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Understanding the mechanisms governing population extinctions is of key importance to many problems in
ecology and evolution. Stochastic factors are known to play a central role in extinction, but the interactions
between a population’s demographic stochasticity and environmental noise remain poorly understood. Here we
model environmental forcing as a stochastic fluctuation between two states, one with a higher death rate than
the other. We find that, in general, there exists a rate of fluctuations that minimizes the mean time to extinction,
a phenomenon previously dubbed “resonant activation.” We develop a heuristic description of the phenomenon,
together with a criterion for the existence of resonant activation. Specifically, the minimum extinction time arises
as a result of the system approaching a scenario wherein the severity of rare events is balanced by the time
interval between them. We discuss our findings within the context of more general forms of environmental noise
and suggest potential applications to evolutionary models.
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I. INTRODUCTION

The extinction of populations, and of entire species, has
played a critical role in shaping global biodiversity [1,2]. In
more recent times, human impacts on extinction risks are being
felt at an increased rate [3]. Accordingly, in order to better
understand the history of life and to reliably forecast future
ecological crises, it is crucial to understand the mechanisms
governing extinction.

Some of the earliest attempts to quantitatively model
biological populations treated the number of individuals as
a continuous variable, evolving deterministically as the differ-
ence between prescribed birth rates and death rates [4]. The
“carrying capacity” K was typically defined as the population
size at which births and deaths are equal. Deterministic
approaches have proved beneficial in understanding numerous
qualitative features of population sizes. However, in order to
predict the time over which a population is likely to go extinct,
a stochastic treatment is required [5–7].

The mean extinction times of populations under the action
of various forms of stochasticity have been extensively studied
in the literature [6–8]. One of the most fundamental forms of
stochasticity is demographic, where the probability of a birth
(or death) occurring within a given time interval is drawn
from a probability distribution rather than simply occurring
at a predetermined rate. The carrying capacity in this context
is then defined as the number of individuals at which births
and deaths are equal to each other in the mean-field limit
(when the number of individuals is large). In general, the mean
time to extinction of a population experiencing demographic
stochasticity alone increases exponentially with K [6,9,10],
meaning that large populations only rarely go extinct due to
demographic stochasticity alone.

A second form of stochasticity is that due to a varying
environment. Environmental stochasticity may take a vast
array of different forms, giving rise to a similarly diverse
array of mathematical approaches [8]. Perhaps the most
general model is to suppose that environmental stochasticity
causes the population size to vary according to white or
Ornstein-Uhlenbeck noise. As opposed to an exponential
relationship, the mean time to extinction here increases roughly
geometrically with K [6,9].

Whereas an Ornstein-Uhlenbeck process is mathematically
tractable in the case of large populations, it is more difficult
to analyze in a birth-death model with discrete numbers
of individuals. Furthermore, its influence upon population
numbers is less physically intuitive than some other forms of
environmental stochasticity. One more physical prescription
is the “catastrophe” model [11], whereby catastrophes arrive
at random intervals and remove a probabilistically determined
fraction of the existing population. Though intuitively appeal-
ing, such a catastrophe model suffers from the unrealistic
assumption that catastrophes lasts an infinitesimally short
amount of time, removing information regarding the popu-
lation’s trajectory shortly before extinction.

In this work, we investigate environmental stochasticity that
lies somewhere in between the white noise and the catastrophe
limits. Specifically, we suppose that the environment switches
randomly between two states, a “good” state and a “bad
state”, where the latter is defined as having an enhanced death
rate. Each state lasts a length of time that is drawn from
an exponential distribution, i.e., the switching constitutes a
telegraph process [12]. We note that similar scenarios have
been considered previously in terms of the impact of a single
bad event [13] (where instead of an enhanced death rate, a drop
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in birth rate was used) or under the assumption of a stationary
probability distribution [14].

