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Glassy swirls of active dumbbells
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Is an active glass different from a conventional passive glass? To address this, we study the dynamics of a dense
binary mixture of soft dumbbells, each subject to an active propulsion force and thermal fluctuations. This dense
assembly shows dynamical arrest, first to a translational and then to a rotational glass, as one reduces temperature
T or the self-propulsion force f . We monitor the dynamics along an iso-relaxation-time contour in the (T -f )
plane. We find dramatic differences both in the fragility and in the nature of dynamical heterogeneity, which
characterize the onset of glass formation—the activity-induced glass exhibits large swirls or vortices, whose scale
is set by activity, and it appears to diverge as one approaches the glass transition. This large collective swirling
movement should have implications for collective cell migration in epithelial layers. We construct continuum
hydrodynamic equations for the simulated system, and we show that the observed behavior of this growing
dynamic length scale can be understood from these equations.
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I. INTRODUCTION

Assemblies of self-propelled objects jam at high densities
[1–4] and low temperatures [5]. On approaching dynamical
arrest from the fluid side, these dense active assemblies are seen
to exhibit typical glassy dynamics, with activity manifesting
simply as an effective temperature [5,6]. Likewise, starting
from the jammed state, activity is seen to prematurely fluidize
the system at a reduced (enhanced) transition temperature
(volume fraction) [1–5]. On the face of it, it might appear
that an active glass behaves very similarly to a conventional
one, albeit with a different effective temperature or density
[1,6]. In this paper we provide evidence to the contrary, i.e.,
we show that an active glass of anisotropic objects exhibits
distinctive dynamical features that are qualitatively different
from those of its passive counterpart.

We consider dense assemblies of generic oriented nonspher-
ical self-propelled objects [7–12], which are free to explore
both translational and orientational degrees of freedom. Our
rationale for such a system is that radical departures from
equilibrium are manifest when the self-propelled particles are
made anisotropic [13–15]. Living realizations include recon-
stituted layer of confluent epithelial cells [16], where cell shape
anisotropy plays a crucial role in the jamming-unjamming tran-
sition [17], and jammed biofilms formed by a dense collection
of rod-shaped bacteria [18]. Shaken nonspherical grains at
high packing densities constitute nonliving examples [19].

We perform Brownian dynamics simulations of a dense
binary assembly of dumbbells [20–23] in two dimensions; the
50:50 mixture of A- and B-type dumbbells with a number
density ρ = 1.6 ensures amorphous steady-state structures.
This assembly, subject to a temperature bath T , is made active
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by driving each dumbbell with a body-fixed propulsion force
f along the long axis of each dumbbell, and it is characterized
by a Pećlet number Pe ≡ f σAA/kBT , measuring the relative
strength of activity with respect to temperature [7,12].

We show that the phase diagram of such a model system
exhibits a dynamically arrested state upon reducing either
temperature or self-propulsion force. Our main result is that
the dynamical signatures of an active glass are fundamentally
different from a conventional glass: (i) activity makes the glass
less fragile, and (ii) the nature of dynamical heterogeneity in an
active glass is very unique and exhibits large-scale swirls and
vortices, whose size increases and appears to diverge as one
approaches the arrested state by reducing the self-propulsion
force f . We construct continuum hydrodynamic equations
for the assembly of active dumbbells, and we show that
these equations provide a complete understanding of the
observed behavior of this growing dynamic length scale. These
large-scale swirls are the sluggish imprints of the collective
turbulent motion observed in an active fluid of anisotropic
particles [9,10,24] at lower densities.

The rest of the paper is organized as follows. In Sec. II, we
discuss the model system, the numerical simulation method,
and the various dynamical measures used. In Sec. III, we
report the results of our numerical simulations in the dilute
and dense regimes of the model. In Sec. IV, we discuss the
hydrodynamic model for the assembly of active dumbbells,
and we provide a detailed discussion of the emergence
and growth of the dynamical length scales observed in our
numerical simulations. We end with some concluding remarks
in Sec. V.

