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Phase behavior and bulk structural properties of a microphase former with anisotropic
competing interactions: A density functional theory study
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Using classical density functional theory, we investigate systems exhibiting interactions where a short-range
anisotropic attractive force competes with a long-range spherically symmetric repulsive force. The former is
modelled within Wertheim’s first-order perturbation theory for patchy particles, and the repulsive part is assumed
to be a Yukawa potential which is taken into account via a mean-field approximation. From previous studies
of systems with spherically symmetric competing interactions, it is well known that such systems can exhibit
stable bulk cluster phases (microphase separation) provided that the repulsion is sufficiently weak compared to
the attraction. For the present model system, we find rich phase diagrams including both reentrant clustering
and liquid-gas binodals. In particular, the model predicts inhomogeneous bulk phases at extremely low packing
fractions, which cannot be observed in systems with isotropic competing interactions.
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I. INTRODUCTION

The interactions between particles in soft-matter systems
cover a wide range of characteristics. The probably simplest
yet most important reference system of hard spheres has
been extensively studied for more than half a century in
statistical physics because it governs essential features of
the liquid and crystal phase [1]. Its properties are well
described by integral equations [2,3], computer simulations
(i.e., molecular-dynamics or Monte Carlo methods) [4], or
classical density functional theory (DFT) [5–7]. Moving up
a degree in complexity, particles interacting via a hard-core
and a longer-ranged spherical attractive tail give rise to
gas-liquid phase separation, and it is possible to study a
variety of phenomena, e.g., the interface between two or
more coexisting phases or wetting phenomena at attractive
substrates [8].

However, some years ago, experimentally, the
self-assembly of diblock copolymers into complex three-
dimensional mesoscopic cluster phases was observed, includ-
ing lamellar, cylindrical, and gyroid phases [9]. This behavior
could not been rationalized with a pure attraction between the
particles and indeed was traced back to a complex interplay
between an attraction on short and a (weaker) repulsion on
larger distances [10,11]. Later, Ciach et al. predicted via a
Landau-type theory that also a colloidal suspension, where
particles are assumed to interact via spherically symmetric
competing interactions in addition to a hard-core repulsion,
may be able to self-assemble into such microphases [12].

Systematic theoretical studies of model colloidal systems
with competing interactions were done first by Gelbart [13]
and Reatto [14]. By means of computer simulations and a
random-phase approximation for the bulk pair direct corre-
lation function c(|r − r′|), they showed that for a small but
nonzero wave number kc a diverging peak in the static structure
factor S(k) emerges at the locus in the phase diagram where
microphase separation occurs, indicating an instability of the
homogeneous bulk phase against arbitrary small fluctuations.
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Various subsequent studies employing both DFT as well as
computer simulations have extensively addressed questions
related to structure and thermodynamics [15,16], or the nature
of the phase transition from the homogeneous towards a
microphase-separated bulk state [17,18]. In particular, very re-
cently both a DFT and a Monte Carlo simulation study showed
that model colloidal suspensions with competing interactions
indeed can self-assemble into complex structures including
lamellar, 2D hexagonal, and gyroid structures [19,20]. Fur-
thermore, effects of spherically competing interactions have
been investigated in two dimensions [21] or for mixtures of
soft particles [22]. However, in experiments it turns out to be
challenging to fine-tune colloidal interactions sufficiently, so
that self-assembly into ordered clusters has not been observed
yet (see Ref. [23] and references therein for an overview of
recent advances of model colloidal systems with competing
interactions). Nevertheless, it is interesting to note that, e.g.,
gyroid structures are realized in nature in photonic crystals,
e.g., in bird feathers [24] or butterfly wings [25], where they
are responsible for structural colors.

While all these studies have in common that they as-
sume spherically symmetric interactions, there are numerous
situations in which anisotropic interactions are present in
experimental systems such as globular proteins in solu-
tion [26–28], colloidal clays [29], or protein-salt mixtures [30].
Such highly directional interactions can properly modelled
using the framework of patchy particles [26,29–31]. In that
model, in addition to a hard core, the particles have attractive
sites distributed on their surface, and they attract each other
only if they are in a sufficient distance and are orientated
correctly. In particular, Wertheim has developed a successful
thermodynamic perturbation theory [32,33] for patchy par-
ticles, where in many situations it suffices to consider its
first-order contribution (TPT1). The resulting thermodynamic
bulk properties and phase diagrams are in reasonably good
agreement with simulations [33], and, importantly, TPT1 is
capable of predicting essential features of patchy particles,
including phenomena such as empty liquids [29,34,35] or reen-
trant gas-liquid phase separation [36,37]. A broad overview of
current (bulk) perspectives regarding patchy particles can be
found in Ref. [31].
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Importantly, both homogeneous and inhomogeneous ver-
sions of Wertheim theory have been incorporated into the
framework of DFT. While the latter has been shown to
overestimate peak heights and contact densities at a hard wall,
a DFT developed by Segura et al. based on the homogeneous
form, i.e., where the bulk density ρ is replaced by an averaged
local density, yields proper results even at high densities [38].
More importantly, the latter has been formulated within
the framework of Rosenfeld’s fundamental measure theory
(FMT) [6,7] by Yu and Wu [39], and it provides quantitatively
reliable results in comparison to computer simulations even
at high particle densities and relatively strong association for
the case of four patches per particle. In numerous studies, the
theory successfully has been applied in order to investigate
liquid-gas interfaces of patchy colloids [40], the confinement
in slitlike pores [41], or a density functional theory study for
water [42], just to mention a few. However, it is important to
note that so far any kind of DFT for patchy particles neglects
the orientational character of the interaction, which is accurate
in the bulk phase, but in inhomogeneous situations, e.g., close
to a hard wall, particle orientations can become relevant.
Indeed, while in systems with four patches the orientational
dependence properly averages out due to symmetry, a recent
study revealed that in the case of strong association between
the particles common DFT formulations fail to capture
fundamental properties of the density distribution at a hard
wall for particles with three patches [43].

