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Suppression of crystalline fluctuations by competing structures in a supercooled liquid
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We propose a geometrical characterization of amorphous liquid structures that suppress crystallization by
competing locally with crystalline order. We introduce for this purpose the crystal affinity of a liquid, a simple
measure of its propensity to accumulate local crystalline structures on cooling. This quantity is explicitly related
to the high-temperature structural covariance between local fluctuations in crystal order and that of competing
liquid structures: favoring a structure that, due to poor overlap properties, anticorrelates with crystalline order
reduces the affinity of the liquid. Using a lattice model of a liquid, we show that this quantity successfully
predicts the tendency of a liquid to either accumulate or suppress local crystalline fluctuations with increasing
supercooling. We demonstrate that the crystal affinity correlates strongly with the crystal nucleation rate and
the crystal-liquid interfacial free energy of the low-temperature liquid, making our theory a predictive tool to
determine which amorphous structures enhance glass-forming ability.
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I. INTRODUCTION

The ultimate fate of a liquid upon slow cooling—whether
it crystallizes or arrests into an amorphous glass—depends
on how easily the crystal can nucleate in the supercooled
liquid. It has long been speculated that this kinetic stability
with respect to crystallization can be related to the geometrical
properties of the local structures which, at the molecular scale,
are particularly stable. More specifically, such favored local
structures that are geometrically adverse to crystallinity—for
instance, due to noncrystalline symmetries—would enhance
the stability of the liquid. This idea can be traced back to
Frank’s 1952 proposal [1] that the stability of icosahedral
coordination shells in pure metallic liquids might impede crys-
tallization of close packed cubic crystals. From this starting
point, a substantial literature has developed [2,3], exploring
a variety of approaches to the nature and influence of liquid
structure. This includes the study of geometrical frustration in
liquids [4], the descriptive study of the distribution of local
coordination structures in liquids via computer simulations
[5], and, recently, nanofocused electron scattering [6], and the
search for correlation between specific local structures and the
local relaxation rates [7].

In spite of this considerable activity, explicit evidence of
the essential thesis, that there is a correlation between liquid
structure and crystallization kinetics, remains sparse. Taffs and
Royall [8] have reported on the crystallization of a hard sphere
liquid subjected to a bias that favors fivefold common neighbor
coordination. They established a clear dependence of the
reduced crystallization time on the magnitude of the bias field,
confirming that the liquid structure does indeed influence the
rate of crystallization. The clear result of Ref. [8] is something
of an exception: generally, any adjustment of the Hamiltonian
to vary the liquid structure also changes the stability of the
crystal structure, along with that of any polymorph favored by
the perturbation. For example, Molinero et al. [9] found that
adjusting the strength λ of the three-body contribution in a

model of silicon potential resulted in a maximal glass-forming
ability that coincided with the value of λ corresponding to the
crossover in stable crystal phases. As this point coincides with
the maximal depression of the freezing point, it is difficult
to disentangle the role of liquid structure from that of crystal
stability. A similar issue has arisen in experimental efforts
to confirm the influence of liquid structure. Lee et al. [10]
studied the kinetics of crystal nucleation in a Ti-Zr-Ni alloy
in which the degree of local icosahedral order could be varied
with composition. Here the increase in liquid icosahedral order
coincided with stabilization of a quasicrystal whose nucleation
rate was significantly greater than that of the cubic crystal,
effectively concealing whatever influence the liquid structure
had on the crystallization of the latter crystal.