Our physical setup is reminiscent of a classical problem in
physics—Brownian diffusion of a particle within a potential
well [15,16]. Given enough time, the particle will eventually
escape its potential well, where the mean time of escape may
be computed using standard methods of stochastic calculus
[12,17]. In this work, the population size represents the
particle’s position and the potential well represents the mean
drift of the population (i.e., its evolution in the mean-field
limit). Stochastic fluctuations in death rate between good and
bad states are analogous to switching the depth and location
of the potential well.

Despite its simplicity, an analysis of the particle prob-
lem led to the discovery of a new phenomenon—“resonant
activation”—whereby the mean time of escape is minimized
for a particular barrier fluctuation rate [16]. Follow-up work
sought to determine the generality of resonant activation
[18,19] and numerous studies have resurrected the conceptual
result. For example, it has been demonstrated that there
exists an optimum migration rate between isolated biological
populations that maximizes the mean extinction time of the
metapopulation [20]. Within the context of cell biology, noise
of a critical autocorrelation time minimizes the mean time of
switching between two cellular phenotypes [21]. In addition
to its theoretical robustness, resonant activation has been
demonstrated experimentally [22,23].

A key finding we will present in this work is that our
environmental fluctuation model displays resonant activation
and that the model setup facilitates an heuristic explanation of
the process that the authors are not aware has appeared in
the literature previously (but see Ref. [20] for an explanation
within the context of the migration model mentioned above).
In what follows, we describe our methods for computing the
extinction times and provide an heuristic explanation for the
results before briefly discussing implications of our findings.

II. MODEL DESCRIPTION

Throughout this work we treat the population as a stochastic
birth-death process, utilizing the Verhulst population model
[6,24] with density-dependent death rates. Similar conclusions
may be expected within the framework of other models, such
as the SIS model. Our analytical methods will require the
introduction of a population ceiling, which is defined as the
population size n = Nmax at which the birth rate vanishes
[17,25]. The birth rate βn and death rate δn take the functional
forms

βn =
{
an, if n < Nmax

0, if n = Nmax

δn = arn

(
1 + n

n′

)
, (1)

where a is the per capita birth rate (and 1/a may be
conceptualized as a characteristic generation turnover time
scale), r is the low-density ratio of death rate to birth rate,
and n′ parameterizes the degree of density dependence. In the
mean-field limit with a steady environment, the above birth
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FIG. 1. A typical realization of the population size as a function
of time (red line), computed using direct simulations as described in
the text. The environment undergoes stochastic switching between
two states (gray line); the “good” state with carrying capacity of
K+ = 40 and the bad state possesses K− = 30. For illustration, we
chose parameters α = a/5, ε = 1, r0 = 1/3, and A = 1.2.

and death rates yield an ODE for the number of individuals N ,

dN

dt
= aN (1 − r)

(
1 − N

K

)
, (2)

where K is typically referred to as the carrying capacity and
constitutes the equilibrium, or stationary, population size in
the mean-field limit (for r < 1). Its value is related to n′ by

K = (1 − r)

r
n′. (3)

In the model we study here, the death rate is allowed to
stochastically fluctuate between a high (“bad”) state and a low
(“good”) state. Specifically, the value of r in the definition of
δn above evolves as a telegraph process [12] taking one of two
values:

r → r0, “good” state

r → Ar0, “bad” state. (4)

Such environmental switching may be thought of as a stochas-
tic fluctuation between states with two different carrying
capacities, the good state with K+ and the bad state with
K−, following Eq. (3). In all cases discussed below, we will
maintain the same parameters for the good state, choosing n′ =
20 and K+ = 40, corresponding to r0 = 1/3. Given a carrying
capacity in the good state of 40 individuals, a sufficiently high
population ceiling is chosen as Nmax = 100, which we verify
using numerical simulations (see, for example, Fig. 1), for
which a population ceiling need not be specified.