Here we provide a DFT study for systems consisting
of particles with a hard-core diameter σ possessing an
anisotropic attraction via four patches and an additional
Yukawa-type repulsion at larger distances. The hard-core and
patchy interaction are modelled within the framework of FMT,
and the repulsive tail is treated with a standard mean-field
approach [1]. In Sec. II we introduce the theory covering
the model system (Sec. II A) and give a brief introduction
to DFT (Sec. II B), and finally we discuss details regarding
the static structure factor S(k) in Sec. II C. In Sec. III we
focus on thermodynamic bulk properties and phase diagrams.
Subsequently, in Sec. IV, we study the bulk structure of the
system, where we find that the behavior of the phase diagrams
is reflected in terms of the inhomogeneous density distribution
ρ(r) in an intriguing way. In Sec. V we focus on the question
what kind of microphases can be stable within the region of
instability, and we compare our results to previous studies of
spherically symmetric competing interactions. Finally, we give
a discussion and conclusion as well as possible applications to
experimental systems of the model in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Model system

In order to model anisotropic competing interactions we
choose the pair interaction potential to be a composition of
the Kern-Frenkel [44] and a spherically symmetric repulsive
Yukawa potential. Specifically, the total pair-interaction po-
tential between two particles 1 and 2 is given by

φ(r,�1,�2) = φhs(r) + φr(r) + φbond(r,�1,�2) (1)

where φhs(r) is the usual hard-sphere potential, r = |r| ≡
|r1 − r2| is the center-to-center distance between particles 1

FIG. 1. Schematic illustration of the model system. Patchy
particles (blue) with four attractive sites (red) and an additional
spherical Yukawa-type repulsion (green).

and 2, and �i denote individual orientation vectors. The
Yukawa potential has the form (r � σ )

φr(r) = B
σ

r
exp [−z(r/σ − 1)], (2)

where B controls the contact value at r = σ and z the range
of repulsion. Furthermore, φbond(r,�1,�2) is given by

φbond(r,�1,�2) = φsw(r) ·
∑
α,β

G(r̂,r̂α
1 (�1),r̂β

2 (�2)), (3)

in which

φsw(r) =
{−ε if σ < r < λσ

0 otherwise (4)

describes a square-well interaction between two sites. The
parameter λ controls the range of the attraction, and ε is
the potential depth, which we assume to be identical for all
patches. The function G contains the orientational character
of the interaction,

G
(
r̂,r̂α

1 (�1),r̂β

2 (�2)
) =

⎧⎨
⎩1 if

{
r̂ · r̂α

1 > cos(θc),
−r̂ · r̂β

2 > cos(θc),
0 else,

(5)
where r̂ = (r1 − r2)/|r1 − r2| denotes the center-to-center
unit vector between particles 1 and 2, and r̂α

i is a unit vector
from the center of particle i to a patch α on its surface
depending on the individual orientation �i . Hence, the product
of φsw and G accounts for the anisotropic character of the
interaction; it is attractive only if two patches are within a
sufficient distance and are orientated to each other properly,
depending on the patch opening angle θc. A schematic
illustration of the model system is pictured in Fig. 1.

Bond formation between particles is adequately described
by Wertheims first-order perturbation theory [32,45–47]. For
M identical patches, the contribution fbond to the free-energy
density of the bulk system can be written as [33]

βfbond = ρM

[
ln(X) − X

2
+ 1

2

]
, (6)

where ρ = N/V denotes the number density, β = 1/(kBT )
the inverse temperature, and X is the probability that an
arbitrary patch is not bonded. For the present case of a
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one-component system with identical patches, X is given by
the following mass-action equation:

X = 1

1 + ρMX�
, (7)

in which � is a measure for the interaction between two
patches and reads [33]

� =
∫

dr gR(r)〈exp(−βφbond) − 1〉�1,�2

≈ πσ 3gR(σ+)[exp(βε) − 1)(1 − cos(θc)]2(λ − 1), (8)

connecting all geometrical and physical quantities of the
patches, and 〈·〉�1,�2 denotes an angular average over all
orientations of particles 1 and 2. Furthermore, the radial
distribution function gR(r) of the reference system has been
approximated by its contact value gR(σ+), due to the short
range of the site-site interaction. For the present model, strictly
speaking the reference system would be the repulsive Yukawa
fluid. However, we approximate the latter using the Carnahan-
Starling expression for the pure hard-sphere system, gR(σ+) ≈
ghs(σ+) = (1 − η/2)/(1 − η)3, where η = πσ 3ρ/6 is the fluid
packing fraction. For completeness, we note that a first-order
mean spherical approximation for gR(σ+) for Yukawa systems
is available [48], but its usage only slightly affects the resulting
bulk phase diagrams shown in Sec. III. In the present work we
employ λ = 1.1 and θc = 27◦, where these values ensure that
the single-bond condition per patch is satisfied as assumed
by TPT1. Note further that ring formation is not accounted
for within the first-order description, but can be included in
higher-order expansions [33].