II. MODEL AND SIMULATION DETAILS

In this section, we describe our Brownian dynamics
simulation of a two-dimensional binary dumbbell mixture.
Each dumbbell consists of two spherical monomers of the
same type (either A or B) connected via a spring with a stiffness
of k = 200; a schematic of the dumbbell is illustrated in the
inset of Fig. 1(a). This value of spring constant makes the
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(a) (b) (c)

FIG. 1. (a) Binary assembly of self-propelled dumbbells of A (blue) or B (red) type in the dilute limit, built from two identical soft
Lennard-Jones (LJ) spheres of diameter σ connected through a harmonic spring of stiffness k and rest length l (inset). The body-fixed
self-propulsion force f (arrow) is along the long axis of each dumbbell. (b) Stochastic trajectory of a single active dumbbell in the dilute regime
(ρ = 0.1) at T = 0.5, in the presence of an active force (f = 5), showing center-of-mass position and dumbbell orientation. (c) Rotational
correlation time τR

α vs density ρ for the assembly of active dumbbells for f = 10.0 at two temperatures, T = 0.2 (red) and T = 0.6 (blue).
Orientational decorrelation happens because of both thermal fluctuations and collisions as a consequence of active and thermal driving. We see
that at T = 0.6, the rotational persistence time increases monotonically with density; this is because rotational fluctuations are hindered due to
crowding. At T = 0.2, however, τR

α decreases at first from a high value before increasing again; this initial decrease with density arises from
the increasing number of collisions encountered by persistent dumbbells.

dumbbells fairly rigid with an equilibrium length l = σαα/2
(where α ∈ A,B) between the centers of the two monomers of
each dumbbell [7,12,21]. The mixture consists of 50:50 A-A
and B-B dumbbells, which leads to amorphous structures. The
equation of motion for each monomer can be written as

ṙi = 1

γ

⎡
⎣∑

{ij}
fij − k(ri − ri ′ − lni) + f ni

⎤
⎦ + ηi , (1)

where γ is the friction coefficient, fij is the interaction force
between the ith and the j th monomer, i and i ′ denote the two
monomers of the same dumbbell, ni is the unit vector in a
prespecified direction along the long axis of the dumbbell
associated with the ith particle, f is the strength of the
propulsion force, and ηi is the thermal noise, which satisfies the
fluctuation-dissipation relation of the form 〈ηi(t) · ηi(t

′)〉 =
2Dδ(t − t ′) with 〈ηi(t)〉 = 0, D = kBT

γ
; T is the temperature of

the heat bath. The interaction force (fij ) between the monomers
is modeled via the Lennard-Jones pair potential,

Vij (r) = 4εαβ

[(
σαβ

rij

)12

−
(

σαβ

rij

)6
]
, (2)

where rij is the distance between the ith and the j th particle,
i.e., rij = |ri − rj |, where α and β represent either A-type or
B-type particles. In our simulation, we have chosen the values
of σαβ and εαβ to be σAB = 0.8σAA, σBB = 0.88σAA, εAB =
1.5εAA, and εBB = 0.5εAA. The potential has been truncated
at rc

αβ = 2.5σαβ and the potential has been shifted accordingly
such that both the potential and the force are continuous at the
cutoff. The unit of length and energy in our simulation are set
by σAA = 1 and εAA = 1 and the study is done for an overall
number density of ρ = 1.6.

The Brownian dynamics updates are done using the Euler
algorithm. The number of integration steps for the simulation

is between 108 and 109 depending on the parameters with a
time step of integration dt = 10−3. We have compared our
Brownian dynamics results to those of Newtonian dynamics
simulations and observed that the long time dynamics is
quantitatively similar for the parameter ranges we have studied,
as expected. For each parameter set, the results presented here
have been averaged over 16–32 independent trajectories.

