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It has become clear in recent years that the simple uniform wormlike chain model needs to be modified in order
to account for more complex behavior which has been observed experimentally in some important biopolymers.
For example, the large flexibility of short ds-DNA has been attributed to kink or hinge defects. In this paper,
we calculate analytically, within the weak bending approximation, the force-extension relation of a wormlike
chain with a permanent hinge defect along its contour. The defect is characterized by its bending energy (which
can be zero, in the completely flexible case) and its position along the polymer contour. Besides the bending
rigidity of the chain, these are the only parameters which describe our model. We show that a hinge defect causes
a significant increase in the differential tensile compliance of a prestressed chain. In the small force limit, a
hinge defect significantly increases the entropic elasticity. Our results apply to any pair of semiflexible segments
connected by a hinge. As such, they may also be relevant to cytoskeletal filaments (F-actin, microtubules), where
one may treat the cross-link connecting two filaments as a hinge defect.
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I. INTRODUCTION

The wormlike chain (WLC) is a minimal theoretical model
of semiflexibe polymers [1,2]. It is a locally inextensible,
one-dimensional, fluctuating line with bending rigidity. The
latter is the single parameter of this continuous model. Despite
its simplicity, it has proven quite successful in describing
the entropic elasticity of long (compared with the persistence
length) ds-DNA molecules [3]. Some important biopolymers,
however, exhibit behavior which cannot be accounted for by
the simple uniform and isotropic WLC model. One example
is the spontaneous curvature in tubulin protofilaments, in
bacterial FtsZ, or in some cases of eukareotic DNA [4-6].
In addition, starting with the pioneering experimental work of
Cloutier and Widom, it has become clear that short ds-DNA
molecules [7] exhibit highly bendable behavior on short length
scales [8,9]. Such behavior may be due to locally melted
regions of the base pair sequence known as denaturation
bubbles [10-12] or to single-stranded gaps known as nicks
[13]. A thermodynamically induced localization of bending
has been proposed with the kinkable chain model, where kinks
can, in principle, occur at any point along the chain contour
[14]. For many purposes, bubbles and nicks can be viewed
as hinge defects of the WLC. In [15,16], a transfer matrix
approach is used in a discrete version of the WLC model in
order to determine the conformational and elastic effect of
hinge defects. The advantage of that approach is that it is
not restricted to weakly bending conformations. However, it
introduces an extra parameter (the length of a link in the chain)
and it does not yield closed expressions. Apart from hinge
defects in ds-DNA, another motivation for the present study
comes from cross-linked semiflexible polymer networks, such
as reconstituted networks of cytoskeletal biopolymers [17].
At least at the level of modeling, it is very common to treat
cross-links as soft hinges [18]. Since the dangling ends are
usually ignored, two semiflexible chains end-linked by a hinge
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are a minimal structural element of interest for those complex
systems.

In this paper, we consider a WLC with a permanent hinge
defect and calculate the force-extension relation analytically in
the weak bending approximation. This approximation renders
the relevant functional integrals Gaussian and allows us to
obtain results in closed form. Our calculations are relevant
not only to ds-DNA with hinge defects, but to any hinged
pair of semiflexible polymers. In fact, since the effect of a
hinge is more pronounced for stiffer chains (within the weak
bending approximation), our results may be more relevant to
cytoskeletal filaments.

The paper is organized as follows. In Sec. II we calculate
the force-extension relation of a WLC for two types of
hinged-hinged boundary conditions: free and with constrained
transverse position. This calculation introduces the formalism
used in our analysis and illustrates the role of the overall
tilting entropy which accounts for the elastic effect of hinge
defects. In Sec. III, we calculate the force-extension relation
for a WLC with a hinge defect of arbitrary bending stiffness
(energy) located at an arbitrary fixed position along the chain’s
contour length. The calculation is done for free hinged-hinged
boundary conditions and is repeated in Sec. IV for constrained
hinged-hinged boundary conditions. In order to gain some
intuitive understanding of our analytical results, we analyze
the weak and strong force limits in Sec. V. We conclude and
discuss further extensions of this work in Sec. VI. Details of
the calculation of correlators are given in the Appendixes.