B. Density functional theory

In order to investigate structure and thermodynamic prop-
erties such as pressure, thermal compressibility, or bulk phase
behavior on equal footing, density functional theory (DFT) [5]
provides a powerful and well-established framework. In DFT
one minimizes the grand potential functional �[ρ] w.r.t.
the one-body density profile ρ(r) in order to obtain the
equilibrium particle distribution ρ0(r), and � = �[ρ0(r)] is the
grand potential of the fluid. The grand potential functional is
given by

�[ρ] = Fid[ρ] + Fex[ρ] +
∫

dr ρ(r)[Vext(r) − μ], (9)

where Vext(r) is an arbitrary external field and μ denotes the
chemical potential of the particle reservoir. The quantity Fid[ρ]
is the free-energy functional of the ideal gas, which is known
analytically,

βFid[ρ] =
∫

dr ρ(r){ln[�3ρ(r)] − 1}, (10)

in which � denotes the thermal wavelength. The excess part
Fex[ρ] contains information about the particle interactions, and
in general this quantity is not known exactly (this would be
equivalent having access to the partition sum), and therefore
approximations have to be made. For the present system,
we describe the hard-sphere and bonding contribution within
the framework of fundamental measure theory (FMT) [6,7],

whereas the long-range repulsion is taken into account via a
first-order perturbation theory [1],

βFex[ρ] =
∫

dr [�hs({nα}) + �bond({nα})] + 1

2

∫∫
dr dr′

× ρ(r)ρ(r′)ghs(r,r′)βφr(|r − r′|). (11)

The last term is further simplified by assuming that the
radial distribution function of hard spheres is ghs(r,r′) ≈
1 in the range of the repulsive interaction; since in this
work we consider a rather long-ranged repulsion of several
particle diameters, and the considered fluid packing fractions
are relatively small, we expect the approximation to be (at
least) qualitatively reliable.

For the hard-sphere interaction, we employ the accurate
White-Bear mark II functional [49],

�hs({nα}) = −n0 ln(1 − n3) + (n1n2 − n1 · n2)
1 + 1

3χ2(n3)

1 − n3

+ (
n3

2 − 3n2n2 · n2
) 1 − 1

3χ3(n3)

24π (1 − n3)2
, (12)

in which the functions χ2 and χ3 are given by

χ2(n3) = 1

n3

[
2n3 − n2

3 + 2(1 − n3) ln(1 − n3)
]
,

χ3(n3) = 1

n2
3

[
2n3 − 3n2

3 + 2n3
3 + 2(1 − n3)2 ln(1 − n3)

]
. (13)

The weighted densities nα(r) are defined as convolutions of the
density ρ(r) with certain weight functions ωα(r) describing the
fundamental geometries of a sphere [6],

nα(r) =
∫

dr ′ ρ(r′)ωα(r − r′). (14)

For instance, ω3(r) = �(R − |r|) characterizes the volume
of a sphere. For a more detailed introduction to FMT see
Ref. [7]. The extension of the bonding contribution to the
inhomogeneous fluid �bond({nα}) is given by a weighted-
density approximation of Eqs. (6), (7), and (8). Specifically,
the contact value for hard spheres is generalized to [39]

ghs({nα}) = 1

1 − n3
+ σn2ξ

4(1 − n3)2
+ σ 2n2

2ξ

72(1 − n3)3
, (15)

with ξ = 1 − n2 · n2/n2
2. Moreover, the bulk density ρ is

replaced with ρ → n0. Since the FMT formulation of bonding
has shown to give most reliable results for M = 4 patches, we
restrict our studies to this case (cf. discussions in Sec. I or,
e.g., in Sec. IV of Ref. [50]).

C. Static structure factor S(k) and λ line

From previous studies of fluids with competing interactions
it is well known that the static structure S(k) factor plays a ma-
jor role when determining the regions within the phase diagram
(e.g. in the T -ρ-plane) where ordered density modulations are
present [13–15,18]. These are manifested by a diverging peak
at a nonzero wave number 0 < kc 	 2π/σ in S(k) indicating
an instability of the homogeneous bulk state with respect to
periodic density modulations with a length scale Lc ∼ 2π/kc.
The boundary where S(kc) diverges is referred to as the λ line.
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Furthermore, when approaching the λ line, a large but finite
peak in S(k) at k = kc can evolve, which can be related to the
onset of unordered particle clusters [23]. Recall also that the
spinodal, which defines the locus in the phase diagram where a
macroscopic phase separation into a gas and a liquid inevitably
occurs, is obtained where S(k) diverges at k = 0.