II. THE FAVORED LOCAL STRUCTURES MODEL

To summarize the discussion above, to establish the
influence of liquid structure on crystallization kinetics we
would like to be able to vary the liquid structure as freely
as possible while still ensuring that the equilibrium crystal
state remains unchanged. The aim of this article is to present
both a model that satisfies these conditions and a theoretical
framework relating the local geometrical properties of stable
liquid structures to the crystal nucleation rate. To this end,
we utilize a simple lattice model, the favored local structures
(FLS) model [11–13]. We consider binary spins, representing
some local conformational degree of freedom of the liquid
(e.g., composition), on a face-centered cubic lattice. We
define the local structure of the liquid at a given site as the
geometrical arrangement of the 12 spins surrounding it. There
are 218 rotationally distinct structures at this nearest-neighbor
level, and we associate an energy εi to each site with local
structure i. Our model therefore has 218 variable energy levels
corresponding to the possible local structures. The set of
energies {εi}i=1,...,218 constitutes the local energy landscape
and entirely characterizes the system’s Hamiltonian. The
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FIG. 1. (a) An illustration of the local energy landscape where the crystalline structure (XS) and a number n of competitors have an energy
of −1, while other structures have zero energy. (b) Two sets of n = 6 competitors. (c) Average energy per site as a function of temperature
during a slow annealing [parameters: system size 303, cooling rate 105 Monte Carlo (MC) steps per unit T with lines corresponding to the legend
of (d)]. The set 1 liquid crystallizes similarly to the reference liquid without competitors (lower inset). The set 2 liquid does not crystallize,
but arrests into an amorphous state (upper inset shows a slice). (d) The concentration of the crystalline structure as a function of the inverse
temperature for these three systems. Dotted lines indicate the leading order in 1/T with slope Q, the liquid’s affinity to the crystalline structure,
as predicted from Eq. (2).

energy per site is thus

E =
∑

structures i

ci εi, (1)

where ci is the fraction of sites in local structure i. We study
this model by canonical ensemble simulations using the Monte
Carlo (MC) Metropolis algorithm with single spin flips, in a
periodic box with typical dimensions 303.

In a previous study [13], we have studied the simplest case
where a single εi = −1 for a selected favored local structure,
while all other structures have zero energy. In this case, the
energy per site is simply minus the concentration of the FLS,
and the ground state is the densest packing of the FLS. Because
structures at nearby sites overlap and thus exert constraints on
each other, these ground states can be highly frustrated (i.e., the
selected FLS cannot fully “tile” the lattice) and the maximum
FLS fraction varies between 1/4 and 1. As we have shown [13],
this frustration does not prevent crystallization on moderately
slow annealing of the system, leading us to conclude that
some kind of competition between structures—in other words,
multiple minima in the local energy landscape—is required to
stabilize the liquid. Indeed, we have established more recently
[14] that favoring simultaneously two or more of the highly
frustrated structures can prevent crystallization even at very
slow cooling rates, resulting in the dynamic arrest of an
amorphous state at low temperature.

In this article, we use a variant of the FLS model adapted to
study the role of competing structures in the crystallization of
a supercooled liquid, as illustrated in Fig. 1(a). A crystalline
local structure (denoted by XS) competes with a small number
n = 2, . . . ,10 of frustrated competing structures. All these
structures are given an energy ε = −1, while other structures
have zero energy. For simplicity, the crystalline structure
is chosen to be the all-up structure, whose ground state is
unambiguously a uniform configuration of up spins, with
energy −1 per site. The mix of competitors is selected such
that it does not lead to the formation of alternate metastable

crystals, but continuously arrests (in the absence of the XS) into
a high-energy amorphous state with high energy E > −0.6
(see Appendix).

III. INTRODUCING THE CRYSTAL AFFINITY

An example demonstrates that the geometry of the
frustrated competitors can substantially influence the rate of
crystallization of the liquid. In Fig. 1(b) we present two
apparently similar sets of n = 6 frustrated structures (sets 1
and 2) that we choose as competitors to the all-up crystalline
structure. In Fig. 1(c) we compare the behavior of E(T ) of
these two systems on slow cooling with that of a reference
liquid in which only the crystalline structure is favoredd. In
this latter case (black curve) the system exhibits little ordering
in the liquid (less than 0.1% of XS) prior to a sharp first-order
transition to the uniform ground state (lower inset). Adding
set 1 of competing structures, the liquid is much more ordered
and accumulates up to 12% of FLS, before freezing into the
uniform ground state too. In contrast, set 2 results in similar
liquid energetics, but an absence of crystallization: at low
temperature, the system arrests into an amorphous state with
no trace of long-range ordering [upper inset of Fig. 1(c)] in
which 43% of the sites are in a favored structure. We estimate
the fastest nucleation rate of each of these systems and find
that the reference liquid (i.e., that with only the XS favored
local structure) freezes in τnucl ≈ 7.104 MC steps; with set 1
favored, freezing is actually slightly faster with τnucl ≈ 4.104,
while with set 2 we find that τnucl > 1012 steps: we never
observe crystallization for this system in our simulations.