II. TWO TYPES OF HINGED-HINGED
BOUNDARY CONDITIONS

A. Free hinged-hinged boundary conditions

We consider a semiflexible polymer modeled as a wormlike
chain, stretched by a tensile force f applied at its end points.
The Hamiltonian (free energy functional) reads

1 (L /dt)? L
H{t(s)}) = EK/O <£> ds —f~/(; tds, (D)
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where t(s) is the tangent vector at arc-length position s, L is
the contour length, and « is the bending stiffness related to
the persistence length L, via L, = «/(kgT) (in three dimen-
sions). The local inextensibility constraint of the WLC implies
that [t(s)| = 1. We treat the problem in the weak bending
approximation, where the component of t(s) perpendicular
to the direction of f is small, ¢, (s) < 1. This approximation
holds when the stretching force is sufficiently large or when
the persistence length is much greater than the contour length.
In that approximation, using the Monge parametrization of the

chain, t(s) = [1,a;(s),a2(s)]/4/1 + a%(s) + a%(s), we obtain
the quadratic Hamiltonian

H({ai(s)})

1 [F (da\* 1.,
= 2 I:EK~/O (%) ds—i—zf/() aids:| - fL,
2

where we have taken the stretching force f to be in the x
direction. We notice that, in the weak bending approximation,
the two transverse directions decouple. In the following, for
the sake of simplicity, we analyze the problem with one
transverse direction and we obtain the force-extension relation
of the three-dimensional case by inserting a factor of 2 where
needed.

In hinged-hinged boundary conditions, the bending mo-
ment at the end points vanishes:

dCl,'
ds

_ da,-

= =0. 3
s=0 ds ( )

s=L

The appropriate Fourier decomposition of the tangent vec-
tor which satisfies the boundary conditions is a series of
cosines:

> l
as) = Y Arcos(gis). 1= 7. @
=0

Apart from a constant, the Hamiltonian of the (1 + 1)-
dimensional system reads

1 >\ L
H{A}) = EfA%L +y Z(xqf + f)AL (5)
=1

From the equipartition theorem, we readily obtain

kgT
(A3 =7+ ©
f
and
2kgT
(A)= ——2——, 1 #0. )
L(f +«q7)
The force-extension relation is obtained from
1 L
u@»=L—5/cMﬁn+ﬁm, ®)
0
where we have chosen a coordinate system such
that x(0)=0. The correlators calculated above
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FIG. 1. Force-extension relation of a WLC with L, = L in two
types of hinged-hinged boundary conditions: free (solid line) and
with constrained transverse position (dashed line).

yield
(x(L))

L coth/ VT +1
L 2L, f ’

©)

where f = fL?/k. The same result can be obtained using the
method of Green functions [19,20].

B. Hinged-hinged boundary conditions with position constraint

The boundary conditions discussed in the previous sub-
section allow for an overall end-to-end tilt of the polymer
about the stretching direction. This freedom can be restricted
by requiring the two end points to be at the same transverse
position,

L
/ a;(s)=0. (10)
0

Using the Fourier expansion in cosines [Eq. (4)], we get
Ao = 0. The force-extension relation is obtained as with the
free hinged-hinged boundary conditions, excluding the zeroth
Fourier mode. The final result reads

(x(L) L coth(/ )V~ 1

L 2L, 7

Y

The same result has been obtained using the method of
Green functions [20] or by expressing the Hamiltonian in
terms of the transverse displacement and Fourier expanding
the latter in a series of sines in agreement with the boundary
conditions [5].

As shown in Fig. 1, for a given stretching force, the
extension in the free case is smaller because the force competes
with the overall tilting entropy in addition to the entropy of
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FIG. 2. Change in the differential tensile compliance of a WLC
with L, = L for free hinged-hinged boundary conditions relative to
constrained hinged-hinged boundary conditions.