To identify the onset of translational and rotational glassy
behavior in the (T -f ) plane, we monitor the following
quantities: (i) the translational and rotational mean-square dis-
placements (MSD), 〈
r(t)2〉 = 〈 1

N

∑
i〈|ri(t0 + t) − ri(t0)|2〉

and 〈
θ (t)2〉 = 〈 1
N

∑
i〈[θi(t0 + t) − θi(t0)]2〉, where ri and

θi are the center-of-mass and orientation of the ith
dumbbell; (ii) the orientation correlation function C2(t) =
1
N

∑
i〈P2[ni(t0) · ni(t0 + t)]〉 [21,22], where P2 is the second-

order Legendre polynomial and ni is the unit vector along
the long axis of the ith dumbbell; and (iii) the overlap func-
tion Q(t) = 〈 1

N

∑
i w[|ri(t0) − ri(t0 + t)|]〉, where w(r) = 1

if r � a and 0 if r > a, with a = 0.3 [25]. Here, 〈· · · 〉 denotes
an average over time origins t0 and trajectories, and N is the
number of dumbbells. From the measured time correlation
functions, C2(t) and Q(t), we estimate the corresponding
rotational and translational α-relaxation time scales, τR

α and
τT
α , respectively, by noting the time at which each of the

functions decays to a value of 1/e.

III. SIMULATION FINDINGS AND ANALYSIS

A. Active dumbbells at low density

We first note that in our model, activity is introduced
via a self-propulsion force of magnitude f that acts on
each monomer, of each dumbbell, in a prespecified direction
along the corresponding dumbbell axis. Therefore, although
each dumbbell consists of two identical beads and hence
is structurally apolar, the self-propulsion force endows each

042605-2



GLASSY SWIRLS OF ACTIVE DUMBBELLS PHYSICAL REVIEW E 96, 042605 (2017)

(a) (b)

FIG. 2. The translational and rotational mean-square displacement (MSD) of a single active dumbbell in the dilute regime (ρ = 0.1) at
T = 0.5, with and without an active force, f = 0 and 5, respectively.

dumbbell with a polar vector. Each dumbbell is in contact
with a thermal heat bath of temperature T , which enters
in our Langevin simulation [Eq. (1)] as the strength of the
thermal noise obeying the fluctuation-dissipation theorem. Our
description is valid as long as the activity decorrelation time
is larger than the time scale of thermal noise.

An isolated active dumbbell exhibits a stochastic trajectory
and at long times diffuses in both translation and orientation.
In this case, the orientational decorrelation of the active
force arises solely from the thermal noise experienced by the
monomers. At low temperatures and densities, the thermal
noise is inefficient in decorrelating the orientation of the active
force. In this case, torques generated by interparticle collisions
help orientational decorrelation [7], leading to a decrease in the
decorrelation time with increasing density. The single-particle
trajectory in the dilute limit (ρ = 0.1) at T = 0.5 in the
presence of active forcing (f = 5) clearly shows stochasticity
in both translation and orientational displacements [Fig. 1(b)].
The measured translational and rotational MSD in this dilute
limit show enhanced diffusion with active forcing (Fig. 2).

B. Active dumbbells at high density

As the density is increased further, steric effects that hinder
the rotation of a dumbbell cause the decorrelation time to

increase with increasing density. Only the second regime in
which the decorrelation time increases with increasing density
is observed when the temperature is high; see Fig. 1(c). This
is consistent with dense assemblies of active particles, both in
the cellular and granular context, where both local alignment
and orientation decorrelation times are strongly influenced by
cell-cell (intergrain) contact interactions [16,26].

Note that there are no ad hoc alignment rules and there is no
externally prescribed activity decorrelation time. Rather, both
the local alignment and orientational decorrelation time at high
densities emerge from thermal fluctuations on the constituent
monomers comprising each dumbbell and collisions driven by
thermal and active forces, an emergent many-particle feature.
As a corollary, both the local alignment and orientational
decorrelation time are functions of temperature, density, and
activity. Figure 1(c) shows the rotational relaxation time τR

α

for different densities at two different temperatures for a self-
propulsion force, f = 10.0. At high densities and fixed (low)
temperature, the orientational decorrelation time increases
with decreasing f , and it diverges as the glass transition is
approached from above.