How can slight geometrical changes in the competing
structures slow down crystallization by more than seven
decades? The origin of this difference does not lie in the
thermodynamic stability of the liquid: they have comparable
liquid energies and identical ground states. They also have
similar liquid relaxation times (τα < 10 MC steps per site).
Their crucial difference is revealed by considering the liquid
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structure. In Fig. 1(d) we plot the fraction cXS of sites in the
crystalline structure for each of these systems as a function
of 1/T . On cooling, we find that the set 1 liquid accumulates
significantly more crystalline order than the reference liquid:
the competitors actually help the liquid accumulating XS,
a behavior that we label as agonist towards crystallization.
The set 2 liquid, in contrast, antagonizes crystallization
by suppressing local crystalline order: in spite of the XS
being favored with energy −1, their concentration actually
decreases when cooling a liquid from the random infinite-
temperature limit. This observation intuitively explains the
dramatic difference in crystal nucleation rates in these two
systems: crystalline local structures are a necessary precursor
to freezing, hence their suppression can be expected to make
crystallization extremely difficult.

We now propose a general statistical measure of the liquid
structure that can quantitatively differentiate liquids like our
set 1 and set 2 examples. A high-temperature expansion of the
concentration of local crystalline structures

cXS(T ) = cXS,∞ + Q

T
+ O(T −2) (2)

already captures the distinction between crystal-agonist and
-antagonist systems through the value of the first-order
coefficient Q, which we call the crystal affinity of this
liquid. Denoting by Q0 the affinity of the reference liquid
with only the XS favored, agonist systems have Q > Q0

and antagonists Q < Q0 [dotted lines in Fig. 1(d)]. In a
previous work [14], we have developed an approach, that
we termed structural covariance, to compute exactly such
high-temperature coefficients in terms of geometrical overlap
of structures. Indeed, we have shown the following fluctuation-
response-like relation:

Q = ∂cXS

∂β

∣∣∣∣
T =∞

= −
∑

structures i

CXS,i εi , (3)

where β = 1/T , and the coefficients CXS,i quantify the
geometrical interactions between the XS and all structures
i (including the XS itself). These coefficients are equal to the
covariances of structural concentrations,

Ci,j = N covT =∞(ci,cj ), (4)

where N is the system size (making Ci,j size independent),
and the covariance is computed at infinite temperature, i.e.,
on completely random spin configurations. In this regime,
correlations between structures only occur when structures
overlap and share sites, exerting athermal constraints on
each other, as sketched in Fig. 2(a). We emphasize that the
crystal affinity Q is determined by the degree with which
the various favored local structures exclude the crystal local
structures from their surrounding space. An FLS that can
hardly overlap with the crystal structure will diminish Q

while one that overlaps well with the crystal structure in a
variety of orientations will act to increase Q. The crystal
affinity Q, in other words, reflects the entropic constraints
that affect the density of local crystalline structures in the
liquid (i.e., a low Q corresponds to a liquid whose FLS
impose a high entropic cost on crystalline fluctuations). The
covariances between structures can be either measured by

(a) (c)

(d)

(b)

FIG. 2. (a) Nearby structures on the lattice overlap and share
sites (blue dots), giving rise to athermal correlations. (b) Structural
covariance between the crystalline structure (all up) and the 217
other structures (blue crosses) as a function of the number of spin
flips required to convert this structure into the crystalline one. Black
circles indicate average values. (c), (d) Two structures with five down
spins, the former being an agonist [cyan square in (b)] while the latter
is an antagonist (red square).

statistical analysis of high-temperature liquid configurations,
or computed exactly by analyzing such overlaps [12,14].
Intuitively, similar structures will tend to overlap well and thus
have a positive covariance, while very different structures will
tend to exclude one from the other’s vicinity. In the FLS model,
we can define a geometrical distance between two structures
as the minimum number of spin flips required to convert one
local structure into the other. As shown in Fig. 2(b), the value of
CXS,i decreases with geometrical distance between competing
structure i and the XS, a trend that is not specific to this choice
of crystalline structure (see the Appendix). What is also clear
from Fig. 2(b) is that the geometrical distance does not fully
determine the structural covariance. Structures in Figs. 2(c) and
2(d) both are five spin flips away from the XS, but the former is
a strong agonist while the latter is an antagonist [respectively
cyan and red squares in Fig. 2(b)]. A glimpse at their geometry
explains this difference: the first has all its down spins on one
side, attracting XS on the other. The antagonist, in contrast,
has its down spins scattered over the structure, such that no XS
can overlap with it in any of the two ways shown in Fig. 2(a).
The crystal affinity Q defined in Eq. (3) therefore encodes,
at a pair interaction level, the specific geometric interactions
between the crystalline local structure and its frustrated
competitors.