The switching rate from the good state to the bad state is
denoted α+ ≡ αε, and the rate of switching from bad to good
is α− ≡ α, where the case ε � 1 corresponds to a population
subject to the influence of short-lived, catastrophic events. In
this work, we only consider cases where ε � 1, and will vary
A, ε, and α in our analysis below.
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FIG. 2. The mean extinction time as function of environmental
switching rate. The black curve correspond to an initial condition
of the good state, the red curve corresponds to beginning in the
bad state, and the blue curve represents the extinction time averaged
over both initial conditions following Eq. (5). Here ε = 1, n′ = 20
and the carrying capacities in the good and bad states are K+ = 40
and K− = 30, respectively. We denote, with horizontal lines, the
mean extinction times [τ+ and τ−; computed using Equation (9)]
corresponding to these two states, along with a third line representing
the extinction time in the mean state τ̄ . The numbers in parentheses
are referred to in the text.

III. COMPUTING MEAN EXTINCTION TIMES

A. Fluctuating environment

Our goal in this work is to compute the mean time to
extinction Tn for a population of n individuals as a function
of the environmental switching parameters. We will mostly
restrict attention to scenarios beginning in the good state,
the extinction time in which case being denoted with a “+”
in the superscript T +

n . However, the extinction time may be
computed without knowledge of the initial environmental state
(T̄n) by marginalizing over the fluctuations, such that

T̄n = T +
n + ε T −

n

1 + ε
. (5)

For the cases examined in this work (T +
n � T −

n and ε � 1)
T̄n behaves similarly to T +

n (see Fig. 2) and so our conclusions
regarding the latter inform the former. However, it is worth
noting that T −

n exhibits qualitatively different behavior than
T +

n , discussed briefly below.
There exist multiple techniques for computing T +

n (see,
e.g., Refs. [1,6,12,17]). We choose the method of averaging
along immediate sample paths. Specifically, suppose that the
population has n individuals and the environment is in the good
state. The mean time to extinction is then equal to the expected
time before an event occurs, plus the mean of the extinction
times after any one of the three possible events occurs (i.e.,
birth, death, or environmental switch). Specifically,

T +
n = 1

β+
n + δ+

n + α+ + β+
n

β+
n + δ+

n + α+ T +
n+1

+ δ+
n

β+
n + δ+

n + α+ T +
n−1 + α+

β+
n + δ+

n + α+ T −
n

T −
n = 1

β−
n + δ−

n + α− + β−
n

β−
n + δ−

n + α− T −
n+1

+ δ−
n

β−
n + δ−

n + α− T −
n−1 + α−

β−
n + δ−

n + α− T +
n , (6)

which, on rearranging, become the governing equations

− 1 = β+
n T +

n+1 + δ+
n T +

n−1 + T −
n α+

− T +
n (β+

n + δ+
n + α+)

−1 = β−
n T −

n+1 + δ−
n T −

n−1 + T +
n α−

− T −
n (β−

n + δ−
n + α−). (7)

We may write Eqs. (7) as one matrix equation

−1 = MT, (8)

where the first Nmax elements of the vector T consist of T +
n

and the rest consist of T −
n . The above matrix equation is to

be solved subject to the boundary conditions T +/−
0 = 0 and

βNmax = 0.

B. Static environment

A vast literature exists pertaining to the analysis of
extinction times in static environments [6]. We take advantage
of this analytical understanding by expressing extinction times
within the switching environment in terms of extinction times
corresponding to three well-defined constant environmental
states. These three states consist of the bad state (mean
extinction time τ−

n ), the good state (τ+
n ), and the “mean” state

(τ̄n), the latter of which we define as the extinction time in the
limit where α → ∞. In the mean state, the population evolves
as if it were subject to time-independent “mean” death and
birth rates (derived below).

Using similar arguments as in the fluctuating environment,
one can show that in the static environment,

−1 = βnτn+1 + δnτn−1 − τn(βn + δn), (9)

where we obtain the equations for any one of the three static
cases by adding superscripts “+” or “−” or an overbar. Once
again rewriting in matrix form we have that

−1 = M+τ+

−1 = M−τ−

−1 = M̄ τ̄ , (10)

where each of M+, M−, and M̄ denote Nmax by Nmax matrices
encoding the birth and death rates in the good, bad, and mean
states, respectively.