the thermal undulations. For f >> 1, the boundary conditions
become irrelevant and we recover the Marko-Siggia result
with the relative extension being inversely proportional to the
square root of the force [21]. Even though the effect of the
boundary conditions on the force-extension relation is rather
small, the effect on the tensile elasticity is quite significant as
shown in Fig. 2. A measure of the tensile elasticity of the WLC
is the differential tensile compliance defined as

o — 3(X(L)>. (12)

af

III. STRETCHING ELASTICITY OF A WLC WITH A
SINGLE HINGE DEFECT

We consider a WLC with a single hinge defect modeled as
a point at s = L; where the continuity of the tangent vector
orientation is broken. The Hamiltonian of a stretched WLC
with such a defect reads

H{t1(s)}, {t2(s)})
=g(1 -t (Ly) - t2(Ly))

1 5 /dg\? 1 [L/du\?
- ) ds+ = 2) 4
+2K/0 <ds> S+2K,/Ll<ds> s

L L
+f~/ tlds+f~/ tods, (13)
0 L,

where g is an energy parameter that penalizes the misalignment
of t;(Ly) and t,(L;). For g = 0 we get a completely flexible
(soft) hinge. We should point out that the infinite g limit does
not recover the intact WLC, but yields a more flexible chain
instead. In that sense, the point hinge is a genuine defect. From
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the way one approaches the WLC model from the discrete
Kratky-Porod model [22], we can see that in order to recover
the intact WLC we need a hinge with a finite extent, a, so that
g — ooanda — 0, keeping ga = k fixed. The limit g — oo,
in our model, restores the continuity of the tangent vector,
but it still allows for discontinuity in the curvature at s = L,
rendering the WLC bending stiffness ill defined at that point.

In the weak bending approximation, for each of the two
transverse directions (y and z) we get the following quadratic
Hamiltonian:

1
H{a()},{b(s)}) = 8la(Ly) - (L))’

+1 /Ll da 2d+1 /L db Zd
= — S+= — s
2 ), \as 2"/, \s

1o e
+ —f/ a(s)ds + = f b(s)ds.
27 Jo 27 L

1

(14)

We impose hinged-hinged boundary conditions without any
position constraint ats =0, Ly, and L,

da|  da db| _ db

ds|_o ds|y, ds|l—y, ds (15)

s=L

This type of boundary condition is appropriate for stretching
experiments with magnetic tweezers with a freely rotating
hinge at the end tethered to the substrate [23].

We expand the fluctuating fields in the appropriate Fourier
modes according to the boundary conditions

o0
Im
a(s) =Y Ajcos(qs), q =—,

0<s <Ly,
1=0 L
= Im
bs) = Bieoslp(s = L), pr=7—p— Li<s<L.
=0
(16)

In Fourier space, the Hamiltonian functional becomes a
function of the Fourier amplitudes,

H(ALBy)
1 [o¢]
= —g( D AAL (=D (=1

2
1,m=0

+ ) BB (—D'(=D" =2 > Ale<—1)’<—1)m>

1,m=0 I,m=0

1 2 1 2 1 = 2 2
+ 5 FLIAGHS F(L = LBi+7 Ly ;(/«q, + f)A;

0
+i(L—L1);(Kp,2+f)B,2. (17)
Introducing a column vector I' such that
I'" = (Ao,Bo,A1,B1, ..., (18)
a column vector u such that

uT:\/g(]’_l7_171517_]’_1717"')’ (19)
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and a matrix C such that

2fL, 0

0 2f(L-Lp
0

0

the Hamiltonian can be expressed as

I,m

0

0

(kq? + f)L

0

1
5 Z FlGlmFm» Glm = Clm + uiy,.
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0
0

0

(kp?+ f)L —Lp)...

(20)

Since the Hamiltonian is Gaussian, correlators are calculated as follows:

(TuTy) = ks T(G ™ im,

2L

where the inverse of matrix G is obtained using the Sherman-Morrison formula from linear algebra [24],

G—l

=Cc' =

Cluu™Cc!