It follows from the Ornstein-Zernicke relation that S(k)
is related to the Fourier transform of the bulk pair direct
correlation function c(r)

S(k) = 1

1 − ρ ĉ (k)
, (16)

where f̂ (k) = ∫
dr exp(−ik · r)f (r) denotes the three-

dimensional spatial Fourier transform of a function f (r). In
particular, c(r) can be extracted from DFT by taking the second
functional derivative of the excess free energy functional [1]

c(r,r′) = c(r = |r − r′|) = − δ2βFex[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ(r)=ρ

. (17)

Fortunately, the internal structure of FMT together with the
mean-field functional allow for an analytic solution for ĉ(k)

ĉ (k) = ĉhs(k) + ĉbond(k) + ĉr(k),

where

ĉ (k) − ĉr(k) = −
∑
α,β

∂2(�hs + �bond)

∂nα∂nβ

∣∣∣∣
ρ

ω̂α(k) · ω̂β(−k)

(18)
and

ĉr(k) = −βφ̂r(k)

= − 4πβBσ 3

(kσ )2 + z2

[
cos(kσ ) + z

kσ
sin(kσ )

]
. (19)

Here the ω̂α(k) are the Fourier-transforms of the FMT-type
weight functions ωα(r), which are known analytically [51].
Furthermore, the partial derivatives of �hs and �bond can be
carried out also analytically.

Equation (19) is the well-known random-phase approxi-
mation (RPA), and it is important to note that the structure
factor obtained from Eqs. (16)–(19) may not equal the result
obtained via the so-called test particle route [52]. In the latter,
S(k) = 1 + ρĥ(k) is determined from the Fourier transform
of the total pair correlation function h(r) = g(r) − 1, which
can readily be calculated within DFT. However, we have
verified that the region enclosed by the λ line obtained via
Eqs. (16)–(19) and the appearance of periodic microphases
via the test particle route are consistent (cf. Sec. IV).

III. BULK PHASE DIAGRAMS

In this section, we show and discuss results for the
gas-liquid binodals as well as the λ line for particles with
M = 4 patches. Liquid-gas coexistence is determined by
demanding chemical and mechanical equilibrium, and the
critical points are calculated by demanding that the first
and second derivatives of the systems pressure p w.r.t the
density ρ vanish. Diagrams are displayed in the T ∗-η plane,
where T ∗ = kBT /ε. Note that we fix the amplitude ratio
between attraction and repulsion, i.e., we assume B = Aε as
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FIG. 2. (a) Gas-liquid coexistence phase diagrams in the T ∗-η
plane for A = 0.005 (red long-dashed), 0.01 (blue short-dashed),
0.025 (green dashed-dotted), and 0.1 (brown dotted). Squares denote
the critical points. (b) Critical temperature T ∗

c and density ηc as a
function of 1/A.

in Ref. [19], where A is a dimensionless scaling factor. It is
interesting to note that while short-ranged isotropic (“sticky”)
potentials tend to render fully meta-stable gas-liquid binodals
w.r.t gas-solid transitions, finite-valence patchy particles can
yield stable gas-liquid binodals and gel-like structures on
the liquid-side of the binodal despite the short range of the
potential even at extreme low temperatures [53,54].

A. Gas-liquid phase separation

In Fig. 2(a) we show results for liquid-gas binodals (lines)
and critical temperatures (open squares) for distinct values
of A. We display curves for A = 0 (black solid), A = 0.005
(red long-dashed), 0.01 (blue short-dashed), 0.025 (green
dashed-dotted), and 0.1 (brown dotted). The value of z is fixed
at 0.5 which is inspired by previous DFT studies of competing
interactions [15,19]. For A = 0, the liquid state is a gel-like
percolated network mainly consisting of branched treelike
structures, and a large number of patches are bonded which can
be concluded by employing Flory-Stockmeyer theory [55,56]
providing a percolation threshold in terms of the number of
unbonded patches X [cf. Eq. (7)]. In contrast, the vapor consists
of short chains or free particles, with a high probability of
finding an unbonded site. When considering particles having
different types of patches or mixtures with distinct numbers
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of patches, Wertheim’s theory predicts a rich phase behavior
including reentrant liquid-gas binodals [36] and liquid states at
extremely low packing fractions referred to as “empty liquids”
[34]; note that all these effects are (at least qualitatively)
confirmed by computer simulations.