In order to compute the appropriate birth and death rates
for the mean state, we take the limit where α → ∞ in Eqs. (7),
from which we extract that

T +
n |α→∞ ≈ T −

n |α→∞ = τ̄n, (11)

and, on converting Eq. (7) into a form similar to
expression (9),

−1 = β̄nτ̄n+1 + δ̄nτ̄n−1 − τ̄n(β̄n + δ̄n), (12)
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where we arrive at the mean birth and death rates

β̄n ≡ β+
n + εβ−

n

1 + ε
= an

δ̄n ≡ δ+
n + εδ−

n

1 + ε
= an r0Ā

(
1 + n

n′

)
. (13)

The mean value for the environmental parameter is

Ā ≡ 1 + εA

1 + ε
. (14)

If we consider the mean-field evolution of a population in
the regime where α → ∞, then it will possess an stationary
number of individuals or carrying capacity given by

K∞ ≡ 1 − r0Ā

r0Ā
n′. (15)

It should be noted that all extinction times computed
above are sensitive to the number of individuals. However,
the ratio τNmax/τ1 is never more than a factor of ∼2–4 (at
least in the cases considered here). This can be seen most
readily with respect to the static environments. In particular,
suppose that we are only interested in cases where τ+/− �
1/(β+/−

n + δ
+/−
n ) (i.e., r < 1) and n small enough such that

the death rate is linear n � n′. In this case Eq. (9) becomes

τ+/−
n ≈ 1

1 + r
τ

+/−
n+1 + r

1 + r
τ

+/−
n−1 , (16)

which may be solved to obtain

τ+/−
n ≈ τ

+/−
Nmax

(1 − rn), (17)

an expression which is equivalent to that derived in the
large population limit in Ref. [6] [their Eq. (20)]. The factor
τ+
Nmax

/τ+
1 ≈ 1/(1 − r) = 3/2, where we have used the value

r = r0 = 1/3 for the “good state.” In the bad state, r = r0A,
which may exceed unity, suggesting a negative extinction time
by Eq. (17); however, this would break the initial assumption
that the extinction time is significantly longer than the typical
time between events.

The dependence of extinction time on the initial population
size may be important when one considers situations where
populations are initiated at very low densities of individuals,
such as island colonization [1]; however, it is not crucial to
consider here. When quoting the extinction times throughout
the paper, unless otherwise stated, we choose n to be the car-
rying capacity in the good state (n = K+ = 40). Accordingly,
for ease of presentation, we define

τ+ ≡ τ+
K+

τ− ≡ τ−
K+ . (18)

The calculations outlined in this section introduce three
states that are simpler to understand, both conceptually and
mathematically, than the full fluctuating problem.

C. Direct simulation

The time evolution of the population number n may be
computed numerically in order to check the solutions obtained
through our analytic methods. Specifically, at each time step,
two random numbers are drawn, R1 and R2, each uniformly

distributed between 0 and 1. The first random number R1 is
used to determine the wait time before an event occurring

�t = − ln R1

γ +/− , (19)

where we define the sum of rates

γ +/− ≡ β+/−
n + β+/−

n + α+/−. (20)

The second random number R2 is used to determine which
event occurs (birth, death, or environment switch), following
the prescription:

n+/− → (n + 1)+/− if R1 < β+/−
n /γ +/−

n+/− → (n − 1)+/− if

R1 > β+/−
n /β & R1 < (β+/−

n + δ+/−
n )/γ +/−

n+/− → n−/+ if R1 > (β+/−
n + δ+/−

n )/γ +/−. (21)

Each time we quote a mean extinction time using direct
simulation, we use the above algorithm to compute 100
trajectories, beginning with n = K+ = 40 individuals in the
good state, and average the extinction times. For illustrative
purposes, a typical realization of the population number is
presented in Fig. 1, with α = a/5, ε = 1, and A = 1.2. Note
that the direct simulation does not require a population ceiling,
and our choice of ceiling at n = Nmax = 100 in the analytic
techniques was informed by the rarity with which n reaches
100 individuals.