As T or f is decreased starting from the liquid phase at high
T and f , the MSD [Figs. 3(b) and 3(c)] begins to show cage
diffusion, with a distinct intermediate plateau and a reduced
late time diffusion coefficient, characteristic of the approach

(a) (b) (c)

FIG. 3. (a) A dense binary assembly of self-propelled dumbbells of A (blue) or B (red) type. (b),(c) Mean-square displacement [〈
r(t)2〉]
as function of time t : (b) for propulsion force f = 2.0 for different temperatures T = 3 (blue), 3.5 (orange), 4 (green), 5 (cyan), 6 (magenta),
and 8 (red); and (c) for temperature T = 1.5 for different propulsion forces f = 3 (blue), 3.5 (orange), 4 (green), 5 (cyan), 6 (magenta), and 8
(red).
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(a) (b)

FIG. 4. (a) Overlap function, Q(t), measured for propulsion force f = 2 at different temperatures T = 3 (blue), 3.5 (orange), 4 (green), 5
(cyan), 6 (magenta), and 8 (red); and (b) for temperature T = 1.5 at different propulsion forces f = 3 (blue), 3.5 (orange), 4 (green), 5 (cyan),
6 (magenta), and 8 (red). The inset shows the rotational time correlation function, C2(t), and its behavior for the same set of parameters in both
cases.

to a glass. This is accompanied by a slowing down of both
the translational and rotational structural relaxation process,
captured by the two-step decay of the correlation functions,
Q(t) and C2(t) [Figs. 4(a) and 4(b)]. Thus, the corresponding
α-relaxation times τT

α and τR
α increase, as T or f decreases

(Fig. 5). As is usual in studies of glass-forming systems, we
estimate the glass-transition temperature, separately for both
rotational and translational relaxation, by fitting the respective
α-relaxation time to a Vogel-Fulcher-Tammann (VFT) form,
τα = τ∞ exp [ 1

κ( T
TVFT

−1)
], where τ∞ is the relaxation time at

large temperatures, κ is the coefficient of kinetic fragility,
and TVFT(f ) is the putative glass-transition temperature for
an applied active force f . The resultant phase diagram in
the T -f plane, obtained by marking the different TVFT(f )
values, is shown in Fig. 6. We find that the rotational and
translational degrees of freedom freeze-out from the liquid
at different TVFT(f ), resulting in two distinct glass phases,
namely translational glass (TG) and translational-rotational
glass (TRG).

The phase diagram itself does not reveal any difference
between approaching the glass by lowering T or f . To see
differences in the active and passive systems, distinguished
by their Pećlet number, one needs to probe their dynamical

heterogeneity. Already, the VFT fits give some hint of this: the
kinetic fragility (κ) of translational glass shows a decrease with
increasing activity f ; see Fig. 7(a). A similar behavior is also
observed for the rotational relaxation [Fig. 7(b)]. Thus, the
active glass becomes stronger or less fragile than a passive
glass, both during translational and rotational arrest. The
decrease in fragility in an active soft supercooled liquid is
consistent with some earlier numerical [5] and theoretical [28]
studies. We will see later how this result is also consistent with
observations in reconstituted epithelial tissues that have been
reported to show glassy behavior [29].

C. Vortices and dynamical heterogeneities
in the vicinity of dynamical arrest

To explore the difference in behavior while approaching the
arrested state by either decreasing T or f , we probe the dynam-
ics in finer detail at specific points along an iso-relaxation-time
(τT

α = 102.85) line (Fig. 6), which lies in the supercooled
liquid regime. We measure the displacement field vectors of
the center of mass of the dumbbells, d(r), over a time τT

α ,
and we construct a spatial map of corresponding streamlines,
which are shown in the left panel of Fig. 8. For the passive
system (f = 0), such a map is structureless with no large-scale

(a) (b)