However, we observe that the topology of the gas-liquid
binodals fundamentally changes when including a long-ranged
isotropic repulsion. In all cases, the liquid branch moves
to significantly lower densities. As the repulsion becomes
infinitely strong relative to the attraction (i.e., 1/A → 0), both
the critical packing fraction ηc and temperature T ∗

c decrease
and finally vanish with a critical behavior; see Fig. 2(b).
Moreover, we obtain a reentrant effect on the liquid side, i.e.,
when lowering the temperature at constant ρ (or, equally at
constant η) at some point one enters the metastable two-phase
region and subsequently reenters a stable liquid state. For the
present model the effects leading to a pinched phase diagram
can be understood as the result of a competition between bond
formation and the isotropic repulsion. Upon cooling, repulsion
influences bond formation between particles increasingly, due
to the long-range character of the interaction; in order to
minimize configurational energy, particles may tend to form
more chainlike rather than treelike structures. As a result, with
decreasing temperature, the phase-separated regime appears
to shrink and vanishes for T ∗ → 0, since a fluid of chains is
known to not phase separate [34]. Moreover, statistically it
gets more unlikely that a particle falls short of a center-to-
center distance ∼1.1σ that is necessary for bonding and is
orientated correctly (note that a patch covers only ∼5% of the
particles surface for the model parameters chosen in this work).
This physical picture is also consistent with the observed
vanishing of the critical point and shrinking of the liquid
branch when increasing the repulsion relative to the bonding
energy (i.e., increasing A). In particular, we have verified
that the reentrant effect is no longer present in case of that
the repulsion amplitude B becomes temperature independent
(not shown here), but the critical point still vanishes for
B → ∞.

Note that from a technical point of view the reentrant effect
and vanishing of the critical point are the result of a competition
between the complex density dependence of Eqs. (6) and (7)
and the mean-field free energy accounting for the repulsion,
which scales with ∼ρ2. It therefore remains an open question to
what extent a theory describing the repulsion beyond the mean
field would impact the phase behavior. It is also interesting to
note that these effects bear a resemblance to the phase behavior
of systems with so-called 2AnB patchy colloids [36,37]. There
one places two sites of type A at the poles of each particle, and
n patches of type B are placed along the equator. The particles
interact via AA or via AB bonds only (with distinct interaction
energies εAA and εAB), while BB bonds are forbidden. In these
systems, a reentrant binodal is the result of a competition
between AA bonds and AB bonds at finite temperatures if
εAB < εAA/2.

B. Microphase separation: λ line

We now consider the λ line, which is determined by the
fact that kc is the value of k for which S(k) is maximal, hence
we have two equations being satisfied for k = kc, namely,
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(d)

binodal
λ -line

spinodal

FIG. 3. (a)–(d) The binodal (red solid), spinodal (black dashed-
dotted), and λ line (blue dashed) for a variety of parameters A and
z. Note the small packing fractions η in (d) for A = 0.1 and z = 0.5
in comparison to A = 0.01 (a)–(c). Crosses in (a) denote state points
shown in Fig. 5.

D(k) ≡ 1/S(k) = 0 and ∂D(k)/∂k = 0, which we use to deter-
mine kc and the corresponding temperature at a fixed packing
fraction η.

In Figs. 3(a)–3(d) we show the λ line (blue dashed)
and the respective binodal (red solid) and spinodal (black
dashed-dotted) lines for a selection of parameters A and z:
A = 0.01,z = 0.3 (a), z = 0.5 (b), z = 0.75 (c), and A = 0.1
and z = 0.5 (d). The spinodal line has been obtained using the
same algorithm as we have employed for determining the λ

line, albeit we searched for solutions with k = 0. Moreover,
we have verified that the results are consistent with the
compressibility route [recall that S(k = 0) = kBTρχT where
χT denotes the isothermal compressibility].

Strikingly, the λ line also shows a reentrant topology which
is fundamentally different from spherically symmetric com-
peting interactions [15,18,19]. For a general comparison, in
Fig. 4 we show the typical phase diagram of a double-Yukawa
fluid as obtained from a complete mean-field treatment of
the non-hard-sphere interactions, which has been employed
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FIG. 4. Typical phase diagram of a double-Yukawa fluid as born
out by a mean-field DFT treatment of the attraction and repulsion.
Shown are binodal (solid), spinodal (dashed-dotted), and the λ line.

extensively in previous DFT studies [15,18,19]. Specifically,
the potential is given by

φ(r) = ε

(
−σ

r
e−z1r/σ + Aσ

r
e−z2r/σ

)
, (20)

in which z1 (z2) controls the range of attraction (repulsion)
and A fixes the amplitude ratio. Note that within a full
mean-field treatment, the attraction needs to be significantly
longer ranged in order to obtain microphase-separated states
than is the case for the patchy interaction. It therefore
would be an interesting future task to compare a spherically
symmetric sticky attraction, which properly can be treated
within FMT [57], to the present results.

A feature satisfied by both the present system and double-
Yukawa fluid is that the λ line converges to the spinodal
for T ∗ → 0 on the liquid side, which here gives rise to the
reentrant behavior of the λ line. For the isotropic system,
however, the λ line converges to the spinodal on the vapor
side also for T ∗ → 0 (which we find to be true for all values
of z1, z2, and A leading to microphase-separated states), while
this is not the case for the present system. In particular, the λ

line mainly is located on the liquid side of the phase diagram
where one expects that the particles exhibit branched-like
structures, and converges to the spinodal on the vapor side
rather close to the critical point. This may be due to the fact that
a fluid prevalently consisting of chains (as present on the vapor
side of the phase diagram) seems to be incommensurate with
self-assembly into complex microphases. Hence, the reentrant
topology is most likely the consequence of the directionality
of the interaction.