IV. RESULTS AND ANALYSIS

A. Case where α+ = α−

The first case we explore is a system that spends, on
average, equal amounts of time in the good state as the
bad state (α+ = α−; ε = 1). Let us suppose that in the good
state, the carrying capacity K(≡ K+) = 40 but it drops to
K(≡ K−) = 30 in the bad state. Using Eqs. (3) and (4), this
may be modelled by choosing A = 1.2, r0 = 1/3, and n′ = 20.
With these numerical values, the mean state (α/a → ∞) is
described with Ā = 1.1 and a carrying capacity of K∞ = 34.5
[Eqs. (14) and (15)].

In Fig. 2, we illustrate the mean extinction times beginning
in the good state T +, the bad state T −, and the average of these
two T̄ as a function of the environmental switching parameter
α, where all times are computed with n = K+. For small α/a,
all three curves are flat, with T + ≈ τ+ and T − ≈ τ−. When
the population begins in the bad state, the extinction time
rises monotonically with α (red curve), essentially due to the
fact that as α is increased, the system beginning in the bad
state becomes more likely to survive into the next good state,
lengthening its persistence. In contrast, the curve of T + falls
initially, but begins to rise again after reaching a minimum
value. As expected, all curves approach τ̄ in the limit where
α/a → ∞.

In this work, we are most interested in the occurrence of a
minimum in the extinction curves of T̄ and T +. Furthermore,
due to our consideration of ε � 1, we do not discuss in
detail the curve of T −. However, the logic acquired from our
discussion of T + may be easily applied to T −.
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The existence of a minimum in the extinction time is
a signature of resonant activation [16]. For the parameters
chosen here, the minimum remains flat across roughly three
orders of magnitude in α/a from −4 � log10(α/a) � −1. This
result says that the population will typically go extinct fastest
when subject to environmental perturbations acting once every
10–10 000 generations.

B. Heuristic explanation

Multiple previous scenarios demonstrating resonant ac-
tivation have been studied, but the heuristic mechanism
responsible has often not been identified. In this section, we
discuss the mechanism from a qualitative point of view in
order to better understand why resonant activation occurs in
this system.

Beginning in the limit α/a → 0, both states (good and bad)
last such a long time that the extinction time in the fluctuating
environment approaches that of the initial state, i.e., τ+ if the
system begins in a good state and τ− if it begins in the bad
state (“1” in Fig. 2). As α is increased, populations beginning
in the good state will typically experience an environmental
switch before going extinct, but the following bad state still
lasts long enough to almost ensure extinction. When α enters
this regime (at αε ≈ 1/τ+ = 10−7.5a) the graph steepens to a
slope of roughly 1/αε (“2” in Fig. 2).

Eventually, as α increases further, the mean extinction time
in the bad state (τ−) becomes longer than the average duration
of a single bad state (1/α). Consequently, the population gets
“saved” before going extinct as the environment switches
back to the good state. At this point, the extinction time in
the fluctuating problem flattens again (“3” in Fig. 2). From
Fig. 2, we see that the bad state has a mean extinction time of
τ− ≈ 104.9/a and so the turnoff into a minimum occurs at the
expected (τ−)−1 = log10(α/a) ≈ −4.9.

In the limit where α → ∞, the mean extinction time
becomes equivalent to that of a state where the death rate
is described by the mean value of A (“4” in Fig. 2). For the
parameters chosen here, the mean state is characterized by a
mean extinction time τ̄ which is greater than the magnitude of
T + at the point where α ≈ 1/τ− and thus the minimum exists
and resonant activation is observed. Later on, we discuss the
criteria under which the graph does not display a minimum.