The crystal affinity Q is only a first-order term in Eq. (2),
and so does not quantitatively capture the crystallite concen-
tration at low temperature in Fig. 1(d). It does very well,
however, in capturing both the degree of antagonism (or
agonism) of the liquid and the variation in different liquids
in cXS at low temperature, as shown in Fig. 3(a). This simple
geometrical quantity, therefore, provides a very useful insight
into the complex structural fluctuations of the supercooled
liquid. Perhaps most striking, the crystal affinity also correlates
strongly with the nucleation time of the crystal in this liquid.
Indeed, in Fig. 3(b) we show that varying Q in similar liquids
leads to variations of τnucl over eight orders of magnitude.
We remind the reader that Q contains only information about
structural pair correlations obtained in the high-temperature
limit.
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FIG. 3. (a) Influence of the crystal affinity Q [Eq. (3)] of
liquids with n = 7 competitors on the concentration of XS, at low
temperature T = 0.6 where nucleation is the fastest. To prevent the
liquid from crystallizing, the XS was not favored in this specific plot.
(b) Fastest nucleation time of the crystal as a function of Q (see the
Appendix for details on the methods). The red error bar indicates
no nucleation in 1012 MC steps. The 13 systems presented here are
selected to uniformly span the range of Q values.

IV. CRYSTAL AFFINITY AND THE CLASSICAL THEORY
OF CRYSTAL NUCLEATION

The mechanism by which the crystal affinity controls
nucleation rates can be interpreted within the framework of
classical nucleation theory (CNT) [15], in which the bulk free
energy gain �F in crystallization is opposed by a surface
free energy cost σ for the interface between the growing
crystal nucleus and the supercooled liquid. In this theory, the
kinetically limiting step to crystallization is assumed to be the
thermally activated formation of a critical nucleus, predicting
an average nucleation time

τnucl = ταN exp

(
σ 3

kBT �F 2

)
, (5)

where N is the number of potential nucleation sites and τα

is the microscopic relaxation time of the supercooled liquid.
There are therefore three possible ways to make crystallization
slower: by slowing down the kinetics of the liquid (i.e.,
increasing τα), by stabilizing thermodynamically the liquid
(i.e., lowering �F ), or by increasing the liquid-crystal surface
tension σ .

We have seen in Fig. 3(b) that the crystal affinity Q strongly
influences the nucleation rate. In order to understand which of
these aspects are affected by this affinity, we study nucleation
in a large number of supercooled liquids with n = 2–10
competing structures, and selected to sample uniformly the
available range of Q values. As shown in Fig. 4(a), the key
factor influencing nucleation times in this data set is the crystal
affinity, rather than the number of competing structures. In
particular, it is worth noting that for negative values of Q

(a situation indicating that crystalline structures, in spite of
being favored, are linearly suppressed in 1/T as the liquid
is cooled down), crystallization is robustly suppressed and
never observed in our simulations. For this whole data set, we
analyze in Figs. 4(b)–4(d) the correlations between Q and each
of the three aspects of the CNT nucleation rate. Strikingly, we
find that Q exhibits no significant correlation with either the
relaxation time τα [Fig. 4(b)] or the free energy difference �F

[Fig. 4(c)]. It does, however, correlate very strongly with the

0

5

10

15

20

25

30

τ α

(b) r = −0.13
p = 0.2

0.5

0.6

0.7

Δ
F

(c) r = 0.12
p = 0.2

0 Q0 0.0005
crystal affinity Q

1.0

1.2

1.4

1.6

1.8

σ

(d) r = −0.92

p = 10−36

0 Q0 0.0005

crystal affinity Q

0

2

4

6

8

10

nu
m

be
r

of
co

m
pe

tin
g

st
ru

ct
ur

es
n agonistantagonist(a)

4 5 6 7 8 9 10 11 12

log10(τnucl)