FIG. 5. (a) Translational α-relaxation time scale (in filled circles) as a function of temperature (T ) for different values of self-propulsion
force [f = 0 (red), 2 (green), 3 (magenta), 4 (cyan), 5 (orange), 6 (dark gray), and 8 (blue)]. The black dotted lines represent the fitting of the
data sets for each f to the VFT form. (b) Rotational α-relaxation time scale (in filled circles) τR

α vs T for different values of f , with fits (black
dotted lines) to the VFT form.
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FIG. 6. Phase diagram in the (T -f ) plane shows a liquid
(L, brown), translational glass (TG, blue), and translational-rotational
glass (TRG, green) with phase boundaries determined from VFT
fits. The dashed line represents the iso-relaxation-time (τ T

α = 102.85)
line, along which the dynamics is probed at points marked in green.

spatial correlation, Fig. 8(b) (left panel). On increasing Pe
along the iso-τT

α line, one begins to observe distinct vortexlike
structures, whose size increases with increasing Pe, as seen
in Fig. 8(a) (left panel). This pattern (or lack of it in the
passive case) is also quantified via the coarse-grained vorticity
ω(r) = ∇ × vτ (r), where vτ (r) ≡ d(r)/τT

α , which is shown
using the color maps in the left panels of Fig. 8. This differs
from the usual definition based on instantaneous velocities and
reflects the fact that the dynamics in the supercooled regime
manifests only over α-relaxation times. Further, in the right
panel of Fig. 8, we show spatial maps of the magnitude of
single particle displacements during τT

α to gauge the extent
of dynamical heterogeneity exhibited in either situation. The
active system, Fig. 8(a) (right panel), has much more spatial
heterogeneity in dynamics than the passive one, Fig. 8(b)
(right panel). Also, notice the anticorrelation in the vorticity
and the magnitude of particle displacement: regions with low
(high) vorticity correspond to fast (slow) dumbbells. Particles
between a vortex-antivortex pair are faster, while particles in
the vortex core are slower.

Vortices also appear in the dynamics of spherical active
particles—this was observed in [2], though not analyzed. To
contrast the behavior of anisotropic with spherical active par-
ticles, we study the dynamics of a dense assembly of spherical
self-propelled particles in two dimensions, interacting via an
LJ potential (Kob-Andersen model), subject to a thermal noise
with temperature T and an active noise whose variance is
f 2 and correlation time is τp. We find that indeed vortices are
observed, however these appear only when the persistence time
τp is large (Fig. 9). In particular, swirls do not appear when one
is away from the glass transition or when τp is low (Fig. 9).
In contrast, large swirls and vortices appear generically in an
active supercooled liquid of dumbbells characterized by a high
Péclet number. Making the particles anisotropic and allowing
the decorrelation time to emerge as we have done here makes
the regime over which swirls are observed larger, allowing us
to make quantitative estimates of length scales and follow their
dependence on control parameters, as we do below.

To extract correlation lengths from the spatial structures
visible in such maps, we calculate the angle-averaged cor-
relation functions of (i) the orientation of the displacement
vectors of the dumbbell, C(r) = 〈2 cos2 
θ (r) − 1〉, where

θ (r) is the angular separation between two displacement
vectors separated by distance r [Fig. 10(a)], and (ii) the
vorticity, G(r) = 〈ω(0)ω(r)〉, evaluated over τT

α [Fig. 10(b)].
The extracted correlation lengths, ζ and χ , respectively, show
a crossover as we move along the iso-τT

α line, and they
distinguish the passive (low Pe) from the active (high Pe)
supercooled liquids; see Fig. 11(a).

If we now move toward the dynamically arrested regime
from either extreme ends, i.e., along the passive direction
(Pe = 0) where the active forcing is absent, or the athermal
active direction (Pe = ∞) where thermal fluctuations are
suppressed, we clearly observe the stark differences in the way
the above-mentioned spatial correlations grow. As one goes
toward the glass transition at Pe = 0, there is no significant
change in the correlation lengths ζ and χ , which continue
to remain at the scale of the dumbbell [Fig. 11(c)]. There is
of course the usual dynamical heterogeneity associated with
the emergence and growth of fast moving and slow moving

0
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0.2

0.3

0.4

0 2 4 6

0

0.1

0.2

0 2 4

(a) (b)

FIG. 7. Angell plots: (a) Variation of translational relaxation times τ T
α vs scaled temperature (T/Tg) at different values of the active force.

