of the free charges [29].
In our experiments this time scale is typically of the order of
1 ms, which explains the high-speed motion of the colloids.
Indeed, when the insulating bead is let to sediment on a
solid surface, the above reasoning still applies, and rotation
is trivially converted into rolling motion [27]. Applying an
electric field also gives rise to electrophoretic forces that act
together with gravity to keep the roller in contact with the
bottom electrode. As opposed to the colloidal rollers used in
Ref. [40], which undergo stronger slip on the solid surface, in
our experiments, the rolling coefficient is close to unity.

We stress that Quincke rotation stems from a spontaneous
symmetry breaking of the surface-charge distribution. There-
fore, the direction of rotation is not prescribed by the external
field and can freely rotate around the E; axis.
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2. Dynamical response of colloidal rollers to electric
and flow fields: Experiments and theory

In our experiment each obstacle locally alters the direction
and the magnitude of the electric field due to their permittivity
mismatch with the solvent and possibly to their net electric
charge. In addition, these local heterogeneities of the electric
field are very likely to induce electroosmotic flows past
the electrodes; see, e.g., Refs. [41,42]. The specifics of
the resulting electric and hydrodynamics perturbations goes
far beyond the scope of this article; however, given the
axisymmetric shape of the posts, we can readily infer that both
perturbations have a radial symmetry; see Fig. 7. The in-plane
components of these perturbations can have two consequences
on the roller motion: (i) The colloids can be advected by the
flow, and, or, pulled by field gradients. This effect is found
to be negligible. In our experiments the roller speed is hardly
modified as they approach the obstacles, Figs. 1(a) and 2(a).
(i1) The rollers can experience external torques that reorient
their electric dipole and velocity, in agreement with the
bending of the roller trajectory shown in Fig. 1(a). Moreover,
the out-of-plane component of the electric field increases near
the obstacle leading to a broadening of the velocity distribution
at high pmb?; see Fig. 2(a).

To establish a quantitative description of the roller-obstacle
repulsion, we combine theory and dedicated experiments. In
Ref. [27], starting from the Maxwell and Stokes equations we
derived the equations of motion of a Quincke roller subject to
a flow field u) parallel to the solid surface and to an electric
field of the form E = EyZ + SE. They take the simple form

8,1’ == UOQ’, (B2)
3V =(1—%) (ugdu — ppdE), (B3)

where gy and pg are two positive mobility coefficients and
where both the local shear o,u; and the perturbation SE are
evaluated at z = a. Given our experimental findings, we ignore
the small corrections to the roller speed that could be caused
by transverse perturbations of the electric field and by flow ad-
vection (i.e., at z = a we assume |u| < vg and §E - Eg < E)).

Let us stress that Egs. (B2) and (B3) conform to our
experimental findings with two additional experiments. To
probe the response of colloidal rollers to fluid flows, we apply
a Poiseuille flow in an obstacle-free channel; see Fig. 8(a).
We first confirm that the orientational response dominates
over advection: the speed of the rollers, measured in a gas
of noninteracting particles, hardly increases with the flow
[open symbols in Fig. 8(b)]. In contrast, as the fluid velocity
increases we observe that: (i) the orientational distribution is
increasingly asymmetric, Fig. 8(c), and (ii) the projection of the
average velocity on the flow direction increases monotonically,
filled symbols in Fig. 8(b). The same type of experiment
is repeated with electrodes having a wedge geometry; see
Fig. 8(d). In this geometry, we add a homogeneous longitudinal
perturbation to the electric field. Again, the roller speed is
unmodified while the angular response is prominent; see
Figs. 8(e) and 8(f). This set of experiments unambiguously
confirm that Eqs. (B2) and (B3) correctly describe the roller
dynamics in external driving fields.
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FIG. 8. (a) Sketch of a colloidal roller driven by a Poiseuille
flow. (b) The speed of the roller is hardly modified by the flow (red
open symbols), while the projection of the roller velocity on the
flow direction X monotonically increases with the flow (blue filled
symbols). (c) PDF of the roller velocity for u; = 0.12mm/s. Note
that the distribution remains axisymmetric even at nonzero flow. (d)
Sketch of a colloidal roller driven by an electric field. A longitudinal
electric field —§ EX is applied by tilting the top electrode. (e) As in (b),
the speed of the roller is hardly modified (red open symbols), while
the projection of the roller velocity on the X-direction monotonically
increases with §E evaluated at z = a (blue filled symbols). (f)
PDF of the roller velocity for uy = 0.12mm/s. Note again that the
distribution remains axisymmetric even at nonzero S E.

3. Effective interactions with cylindrical obstacles

We finally exploit these results to derive the interaction rules
with cylindrical obstacles [Egs. (1) and (2) in the main text].
Let us consider an obstacle located at the origin. At a point r
both u; and SE are radial vectors, and therefore Eq. (B3) can
then be recast in the form

3,V = B(r)(1 — ¥9) - F, (B4)

where B(r) = (ugd,u; — ngdE) - £. Projecting this equation
on the x axis readily yields Eq. (2). Again the specific
expression of B(r) is a complex function of the post shape
and of the material properties. B(r) is measured to be positive
(repulsion) and to quickly decay with r, with a typical range
¢ set by the obstacle size, Fig. 1(a). Therefore, for the sake
of simplicity, we approximate the expression of B(r) by a
step function of width £. As a final comment we emphasize
that Egs. (1), (2), and (B4) do not depend on the specifics
of the roller-obstacle interactions and hold for any short-
range repulsion mechanisms primarily acting on the particle
orientation.
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