FIG. 4. (a) Nucleation rates of liquids with varying crystal affinity
Q and number n of frustrated competitors, showing that it is the
value of Q, rather than the number of competitors, that determines
the crystallization rate. Black crosses indicate τnucl > 1012 MC
steps. (b)–(d) Correlation between Q and the three parameters of
classical nucleation theory: liquid relaxation time τα (computed as the
autocorrelation time of the energy, in MC steps per site), liquid-crystal
free energy difference �F (computed by thermodynamic integration),
and liquid-crystal surface tension σ [inferred using Eq. (5) and
the measured nucleation times]. The legend indicates the Pearson
r coefficient and p value. The only statistically significant correlation
is between Q and σ .

surface tension σ [Fig. 4(d)]: with an r coefficient of −0.92,
the surface tension is almost fully determined by Q. This
effect is remarkable as it implies that, within our model, the
complex problem of estimating the low-temperature surface
tension σ—a quantity that is somewhat ill defined in CNT,
as it is not a property at thermodynamic equilibrium, and the
concept of surface is ambiguous for microscopic clusters—can
be bypassed by measuring the crystal affinity Q, a simple,
high-temperature structural quantity.

V. CONCLUSION

In this article, we have introduced the crystal affinity
Q = ∂cXS/∂β|T =∞ as a measure of the propensity of the liquid
to accumulate crystalline order on cooling, using the local
crystal structure concentration cXS as an inherent probe of
crystallinity. This number encapsulates, in an intelligible way,
the geometrical interactions of the crystal with noncrystalline
stable local structures that compete with crystalline order
in the liquid. Indeed, we have shown with Eq. (3) that, in
a fluctuation-response-like relation, Q can be computed by
analyzing the covariances in the number of crystalline and non-
crystalline local structures at high temperature. Furthermore,
we have demonstrated that Q provides an excellent predictor of
the qualitative trends in rate of crystal nucleation: low affinity
implies slow nucleation. More precisely, we have established
a clear correlation between Q and the effective crystal-liquid
interfacial energy (as obtained from the nucleation time
data through the assumption of classical nucleation). This
result raises the interesting prospect of a treatment of crystal
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FIG. 5. The covariance matrix of the FLS model at infinite
temperature, showing all coefficients Ci,j defined in Eq. (4).

nucleation in terms of the statistics of structural fluctuations,
rather than relying on the awkward imposition of a macro-
scopic interface. Since the only requirement for Eqs. (2)–(4)
to hold is that the Hamiltonian of the system can be formulated
in terms of a short-range local energy landscape, as in Eq. (1),
the analysis presented here should provide a quite general
framework for the systematic study of structural fluctuations
in off-lattice supercooled liquids, and the influence of these
fluctuations on the rate of crystal nucleation. In particular,
structural covariances could be used as a guide to engineer
local energy landscapes that kinetically facilitate or hinder the
formation of a target crystal structure.
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APPENDIX: METHODS

Here we provide the details of the rationale and procedures
associated with the specific choices of model parameters
used in the paper and the properties used to characterize
structural fluctuations and nucleation rates. In a previous
publication [13], we have presented a detailed description of
the FLS model, including a comprehensive survey of the phase
behavior of the model in the cases where only a single structure
is favored. Readers interested in the model are referred to
Ref. [13].

a. Calculating the crystal affinity. The high-temperature
covariances between concentrations of local structures, as
introduced in Eq. (4), are displayed in Fig. 5. These coefficients
are computed exactly using an enumerative algorithm testing
for all possible overlaps between pairs of structures, as
described in Refs. [14,16].
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FIG. 6. The average covariance between any two structures as
a function of their geometrical distance, complementing the plot
in Fig. 2(b) where only the all-up structure was shown. Error bars
show standard deviation. The covariances are clearly monotonically
decreasing over the first seven spin flips, though with large standard
deviation reflecting the importance of the geometrical distribution
of the spins. The increase for distance above seven spin flips can
be explained by symmetry effects (structures very far apart tend to
have higher symmetry, which results in lower absolute value of the
covariances as the mean concentrations are lower) and lack of data.