< 22
14+ ufC-lu (22)

The force-extension relation is calculated from the tangent vector correlators as follows:

e 1t
(x(L)) =L — —/ (@*(s))ds — —/ (b*(s))ds
2 Jo 2 Ji,

T8 -

Ly
4

=1 —
=1

>3-

L—-L,
2

L-L &
(B - = > (7). @23

=1

After performing some intermediate steps which are shown in Appendix A, we obtain the final result

L) _ L

gL

-+
L,f

! coth( Ll)
2Lp\/>
i—i[coth(\ﬁﬂ)—

L L2Ly(L — L) {1+

1L

1 gL’

§||°°'
N

L

flc h(\/;

117 + L coth (v 7 L)/ f -2

- Looth (V7%) +cotn (V7 522)]]

)

(L—-1Ly)
L

2L%L1f2 1+fL [COth(fL‘)+coth(f(L Ll))]

gL’

(L—Ly)" Ll) [COth(f(L Ll))

] +(L L])COth(f(L Ll))\/?

1
20(L—L)f?

This final result refers to the three-dimensional case and
there is a discrepancy by a factor of 2 with respect to
the previous equation (we have two equal contributions
from the two transverse directions). It is illustrated in Figs.
3 and 4. We can immediately see that for a soft hinge,
g = 0, the force-extension relation reduces to simply adding
the contribution of two independent parts, each behaving
according to Eq. (9). In fact, we can easily calculate
the force-extension relation of a WLC with free hinged-

1+\/—L [ coth (v/ ) 4 coth (v/ 7 E5512)]

(24)

(

hinged boundary conditions and an arbitrary number of soft
hinges by simply adding the contributions of the individual
segments.

In Fig. 5, we show the dependence of the elastic response
on the position of a hinge defect along the polymer contour.
The response exhibits a plateau in the bulk of the chain and
increases drastically as the defect enters a boundary region
close to the end points whose size is given by the deflection

length, Iy = \/k/f.
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FIG. 3. Force-extension relation of a WLC with L, = L and free
hinged-hinged boundary conditions with a soft hinge defect (dotted
line), with a hinge defect with § = 3 (dashed line), and without any
defect (solid line). The defectis at L| = L /2.
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FIG. 4. Change in the differential tensile compliance of a WLC
with L, =L and a soft hinge defect (dotted line) or a hinge
defect with ¢ =3 (dashed line) at the middle, relative to that
of a WLC without any defect. (Free hinged-hinged boundary
conditions.)
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FIG. 5. Extension of a WLC with a soft hinge defect, stretched by
aforce f =300, having L = L p» as a function of the defect position
along the polymer contour, b = L;/L. For comparison, the dashed
line shows the extension of a WLC with the same parameters, without
any defect.

IV. CASE OF HINGED-HINGED BOUNDARY CONDITIONS
WITH POSITION CONSTRAINT

In this section, we analyze the stretching elasticity of a WLC
with a single hinge defect, as we did in the previous section,
but we impose a constraint in the transverse position of the
hinged ends. Our motivation is the experimental relevance of
this constraint, e.g., in stretching experiments involving optical
tweezers [25].

The requirement that the two end points are at the same
transverse position is expressed by the following equation (in
1 + 1 dimensions):

Ly L
/ dsa(s)+ / ds b(s) =0, (25)
0 L

1

which, in Fourier space, implies Ay = —LZ—IL‘BO. In Fourier
space, the Hamiltonian reads as in Eq. (20), but now

7 = (Ag,A1,B),A2, By, ...), (26)

L
—1,1,1,—1,—1,1,...), (27)
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and
2fLLy/(L—Ly) 0
0 (kqt + f)L
1
c-! 0 0
2
0 0

PHYSICAL REVIEW E 96, 042502 (2017)

0 0

0 0
(kpt + /)L = L) 0

0 (kg3 + f)Li ...

The force-extension relation is obtained from the tangent vector correlators as in Eq. (23) using some intermediate steps which
are shown in Appendix B. The final result reads (again, we have inserted a factor of 2 to account for the 2 transverse directions)

(x(L))

gL

L (L — L)L, L2 f2{1 +

P

S
)

1 L L, L L
ELP\/?I:TCOH’I(\/;T)‘I‘

Lo (V%) +com (V7))

—L ~(L—-L
I ]COth(\/;(L—]))}

gL pleoth (VF§) — 117 + % co (VT ) VF -2
2L2L, 7 14 %fp[cotb (V/FE) + coth (v 7 E7E2)]
gL3 (Llél)z[coth (\/7(L7LLI)) _ 1]]?+ (LZLI) coth (\/?(L*LLI))\/? )

1
2L2(L— L) f?