As in [27], Tg is defined as the temperature at which τ T
α = 106. The inset shows how the corresponding kinetic fragility κ decreases with

increased self-propulsion force. (b) Variation of rotational relaxation times τR
α vs scaled temperature (Tg/T ) with changing active force: f = 0

(red), 1 (green), 2 (cyan), 3 (violet), and 3.5 (blue). Tg is defined as the temperature at which τR
α = 106. The inset shows how the corresponding

kinetic fragility κ decreases with increased self-propulsion force.
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(a)

(b)

FIG. 8. (a) Left: Streamlines of displacement field, d(r), for the active dumbbells (f = 10.3, T = 0) computed over t = τT
α showing large

vortexlike structures with the underlying color map reflecting the corresponding values of the vorticity ω(r). Right: Map showing the magnitude
of displacement during t = τ T

α , illustrating the extent of heterogeneous dynamics in the active glass, with blue particles being the fastest
and black particles being the slowest. Note that the vorticity and particle velocities are anticorrelated (see the text). (b) Left: Streamlines
of displacement for passive dumbbells (f = 0, T = 5.5) along with the corresponding vorticity color map. Right: Displacement map for the
passive liquid. Note the absence of any large-scale structures and the resultant low vorticity.

domains [30] and the corresponding increase in relaxation
times [25,31]. However, on approaching the glass transition
from the active side, along (Pe = ∞), the nature of the dy-
namical heterogeneity is very different and is associated with

-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15

(a) (b)

FIG. 9. Displacement field for an athermal assembly of a binary
LJ mixture of disks (Kob-Andersen model), computed over time
scales of corresponding τα ≈ 5028, for two different persistence time
scales: left, τp = 10; and right, τp = 104, for applied active forcing
of f = 3.5 and 1.28, respectively, illustrating that the swirls become
large only when persistence time scales are large, as indicated by the
measured correlation lengths (ζ ).

swirling or vortex patterns that grow in size. The corresponding
growing length scales [Fig. 11(b)] go as 1/

√
f − f ∗, far

away from the glassy regime (f ∗ = 4.5), and cross over to
1/(f − f ∗) as one nears dynamical arrest.

IV. HYDRODYNAMIC CALCULATION

To understand the origin of these vorticity scales, we
construct a hydrodynamic description of the self-propelled
dumbbells in the isotropic phase. Our simulations show that
the velocity vτ is correlated with the orientation of dumbbell
n, or more precisely Q · f, where Q is the nematic orientation
tensor describing the apolar orientation of the dumbbell and f is
the body-attached propulsion force. This correlation increases
with the Pećlet number along the iso-τT

α -line before saturating
due to packing considerations (Fig. 12). This suggests that the
appropriate hydrodynamic fields are the conserved densities,
the orientation tensor Q, and the dumbbell velocity v.

The fact that it is a two-component system just goes
toward forming a translational and orientational glass—it is
not relevant to the generation of the large swirls or vortices.
We will therefore treat it as a one-component system with a
single conserved density field ρ, whose dynamics is given by

∂tρ + ∇ · (ρv) = 0. (3)
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FIG. 10. (a) Spatial correlation function of the orientation of the displacement vectors of the center of mass of the dumbbells, C(r) =
1

2π

∫ 〈2 cos2 
θ (r) − 1〉dφ, where 
θ (r) is the angular separation between two displacement vectors separated by distance r. The simulation
points are chosen along an iso-τ T

α line on the (T -f ) phase diagram. The correlation length ζ is extracted using the condition C(ζ ) = 1/e.
(b) Spatial correlation of the vorticity field of the coarse-grained velocity vectors G(r) = 1

2π

∫ 〈ω(0)ω(r)〉dφ over a time scale of τ T
α . The

simulation points are chosen along an iso-τ T
α line on the (T -f ) phase diagram. The correlation length χ is extracted using the condition

G(r) = 0.