We show in Fig. 6 that the coefficients Ci,j depend on
geometrical distance between structures, regardless of the
nature of i and j (not only for the all-up XS selected in the
article).

b. Generating the liquids. We discuss here the way we
generate and select the 107 liquids that are used for the
statistical study in Fig. 4. These are selected randomly from
a large set of possible combinations of the 74 structures
depicted in Fig. 7. These structures are those of the 218
local structures in the FLS model that have the following
properties: (i) a ground state energy higher than or equal to
−1/3, ensuring that the structure is frustrated and does not
permit formation of crystal polymorphs that would compete
with the all-up ground state, and (ii) a number of “up” spins
between 4 and 8, so that the interactions between structures rely
on geometrical properties rather than on mere ferromagnetic
attraction or repulsion. There are 19 distinct types of local
structures (columns in Fig. 7) fulfilling these conditions,
coming in up to four variants when including the mirror-
and/or spin-inverted variants. For each value of the number
of competing local structures n = 2, . . . ,10, we generate 104

different Hamiltonians by picking randomly one structure in
n randomly selected columns of Fig. 7. (We do not use two
structures of the same column as we observed empirically that
this tends to increase crystallization of composite metastable
crystals.) We then pick samples that are regularly spaced in
values of Q, so as to investigate the correlation between Q

and thermodynamic observables. These samples are selected
by binning the 104 systems by values of Q, with interval
1.5 × 10−5. We then pick one system in one bin out of three,
thus obtaining a first batch of 107 Hamiltonians (not all values
of (Q,n) are possible).

We are interested in nucleation of the target crystal structure
(the all-up system) within a liquid where the competitors are
present too. We thus run a preselection simulated annealing,
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FIG. 7. The 19 choices of local structures used to generate the liquids studied in Figs. 3 and 4, with their label as in Ref. [13] and the
corresponding ground state energy per site (minus the maximum fraction of sites that can be in the corresponding structure). Each column
represents the spin- and mirror-inverted variants of the same structures, which on their own have identical properties, but have different packing
properties when combined with other structures. Structures 62 and 63 have an additional symmetry (respectively spin inversion, and spin
inversion combined with mirror symmetry) and thus have only two variants. Structures 26–29 have four spins down; structures 43–55 have five;
and structures 62–73 have six spins up and six down. Extensive details about these structures can be found in the supplementary information
of Ref. [13].

with only the frustrated competing structures favored (no XS),
to eliminate those of these systems that tend to crystallize into
a polymorph crystal made of a combination of the frustrated
competing structures and thus would not remain liquid at
temperatures near the point at which we study nucleation, T =
0.6. We thus eliminate and repick the system to obtain another
Hamiltonian with similar Q value if, on slow annealing, (i) the
system exhibits a sharp first-order phase transition apparent as
a discontinuity in energy per site E(T ); (ii) the system exhibits
a peak of heat capacity at T > 0.45 (sign of either a weakly
first-order phase transition, or a second-order transition that
would result in (near-)critical slowdown of the kinetics, and
hence affect the nucleation rate in an undesired way; or (iii) the
system exhibits obvious long-range crystalline ordering in the
final, low-temperature state. Once these preselection tests and
repicking are performed, we have obtained a large set of 107
Hamiltonians composed of a mixture of the structures depicted
in Fig. 7, regularly spaced in Q and n values, that do not, when
only these structures are favored, crystallize on cooling. This
phenomenology is further described in Ref. [14] in the case
of mixtures of two frustrated FLS. Note that the 13 systems
presented in Fig. 3 are simply the n = 7 line in Fig. 4.

c. Measuring nucleation times. We can next measure
nucleation times for each of these Hamiltonians. Our protocol
is the following: We prepare the liquid in a system of 203

sites with periodic boundary conditions, by annealing a similar
system, but without favoring the XS so as to prevent premature
nucleation. Having such an equilibrated liquid, we check that
it has not crystallized into a frustrated polymorph (i.e., that the
system’s energy is consistent with the corresponding liquid),
then add the XS to the set of favored structures. We then
perform MC moves at a fixed temperature T = 0.6 (chosen
to be the temperature of fastest nucleation, in a quite robust
way) until crystallization is detected, i.e., when the energy
falls below a threshold energy of −0.9, from which the system
always falls into the ground state. This protocol is, however,
spoiled by the presence of ballistic relaxation, both before
nucleation (relaxation of the liquid after adding the XS) and
after nucleation (crystal growth). For short nucleation times,
this makes the measured time before hitting the threshold
strongly reproducible. We thus obtain an upper bound to the

nucleation time by repeating the simulation several times (up
to 20 times or 1012 MC steps) and measuring the standard
deviation of the crystallization time, which gives us an estimate
of τnucl, assuming that nucleation times are exponentially
distributed (i.e., no aging or memory in the liquid prior to
nucleation).