As expected, the position constraint straightens and stiffens
the polymer. The elastic response is shown in Figs. 6 and 7.
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FIG. 6. Force-extension relation of a WLC with L, = L and a
soft hinge defect at the middle, in two types of hinged-hinged bound-
ary conditions: free (dashed line) and with constrained transverse

position (solid line).

L Lot (V) + coth (V7 452)]

(28)

(

In order to gain some intuition into the effect of a hinge
on the elasticity of a WLC, in this section, we consider
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FIG. 7. Change in the differential tensile compliance of a WLC
with L, = L and a soft hinge defect at the middle, for constrained
hinged-hinged boundary conditions relative to free hinged-hinged
boundary conditions.
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the limit cases of strong and weak pulling forces. At first,
we consider free hinged-hinged boundary conditions. The
large force limit yields

(x) L L s 3

Sl = ——+0(f7, (9

L 2L, f LS
independently of the strength of the hinge. If we compare
it with the large force limit of the intact chain (without any
hinge),

(x) _ 1 L L
L 2L, F 2L, T

we see that hinge defect changes the subdominant term
(inversely proportional to the force) by a factor of 2. This
term, which is purely entropic, expresses the elasticity of a
freely jointed chain at the strong stretching limit [26]. At the
opposite limit of a small pulling force, we obtain

(x) 3 L | 3kpT

L' T

(30)

3D

independently of the strength of the hinge. If we compare it
with the small force limit of the intact chain,

W _ L kT
L L,f Lf

) (32)

we see that the hinge increases the entropic elasticity by a factor
of 3/2. Of course, for the small force limit to be consistent with
the weak bending approximation, we need polymers with large
persistence length. This limit may be relevant for cytoskeletal
fibers (F-actin, microtubules).

We now examine the case of constrained hinged-hinged
g
K 9

boundary conditions. The large force limit, f > max(%,
yields

(x) L gL’
- =1- =T o mn
L 2Lp\/? Lpf‘/

which should be compared with the corresponding result from
the intact chain

W_, L L
N AT

We see that a hinge with finite stiffness replaces the
subdominant (inversely proportional to the force) term in
the force-extension relation by another subdominant term
(inversely proportional to £ and proportional to the hinge
stiffness).

For constrained hinged-hinged boundary conditions, the
small force limit of the intact chain is interesting:

(x)_l 1L+1Lf (35)
L 6L, 9L,""

+0(f™, (33

(34)

There is a linear response to both tensile (f > 0) and com-
pressional (f < 0) forces. The existence of a compressional
linear response indicates the cancellation of the Euler buckling
instability due to the thermal undulations (“thermodynamic
buckling” [27]). It is remarkable that the presence of a hinge
defect, irrespective of its strength, cancels the linear response

PHYSICAL REVIEW E 96, 042502 (2017)

and yields a nonlinear response instead,
(x) ! L ) kgT
L 2L, f 2Lf°

(36)

If we compare this equation with the corresponding equation
for free hinged-hinged boundary conditions, we see that the
position constraint causes a reduction in the entropic elasticity
by a factor of 3.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the effect of a permanent
hinge defect on the tensile elasticity of a WLC. We treated
the problem in the weak bending approximation and we
obtained the force-extension relation for two types of boundary
conditions corresponding to different types of experiments. For
given total contour length and temperature, our result depends
on the hinge position, its bending energy, and the bending
rigidity of the original WLC. We find that a hinge defect
shortens the end-to-end distance of the stretched WLC and, at
the same time, increases its differential tensile compliance. It
is remarkable that this behavior does not change, irrespective
of whether the hinge is completely flexible or it has a large
bending energy. For the defect to cause a significant shift in
the force-extension relation, the deflection length, [ ; = /' /f,
should be of the order of the total contour length or greater.
This is expected, as for [ ; < L, the WLC can be viewed as an
effective freely jointed chain consisting of links, each of length
[+ [5]. We point out that the shift in the differential compliance
caused by the defect is much more pronounced than the shift
in the force-extension relation. In the strong stretching regime,
the position of the hinge does not affect the elastic response,
except for a boundary region at the end points, of the size
of the deflection length. In the small force limit, which is
amenable to our analysis for rather stiff chains, the effect of
the hinge on the elasticity is always significant. Remarkably, it
destroys the linear response which is known to exist in the case
of position-constrained boundary conditions. Our results may
prove useful in the interpretation of stretching experiments of
semiflexible biopolymers with hinge defects. Because of the
above-mentioned deflection-length condition, our results may
be more relevant to the study of hinged cytoskeletal filaments.