C. Catastrophe case

In the previous section we considered a case where the
system spends on average equal amounts of time in the two
different states, where the states differ in carrying capacity by
10. We now examine a more general scenario. Specifically,
the bad state lasts a shorter time on average than the good
state, but its severity A is increased such as to maintain
a constant mean state Ā = 1.1, allowing comparison to the
previous section.

The situation thus described is more similar to a catas-
trophic event [10,13]. In Fig. 3, we compare the mean
extinction times for three different values of A and ε that
maintain equivalent Ā. Specifically, we choose A = 1.2, ε = 1
as before but include two examples of catastrophes; A =
1.6, ε = 0.2, and A = 11.1, ε = 0.01. Once again a minimum
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FIG. 3. The mean extinction time as a function of α for three
different choices of ε = 1 (black), 0.2 (blue), 0.01 (red), all possessing
equivalent α → ∞ extinction times (τ̄ ). Four metrics are plotted:
Crosses denote the mean extinction time computed using direct
simulations, solid lines were computed using the matrix equation
(8), dotted lines depict our heursitcally derived approximation in the
regime where α � a [Eq. (23)], and the dashed line denotes the
expected minimum extinction time [Eq. (24)] using the arguments in
the text. As expected, red and blue graphs turn off into the minimum
at of 1/α roughly corresponding to the extinction time in the bad state
log10(α/a) = −2.4 for A = 1.6 and log10(α/a) = 0 for A = 11.1.

is observed in these two additional cases, though their minima
are sharper than for ε = 1.

In addition, we perform direct numerical simulations at
multiple values of α, where as mentioned above we average the
extinction times of 100 paths. The resulting mean extinction
times are plotted as crosses on Fig. 3. The excellent agreement
between the solid lines and crosses validates both our matrix
solution [Eq. (8)] and the choice of Nmax = 100.

Using the intuition gained from the previous section, we
would expect the mean extinction time curves to change
slope at αε ≈ 1/τ+ and then again at α ≈ 1/τ−. For ε = 0.2,
these two values correspond to log10(α/a) = {−6.8,−2.4},
and for ε = 0.01, they correspond to log10(α/a) = {−5.5, 0}.
By inspection of Fig. 3, we see that the turning points
match well with these values, validating an equivalent phys-
ical interpretation between the catastrophe and equal-time
cases.

For illustration, in Fig. 4, we provide example trajectories
for populations going extinct under switching rates near the
minimum of the ε = 0.01 curve and on either side of the
minimum. Specifically, at α = 0.1a (top panel) the bad events
last long enough to lead to extinction most of the time and so
the curve drops to zero individuals soon after the environment
switches. At α = a (middle panel) the system exhibits its
minimum extinction time, where the catastrophic events are
occurring both frequently and with a significant chance of
extinction. For more frequent catastrophes α = 10a (bottom
panel) the bad events are more frequent but too short to lead to
extinction in most cases. Here extinction is caused by chance
clustering of bad events and/or negative excursions in the good
state.
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FIG. 4. Typical realizations of populations going extinct for three
values of α = 0.1a (top panel), a (middle panel), and 10a (bottom
panel). All cases have ε = 0.01 and possess bad events with A =
11.1, for which K− = −14.6 < 0, such that the blue curve, reflecting
the time evolution of the carrying capacities, transitions from K+ =
40 to the below the y axis each time a bad event occurs. These
parameters are the same as those used to generate the red curve in
Fig. 3 and the three values of α are chosen to lie below, close to and
above the value of α at which the minimum extinction time occurs,
in order to illustrate the difference in the path to extinction within the
three cases.