Physically, the convergence to the spinodal means that the
length scales of clusters can become macroscopically large
[since the wave numbers kc associated with the divergence in
S(kc) become smaller], and system-spanning cluster states can
form. By altering the tuple (A,z), it is possible to greatly tune
the absolute location of the λ line in the phase diagram, as well
as its location relative to the binodal. When keeping A constant
and varying z, the absolute extension of the λ line changes
only slightly, while the binodal (and spinodal, respectively)
grows clearly when reducing the range of repulsion [compare

Figs. 3(a), 3(b), and 3(c)]. However, when altering A and
keeping z fixed [see Figs. 3(b) where A = 0.01 and 3(d)
where A = 0.1], we see that both the liquid-gas separation
as well as the region dominated by microphases can be
changed on an absolute scale, whereas their relative location
to each other is not affected too strongly. In particular, the
theory predicts inhomogeneous bulk phases at extremely low
(reservoir) packing fractions, which is consistent with our
previous arguments concerning the vanishing of the critical
point as the repulsion becomes increasingly dominant; as
mentioned above, we expect a fluid prevalently consisting of
linear chains to be unable to self-assembly into complex cluster
phases.

IV. STRUCTURAL PROPERTIES

In this section we put our focus on the (bulk) structural
properties of the present model system. More precisely, we
calculate the fluid structure of the system around a purely
repulsive test particle. Note that strictly speaking this situation
does not correspond to the radial distribution function g(r),
but it captures the interparticle correlation effects of the sur-
rounding fluid. In order to obtain the (orientational averaged)
density distribution, we minimize the grand potential �[ρ] in
radial symmetry w.r.t. to the density profile ρ(r) = ρ(r) using
a standard numerical minimization scheme [7]. The potential
Vext(r) exerted by the test particle to the surrounding fluid is
given by

Vext(r) =
{∞; r < σ

Aεσ
r

exp [−z(r/σ − 1)]; r � σ
. (21)

In Figs. 5(a)–5(c) we show the resulting density profiles for
several values of kBT /ε = 0.13 (a), 0.10 (b), and 0.06 (c) at
constant packing fractions η = 0.14 (black solid), 0.12 (red
dotted), and 0.10 (blue dashed). The potential parameters are
A = 0.01 and z = 0.3, corresponding to the phase diagram
in Fig. 3(a), where the state points are marked with crosses.
For η = 0.10, the state points displayed in Figs. 5(a) and 5(b)
are located inside the λ line. Here we obtain a strong radial-
symmetric periodic modulation of the density ρ(r). The length
scale of the modulations is about roughly Lc ≈ 7–8σ , and, in
particular, the density peaks are not decaying with increasing
distance to the test particle, indicating (bulk) microphase
separation. Note that the respective value of the wave number
where S(kc) diverges is kcσ ≈ 0.8, which is commensurate
with the obtained periodicity of the density.

For densities η = 0.12 and 0.14, the state points are in
vicinity to but outside the λ line, and here we observe that long-
ranged slowly decaying cluster correlations are emerging.
These may be related to unordered cluster phases, which in
a bulk situation would be not recognizable [i.e., on statistical
average the system shows a bulk state with ρ(r) = const],
in contrast to ordered microphases inside the λ line. These
decaying cluster correlations can be related to a large but finite
peak in S(k) at k = kc [23,58,59], and they pass over to a
complete periodic modulated density when approaching the
λ line where S(k) divergences at k = kc (e.g., by following a
path at constant T ∗). In particular, the oscillations reflect the
reentrant topology of the phase diagrams: far from the λ line
[cf. Fig. 5(a)] only weak oscillations can be seen; in its direct
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FIG. 5. Radial distribution function g(r) around a purely repul-
sive test particle for different values T ∗ = 0.13 (a), 0.10 (b), and 0.06
(c), and packing fractions η = 0.10 (blue dashed), 0.12 (red dotted),
and 0.14 (black solid). The potential parameters correspond to the
phase diagram in Fig. 3(a), where the state points are marked with
crosses.

vicinity, cluster correlations are clearly visible, in particular
for η = 0.12. By further decreasing temperature [Fig. 5(c)]
cluster correlations in turn become less pronounced.

V. INHOMOGENEOUS BULK PHASES

We now discuss what kind of bulk microphases can be
stable within the region enclosed by the λ line. Considering
the complex phase behavior of the present system, the question
arises how the typical sequence of 3D structures, namely, bcc-
2D-hexagonal-gyroid-lamellar-inverted gyroid-inverted 2D-
hexagonal-inverted bcc predicted by Landau-type theories and
full DFT-calculations [12,19] for systems with spherically
competing interactions may be affected by an anisotropic

attraction. Note that this ordering of structures is also observed
experimentally in diblock copolymers [9].