d. Liquid relaxation times. The relaxation times τα of the
liquid [as presented in Fig. 4(b)] are the autocorrelation times
of the energy of the liquid, expressed in Monte Carlo steps
per site. They are obtained using the batch autocorrelation
method.

e. Free energies. Liquid-crystal free energy differences
presented in Fig. 4(c) are computed by approximating the
crystal’s free energy by its energy value E ≈ −1, neglecting its
entropy. An approximation of the liquid free energy is obtained
by thermodynamic integration from infinite temperature of the
system without the XS favored, so that it does not crystallize
in the annealing run performed to integrate the free energy.
Neglecting the XS leads to a minor error in the free energy of
the liquid (less than 1% in systems for which crystallization is
slow enough to allow measurement of the free energy with the
XS favored).

f. Surface tensions. We do not measure directly the surface
tensions presented in Fig. 4(d); rather, we infer it through the
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FIG. 8. Correlations between the liquid-crystal surface tension
and bulk free energy difference are negligible within our data set.
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FIG. 9. Correlations between number of competing structures, n, and parameters of the classical nucleation theory that influence the
nucleation time. The data set is the same as in Fig. 4.

classical nucleation theory assumption, using

σ ≈ [kBT �F 2 log(τnucl/τα)]1/3, (A1)

where kB = 1 in our unit system, T = 0.6 for all nucleation
runs presented in this article, and τnucl, τα , and �F are obtained
as discussed above. Note that we do not include the volume
factor N = 203 in Eq. (A1); doing so would result in undefined
values for σ for many of the high-affinity liquids, as nucleation
is often faster than Nτα in these cases. In any case, σ in this
article should not be interpreted too strictly as a surface tension;
as discussed at the end of the main text, this notion is somewhat
ill defined, on top of being particularly difficult to measure
directly. Rather, it quantifies the aspect of the nucleation rate
that is not a consequence of the bulk free energy gain �F

in crystallizing, as illustrated in Fig. 8 by showing the near
absence of correlation between σ and �F .

g. Influence of the number of competitors. In Fig. 4,
we present a large data set of liquids with varying number

of competing structures n and crystal affinity Q.
Figures 4(b)–4(d) analyze the influence of Q on the different
parameters τα , �F , and σ that affect the nucleation time,
showing that Q strongly correlates with σ while being essen-
tially independent of the other parameters. As a complement,
we present in Fig. 9 the same correlations, but with the
other parameter of our data set, the number of frustrated
competing structures, n. It presents a strong correlation with
�F (r = 0.94), while showing no significant correlation to
σ . These results can be intuitively understood by noting that
adding more competitors to the liquid increases the number of
ways for the liquid to lower its energy: it will thus increase its
entropy, at a given energy, and thus lower the free energy of
the liquid, while leaving the crystal unaffected. On the other
hand, these additional competitors are equally likely to act as
agonist or antagonist with the crystalline structure; hence they
do not significantly affect the crystal affinity Q and, therefore,
do not affect the surface tension either.

[1] F. C. Frank, Proc. R. Soc. London A 215, 43 (1952).
[2] C. P. Royall and S. R. William, Phys. Rep. 560, 1 (2015).
[3] Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
[4] G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.:

Condens. Matter 17, R1143 (2005).
[5] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma,

Nature (London) 439, 419 (2006); J. Ding, E. Ma, M. Asta, and
R. O. Ritchie, Sci. Rep. 5, 17429 (2015).

[6] A. C. Y. Liu, R. F. Tabor, L. Bourgeois, M. D. de Jonge, S. T.
Mudie, and T. C. Petersen, Phys. Rev. Lett. 116, 205501 (2016);
A. Hirata, J. J. Kang, T. Fujita, B. Klumov, K. Matsue, M.
Kotani, A. R. Yavari, and M. W. Chen, Science 341, 376 (2013).

[7] H. Shintani and H. Tanaka, Nat. Phys. 2, 200 (2006); M.
Leocmach, J. Russo, and H. Tanaka, J. Chem. Phys. 138, 12A536
(2013).