From the methodological point of view, our work illustrates
the usefulness of the Sherman-Morrison formula in extending
a Gaussian theory to incorporate nontrivial features. In [28]
and [29], it was used in order to describe a polymer cross-link.

Even though permanent ds-DNA bubbles are possible
[30,31], “breathing” bubbles are transient [32]. An interesting
extension of our work could take into account such transient
hinge defects. Other possible directions for future work
would be the analysis of hinge defects of finite extent and
the interplay of hinge defects with the twist elasticity of a
polymer under tension.
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where g = g/(kgT)

PHYSICAL REVIEW E 96, 042502 (2017)

BOUNDARY CONDITIONS)
The denominator in the Sherman-Morrison formula, Eq. (22), is
1 & 1 1  J— 1 1
1+u’C™ u—1+2g( + + )
L ;K% +f 2L1f L—-L, ;Kplz+f 2AL-Lnf

[coth(f )+ oth([(L Ll))]

APPENDIX A: CORRELATORS AND SUMS USED IN THE FORCE-EXTENSION RELATION (FREE HINGED-HINGED
(AD)

g
gL

_1+ 2L
N
LL coth (ﬁf)—i—coth(f“ L‘))]}

From the Sherman-Morrison formula, we obtain the correlators
L2
(A(Z)) = 7 2 7
LyLif  L2L3f?{1+
T L )

2 & 1
Az_kBT< Z
L111K91+f 1+

[& coth (ﬁ%)\/}— 1:| - 1
gL'
[coth(ﬁ%)—i—coth(\/»@ Ly}
) + coth (v/ F &) (L — L1)2 Z « (kpj +f)2>

Q||°°'
N

(A3)

g
=1 [ coth (v/7EL) + coth (
sL4 Lfcoth (vFL) — 1]7 + L coth (v L)/ 7
L3L1f? 1+[L[C oth (v 74) + coth (V7 L))

(A4)

3|°°’
N

’

L2(L — L2 f{1 + %LL

~
=

L2
CL,Lf
L2
o L—L)f

2\ _
(83) = -
8
U+ 5 £ oo (VT
(AS)

N
Il

1.2 — (L—-Ly)
- Lp(L—Ll)f|: L on <‘f )\f 1]
(ngl)z[coth(\ﬁﬂ)_ 117 + 550 coth (v 7 <L)/ F -2
fL [coth(fL‘)+coth(f(L Ll))] .

gL
L2(L — L) f?
APPENDIX B: CORRELATORS AND SUMS USED IN THE FORCE-EXTENSION RELATION (CONSTRAINED

HINGED-HINGED BOUNDARY CONDITIONS)
L
L)L f

(BD)

The denominator of the Sherman-Morrison formula reads
> 2

T 1 2 3 1
1+u'C™ ”_1+g<L1121:Kq,+f L L1§KPf+f+(L
L\ [ FL-L
[ (ﬁf)ﬁ—i—coth <\/?¥>\/}i|
(B2)

We also get
L—L1>2<BZ)_ L(L—L) gL
UL f 21+ & L coth (VL )/?+coth (f@ L) 71}
[coth(f )ﬁ—i—coth(f“ Loy %1 « (kg +f)2>
]f + Licoth (v FE)F -2

= ("
74
Lz[coth(fL')
L2L3f2 1 4 8 L[coth(f%)ercoth(f(L FOVIT

(B3)

&
fLp
8

L
L

gL

~

)
gL

2§: 1
ki +f 1+

A\ = kgT
>4 = k7 (7
=1 =1
L> [L, ~L, -
_| = coth - 1=
|:Lco (ﬁL) 7 ] o
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