To this end, we go along the lines of Ref. [19] in order to find
the microphase with the lowest configurational energy, which
within the framework of DFT can be obtained by considering
the value of the grand potential functional � = �[ρ0(r)]
evaluated at the density distribution describing a specific
structure. Recall that within the λ line, the homogeneous bulk
phase, i.e., ρ(r) = ρ = const is unstable w.r.t any arbitrary
small perturbation ρ(r) = ρ + δρ(r). In particular, the free-
energy landscape can be very complex: if δρ(r) is a random
noise term, typically one ends up with an arbitrary periodic
intermediate structure which is commensurate with the size
of the unit cell and usually does not correspond to a global
minimum of the system. Hence, in order to determine the
structures with lowest energy, the perturbation δρ(r) must
be chosen properly close to the desired structure, otherwise
numerical schemes used to minimize Eq. (9) may run into
local minima representing metastable states [19]. Note that
�[ρ] must also be minimized with respect to the size of the
unitcell L, which makes the calculation of certain structures
numerically challenging and leads to huge computational
effort. In order to obtain a reasonable balance between
computation time and accuracy of the results, here we make
use of a massively parallel minimization on GPUs [60]. For
certain symmetry groups (e.g., Im3̄m,Fm3̄m) one can make
use of Fourier expansions, and in many cases it suffices to
employ the respective first-order approximation. For instance,
the perturbation term describing the lamellar phase is given by
δρlam(r) = γ

√
2 cos(2πkcx/L), where γ controls the strength

of the perturbation. Further structures can be found in Ref. [61].
Note that an order-parameter theory, which qualitatively

predicts different types of stable microphases, readily can
be derived for a local density approximation (LDA) of
the hard-sphere correlations and a full mean-field treatment
of the longer-ranged interactions [18,19]. However, for the
present system this is very cumbersome due to the full FMT-
type character of the attraction, and a LDA treatment of the
Wertheim theory is not capable of predicting a λ line, because
the respective ĉbond does not posses a dependency on the wave
vector k, which is mandatory for obtaining a diverging peak
in S(k).

We plot in Fig. 6 structures from several symmetry groups
that according to the present theory can exist as stable mi-
crophases, which includes a double-gyroid (a), 2D-hexagonal
(b), and a bcc structure (c), or at least as metastable phases
such as the single-gyroid (d). Considering the size L of the
individual unit cells, we find that for state points located
well inside the λ line, they range between ≈20–30σ for the
double-gyroid, ≈12–20σ for, e.g., the bcc- or single-gyroid
structure, and ≈7–12σ for the lamellar phase. Note that in
general the Fourier expansions of specific structures depend
also on the miller indices {hkl}, and the associated theoretical
length scales of these structures are related to the wave number
kc via

Lc = 2π

kc

√
h2 + k2 + l2. (22)

The actual sizes of the unit cells found by minimiza-
tion of the grand potential are in good agreement with
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FIG. 6. A double-gyroid (a), 2D hexagonal (b), bcc (c), and
single-gyroid phase (d) predicted by the present DFT. All but the
single-gyroid phase can exist as stable phases, and these structures
also have been observed in DFT and Monte Carlo simulation studies
using spherically competing interactions [19,20].

Eq. (22). Remarkably the size of the unit cell does not
qualitatively depend on the phase diagrams [cf. Figs. 3(b)
and 3(c)], although the (reservoir) particle densities differ
by nearly an order of magnitude. Moreover, the values of
L are very similar to the case of spherically competing
interactions [19].

It is interesting to note that self-assembly into complex
structures including gyroid phases can be observed in biologic
processes of some animals: There they form photonic crystals,
e.g., in bird feathers [24] or butterfly wings [25], and these are
responsible for structural coloring, i.e., wavelength-selective
scattering of visible light. This means that the length scale
of these structures is within the range ∼300–600 nm, and,
strikingly, assuming an effective particle diameter of ∼10–20
nm which is the typical length scale of proteins or complex
polymers, the respective sizes of the unit cells observed
in systems with competing interactions match the scale
corresponding to the wavelength of visible light. In particular,
the effects behind the self-assembly into biophotonic nanos-
tructures were suggested to be driven by a thermodynamic
phase separation [24].

In Fig. 7(a) we show �/|�l| normalized w.r.t the absolute
value of the lamellar phase �l as a function of the reservoir
packing fraction η for T ∗ = 0.12, A = 0.01, and z = 0.3,
corresponding to the phase diagram shown in Fig. 3(a).
Essentially, for these parameters we observe the same ordering
of structures as predicted for spherically competing inter-
actions: bcc-2D-hexagonal-gyroid-lamellar-inverted gyroid-
inverted 2D-hexagonal-inverted bcc. For readability of the
plot the bcc phase is not pictured, as it occurs only in
direct vicinity to the λ line. The kinks in the graphs indicate
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FIG. 7. (a) The grand potential � normalized w.r.t. the lamellar
phase (red dashed line) as a function of η at T ∗ = 0.12 for structures
with lowest free energies, including a single gyroid (green dashed-
dotted), double gyroid (black solid), and 2D hexagonal phase (blue
dotted). (b) Same as in (a) but as a function of T ∗ for fixed η = 0.06.