Newton’s second law provides the equation for the dumbbell
velocity v,

ρ∂tv = −(� − η∇2)v − ζc∇ρ + ∇ · σ. (4)

� represents frictional damping and η is the viscosity associ-
ated with the transfer of momentum arising from collisions.

The second term on the right may be thought of as a pressure
term arising from density inhomogeneities; ζc is therefore a
compressibility. The last term on the right is the contribution
to the force coming from the total deviatoric stress σ . The total
deviatoric stress, σ = σ op + σ act, is a sum of the order parame-
ter stress, σ op = �(δF/δQ) − [Q · (δF/δQ) − (δF/δQ) · Q]
[24], derived from a free-energy functional for the

nematic,

F [Q] =
∫

d x
[
A

2
Q2 + C

4
Q4 + K

2
(∇Q)2

]
, (5)

and the active stress σ act = f lQ [32]. From this we get

δF/δQ =
[(

A + C

2
S2

)
Q − K∇2Q

]
, (6)

where S is the magnitude of the nematic order parameter
present in the system and S2 = 2 Tr(Q2).

In the high-density phase at the onset of glassy behavior, one
might choose to ignore spatial inhomogeneities of the density.
There are, however, nontrivial temporal correlations of the

0
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4 7 10 13 16

4 7 10 13 16

8 12.5 17 21.5 26(a) (b)

(c)

FIG. 11. (a) Correlation lengths ζ , characterizing the degree of alignment of the displacement vectors, and χ , characterizing the spatial
correlation of vorticity, as a function of Pe, along the iso-τ T

α line, show a crossover from a passive to an active supercooled liquid. To highlight
the change, we subtract from the measured correlation lengths a microscopic length associated with the size of the dumbbell. The choice of
plotting against exp[−1/

√
Pe] ensures uniform spacing for the simulation data points over the range of Pe. (b) ζ and χ as functions of activity

f at T = 0 show an increase and crossover from 1/
√

f − f ∗ dependence at large f to 1/(f − f ∗) dependence close to the glass transition
at f ∗ = 4.5 (dashed line shows fit). (c) Length scale (ζ ) associated with spatial correlation of the direction of the displacement vectors for
the dumbbell system at f = 0 for different T (blue) and at T = 0 for different f (red), i.e., when we approach the glass boundary along two
different axes. The correlation length scale does not show any significant change if the glass transition is approached by reducing temperature,
but it shows an increase as the system approaches a glass transition by reducing the activity. The inset shows the relaxation time scale (τT

α ) for
a similar set of simulation points at f = 0 for different T and at T = 0 for different f .
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FIG. 12. Average of the normalized dot product of the coarse-
grained velocity (vτ ) of each dumbbell and its average orientation
vector (n = n1+n2

2 ) over the α-relaxation time (τ T
α ) as we move

through different points on the iso-τ T
α line from passive to active

supercooled liquid region. For a few initial points the correlation
between displacement and orientation increases and then it saturates
as maximum coupling between these two is reached, which is limited
by the packing of the dumbbells.

density, but since we only want to extract the swirling behavior,
we ignore this. This allows us to consider the dynamics of Q
and v alone. The dynamics of v reduces to

ρ∂tv = −(� − η∇2)v + ∇ · σ. (7)

The dynamics of Q is given by

DtQ = λU + Q · � − � · Q − γ −1 δF

δQ
, (8)

where Dt represents the convective derivative in the comoving
frame, λ is the stable-flow alignment parameter, γ is the
rotational viscosity, and U and � are the symmetric and
antisymmetric strain-rates: U = 1

2 [(∇v) + (∇v)T ] and � =
1
2 [(∇v) − (∇v)T ].