[8] J. Taffs and C. P. Royall, Nat. Commun. 7, 13225 (2016).
[9] V. Molinero, S. Sastry, and C. A. Angell, Phys. Rev. Lett. 97,

075701 (2006).
[10] G. W. Lee, A. K. Gangopadhyay, T. K. Croat, T. J. Rathz, R. W.

Hyers, J. R. Rogers, and K. F. Kelton, Phys. Rev. B 72, 174107
(2005).

[11] P. Ronceray and P. Harrowell, Europhys. Lett. 96, 36005
(2011).

[12] P. Ronceray and P. Harrowell, J. Chem. Phys. 136, 134504
(2012).

[13] P. Ronceray and P. Harrowell, Soft Matter 11, 3322 (2015).
[14] P. Ronceray and P. Harrowell, J. Stat. Mech. (2016) 084002.
[15] K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter

(Elsevier, Amsterdam, 2010).
[16] P. Ronceray and P. Harrowell, Mol. Simul. 42, 1149 (2016).

042602-7

https://doi.org/10.1098/rspa.1952.0194
https://doi.org/10.1098/rspa.1952.0194
https://doi.org/10.1098/rspa.1952.0194
https://doi.org/10.1098/rspa.1952.0194
https://doi.org/10.1016/j.physrep.2014.11.004
https://doi.org/10.1016/j.physrep.2014.11.004
https://doi.org/10.1016/j.physrep.2014.11.004
https://doi.org/10.1016/j.physrep.2014.11.004
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1088/0953-8984/17/50/R01
https://doi.org/10.1088/0953-8984/17/50/R01
https://doi.org/10.1088/0953-8984/17/50/R01
https://doi.org/10.1088/0953-8984/17/50/R01
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/srep17429
https://doi.org/10.1038/srep17429
https://doi.org/10.1038/srep17429
https://doi.org/10.1038/srep17429
https://doi.org/10.1103/PhysRevLett.116.205501
https://doi.org/10.1103/PhysRevLett.116.205501
https://doi.org/10.1103/PhysRevLett.116.205501
https://doi.org/10.1103/PhysRevLett.116.205501
https://doi.org/10.1126/science.1232450
https://doi.org/10.1126/science.1232450
https://doi.org/10.1126/science.1232450
https://doi.org/10.1126/science.1232450
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1063/1.4769981
https://doi.org/10.1063/1.4769981
https://doi.org/10.1063/1.4769981
https://doi.org/10.1063/1.4769981
https://doi.org/10.1038/ncomms13225
https://doi.org/10.1038/ncomms13225
https://doi.org/10.1038/ncomms13225
https://doi.org/10.1038/ncomms13225
https://doi.org/10.1103/PhysRevLett.97.075701
https://doi.org/10.1103/PhysRevLett.97.075701
https://doi.org/10.1103/PhysRevLett.97.075701
https://doi.org/10.1103/PhysRevLett.97.075701
https://doi.org/10.1103/PhysRevB.72.174107
https://doi.org/10.1103/PhysRevB.72.174107
https://doi.org/10.1103/PhysRevB.72.174107
https://doi.org/10.1103/PhysRevB.72.174107
https://doi.org/10.1209/0295-5075/96/36005
https://doi.org/10.1209/0295-5075/96/36005
https://doi.org/10.1209/0295-5075/96/36005
https://doi.org/10.1209/0295-5075/96/36005
https://doi.org/10.1063/1.3701617
https://doi.org/10.1063/1.3701617
https://doi.org/10.1063/1.3701617
https://doi.org/10.1063/1.3701617
https://doi.org/10.1039/C5SM00312A
https://doi.org/10.1039/C5SM00312A
https://doi.org/10.1039/C5SM00312A
https://doi.org/10.1039/C5SM00312A
https://doi.org/10.1088/1742-5468/2016/08/084002
https://doi.org/10.1088/1742-5468/2016/08/084002
https://doi.org/10.1088/1742-5468/2016/08/084002
https://doi.org/10.1080/08927022.2015.1114180
https://doi.org/10.1080/08927022.2015.1114180
https://doi.org/10.1080/08927022.2015.1114180
https://doi.org/10.1080/08927022.2015.1114180