a first-order transition to the inverted structure, i.e., where
low-density and high-density domains are exchanged. Note
that, e.g., the lamellar or the single-gyroid structure is its own
inverse, and hence the related curves are smooth functions
of η. Figure 7(b) pictures the same as in Fig. 7(a) but for a
function of T ∗ at fixed η = 0.06, where we observe a reentrant
effect: starting from a stable lamellar structure, the gyroid
phase becomes stable between T ∗ ≈ 0.127 and T ∗ ≈ 0.11.
Subsequently, this is followed by a region where the 2D-
hexagonal structure corresponds to the global minimum, and
at T ∗ ≈ 0.09 the gyroid becomes the most stable structure
again. For even lower temperatures, approaching the λ line,
again the lamellar phase is stable. This behavior directly
reflects the topology of the λ line and is not compatible
with the typical phase diagrams in systems with spherically
competing interactions [12,19]. We have performed the same
calculations also for the phase diagram in Fig. 3(d) and found
a similar behavior: although here the inverse structures (e.g.,
inverse double-gyroid or bcc) seem to be unstable [despite
a properly chosen initial perturbation δρ(r) one ends up
with an intermediate microstructure], which may be due to
the fact that the packing fraction is too low in order to
generate these structures. It remains an interesting future task
to completely sample through the phase diagrams pictured in
Figs. 3(a)–3(d) and determine the concrete ordering of struc-
tures, which, however, goes beyond the scope of the current
work.
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VI. SUMMARY AND CONCLUSION

In this paper we presented a DFT study investigating
systems with competing interactions, where the constituents
undergo a short-ranged patchy attraction via four equal
interactions sites on their surface and a spherical long-ranged
repulsion. While the anisotropic interaction is accounted for
within Wertheim’s first order perturbation theory (TPT1) [33]
and a generalization to nonhomogeneous situations as pro-
posed by Yu and Wu [39] within the framework of FMT, the
repulsion is treated in a standard mean-field manner.

We calculated the respective gas-liquid coexistence regions,
as well as the λ line which encloses a region in the phase
diagram where the bulk fluid becomes unstable w.r.t to
fluctuations and self-assembles into (periodic) microphases,
which is a well-known phenomenon in systems with spherical
competing interactions; see, e.g., Refs. [12,15,19,20] and
references therein. Importantly, the topology of the phase
behavior fundamentally changes in comparison to spherically
symmetric interactions: The diagrams feature phenomena such
as vanishing critical points and reentrant behavior, which are
reminiscent of systems consisting of pure patchy colloids with
two distinct types of patches per particles [36]. In our case,
the observed behavior can be understood by the interplay of
bond formation and effects of repulsion; see discussions given
in Sec. III A. In Sec. IV we calculated the density profile ρ(r)
around a repulsive test particle having the same geometrical
size as the surrounding particles. Here we find that the bulk
behavior of the system is clearly reflected in the structure of the
fluid; reentrant cluster correlations in g(r) are visible along a
path of constant density in vicinity to the λ line. Subsequently,
in Sec. V we investigated what kind of microphases can be
stable within the λ line, and we found that in principal the
same structures are predicted as in systems with spherically
competing interactions. In particular, complex structures such
as the double gyroid can be stable also at extremely low
reservoir packing fractions η ∼ 0.01.

One may raise concerns about that the mean-field approach
employed to model the repulsive contribution as well as the
treatment of the patchy attraction applied in this work allow
only for rough conclusions. However, we expect our results
to be at least qualitatively reliable. First, Archer and Evans

recently have shown for one-dimensional attractive rods,
where an exact approach is available, that the corresponding
mean-field DFT is in reasonable good agreement with the exact
solution [52]. Moreover, previous mean-field DFT studies
of isotropic competing interactions have predicted complex
three-dimensional microphases including fcc- and double-
gyroid structures in good agreement with simulations, even
in terms of the topology of the λ line [19,20]. Moreover,
the appearance of a large but finite peak in S(k) has been
interpreted as the onset of clustering in various simulation
studies by considering the peak height and width [58,59],
which is consistent with previous mean-field descriptions and
our present findings regarding the density profiles shown in
Sec. IV. In addition, although Wertheim’s theory is known to
underestimate the bulk phase diagrams at higher densities [36],
it qualitatively captures essential effects compared to simula-
tions.

Finally, it is worth noting that the investigated system may
serve as a toy model for protein-salt mixtures in aqueous
solution [30,62]. In these systems, multivalent salt ions can
bind to the surface of globular proteins and induce highly
directional bonds between the proteins, which for sufficient
salt concentrations results in reentrant protein clustering
and a closed-loop liquid-liquid phase separation (LLPS)
region, i.e., phase separation into protein-poor and protein-rich
regions [62]. In a recent work, Roosen-Runge et al. have
developed an appealing theory using TPT1 in order to model
the ion-activated interaction between proteins. While the LLPS
is accurately reproduced by the approach which does not take
into account electrostatics explicitly, open questions remain
regarding experimentally observed large protein clusters.
Thus, taking into account electrostatic interactions in terms
of a screened Coulomb potential seems a natural next step
for improving the model [30]. In particular, the observed
clustering at very low protein packing fractions is compatible
with the present system, where unordered cluster phases and
microphases can occur at very low packing fractions.
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