Now linearizing about the isotropic state with no flow, we
obtain

Q̇ = λ

2
[(∇v) + (∇v)T ] − 1

γ
[A − K∇2]Q, (9)

v̇ = −(� − η∇2)v + [�(A − K∇2) + f l]∇ · Q. (10)

Taking the curl of the above equations gives us the equation
for the vorticity ω.

The lengths scales associated with the spatial patterning of
the vortex flows can be obtained using dimensional analysis
by balancing the relevant contributions to the stress appearing
in Eq. (10).

Away from the glass transition, patterning is generated
by balancing the active stress (f lQ) against the orientational
elastic stress (�K∇2Q). This gives a length scale

√
�K/f l,

consistent with the scaling observed in our simulations at large
f [Fig. 11(b) and [33]].

On approaching the glass transition f = f ∗, the trans-
lational motion becomes sluggish and finally arrested. As
long as f > f ∗, the system is still an active fluid, and it
flows over a time scale τT

α . We thus argue that we should
still be able to use the active fluid equations, Eqs. (9) and

(10), as long as we renormalize time by t → t/τ T
α . In this

highly viscous fluid regime, the patterns are generated by
balancing the active stress (f lQ) with the viscous stress (η∇v).
Note that the velocity scale that appears in the balance above
is the coarse-grained velocity vτ . From our simulations, the
typical magnitude of vτ is of order l in units of this scaled
time. Using this, we get the length scale for the spatial
patterning of the velocity to go as η/(f − f ∗) as long as f

is greater than, but close to, f ∗ [Fig. 11(b)]. The crossover
between these two behaviors occurs at a propulsion force
∝ η2 l/�K .

Thus, the predictions of the hydrodynamic model com-
pletely match the results of our numerical simulations, thus
providing insight into the dynamics of a dense assembly of
active anisotropic particles.

V. DISCUSSION

In this paper, we study a dense assembly of self-propelling
soft anisotropic particles subject to Brownian noise. Our
model is distinct from other models that have been studied
in that there is no explicit activity decorrelation time nor
imposed orientational alignment; these emerge, however, from
the collective dynamics of the particles. We observe that
this active dense system undergoes two dynamical arrests,
first for translational degrees of freedom followed by the
rotational degrees of freedom, with an onset that depends on
activity. We also demonstrate that the active forcing makes
the corresponding supercooled fluid less fragile for both
degrees of freedom, and more importantly the heterogeneous
dynamics observed in the active fluid is very different
from its passive counterpart, exhibiting large-scale swirls
and vortices. We further show that in the athermal (T = 0)
limit, the correlation lengths associated with these spatial
structures grow with decreasing active forcing and appear to
diverge as the dynamics becomes arrested. We rationalize the
occurrence of such length scales and predict their growth and
divergence using a continuum hydrodynamic theory of active
dumbbells.

Our study of dynamical heterogeneities in active glass
composed of anisotropic particles has implications for the
collective cell dynamics in epithelial layers. This can be seen
by constructing a Voronoi tessellation around each dumbbell;
the resulting pattern then resembles an epithelial sheet (see
supplementary movie 1,2 [34]). One of the first studies of
glassy dynamics close to the jamming transition in a recon-
stituted epithelial sheet [29] revealed two striking features:
(i) the epithelial glass was significantly less fragile compared
to a conventional hard-sphere glass, and (ii) systematically
reducing cell motility by treatment with titrated amounts of
actin depolymerization agents rendered the epithelial sheet
more fragile. Our result on how active propulsion makes
the dynamically arrested state stronger or less fragile is
entirely consistent with this. In addition, our work suggests
the possibility of observing large-scale swirls in situations
in which cellular propulsion is high and the cell-substrate
adhesion is weak [35].

The swirling patterns or vortex structures that we observe
for dense assemblies of anisotropic particles are reminiscent of
the dynamical patterns seen in active turbulence exhibited by
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a collection of fluid of active rods [9,10,24]. Is the dynamical
heterogeneity exhibited by the active glass a frozen memory
of its turbulent past? Our work shows unambiguously that
an active glass is fundamentally distinct from a conventional
glass.
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