D. Value of the minimum

Given the regime changes in T + as a function of α

computed above, it is possible to derive an expression ap-
proximating the extinction time curve for α � a. In particular,
we want an expression that approaches τ+ for α → 0. Then,
when αε � (τ+)−1, the curve becomes approximately equal to
the typical switching time. The two criteria above are matched
by supposing that

T
∣∣
1,α�a

≈ τ+
(

1

1 + αετ+

)
. (22)

The approximation is improved by noting that as α increases
further, T |1,α�a approaches zero and so must be corrected at
larger α. We match the turnover at α ≈ (τ−)−1 by adding to
the numerator ατ− such that a better approximation becomes

T
∣∣
2,α�a

≈ τ+
(

1 + ατ−

1 + αετ+

)
(α � a). (23)

We plot the above approximation in Fig. 3, showing that,
simply using the heuristic arguments outlined above, we
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FIG. 5. The minimum time to extinction as a function of the
carrying capacity in the bad state K−, (solid red line) compared
with approximation 24 (solid black line) and its approximate form
when ετ+ � τ− (dotted gray line). Both A and ε (blue line) were
varied (such that a minimum existed in all cases). We see that the
approximation derived from heuristic arguments provides in general
a slight overestimate of the mean extinction time but a close match
overall.

approximate the curve well up until the minimum is encoun-
tered. More rigorous mathematical techniques may indeed
yield an expression such as (23), but a detailed proof is beyond
the scope of this work.

Given that expression (23) closely matches the extinction
time until the slope changes at α ∼ 1/τ+ in the exact solution,
the minimum extinction time for the switching problem T +
may be approximated by substituting α = 1/τ− into the
expression (23). The estimate thus obtained for the minimum
extinction time is

Tmin ≈ 2τ+τ−

ετ+ + τ− . (24)

We include horizontal lines on Fig. 3 at the extinction
times predicted by this expression. Furthermore, we test the
validity of approximation (24) by plotting the true minimum
extinction time against K− for a range of values of ε and A,
alongside the approximation Tmin (Fig. 5). We include a plot of
Tmin ≈ 2τ−/ε, i.e., the limit of Tmin, where ετ+ � τ−. Both
approximations provide good estimates for the true minimum
extinction time, though some disagreement arises due to the
qualitative nature of the derivation.

E. Criterion for the existence of a minimum

It is not guaranteed that expression 24 for Tmin will be less
than the mean extinction time in the mean state. Accordingly,
the extinction time T + will only exhibit resonant activation if
the inequality

Tmin � τ̄ (25)

is satisfied. In order to illustrate the above criterion, we
compute the mean extinction times for four cases where ε

is gradually increased (choosing ε = {10−3, 10−2, 0.03, 0.1}),
thus decreasing τ̄ until no minimum is present in the extinction
time curve. In order to remove the minimum, the mean state

042411-6



RESONANT ACTIVATION OF POPULATION EXTINCTIONS PHYSICAL REVIEW E 96, 042411 (2017)

=
0.01

=
0.001

=
0.1

-6-8 4-4 -2 0 2
log10(α/a)

8

7

6

5

4

3

2

1

0

-1

R0 = 1.6

R0 = 1.1

R0 = 0.11

R0 = 8.4 × 10−5

m
inim

um
 vanishes

=
0.03lo

g 1
0
(a
T

+
)

R0 ≡ Tmin

τ̄

FIG. 6. An illustration of the disappearance of the minimum
when the mean state is bad enough such that the parameter R0 ≡
Tmin/τ̄ > 1. All cases have A = 60 and n′ = 20 but ε takes the values
{0.001, 0.01, 0.03, 0.1}. As ε is increased, the mean state worsens,
removing the presence of a minimum. Crosses represent extinction
times derived from numerical simulations.

must exhibit a fairly short extinction time and so we define a
bad state with A = 60, chosen simply to ensure that a minimum
exists for values of ε < 1. We illustrate these cases in Fig. 6.

As can be seen, the high-α part of the graph drops and
eventually the entire graph takes the form of a monotonic
decline in mean extinction time from small to larger α. For
each case, we quote the ratio

R0 ≡ Tmin

τ̄
, (26)

which we predict to be less than unity when a minimum
exists, with that minimum occurring at αmin ∼ 1/τ−. The
numerical results plotted in Fig. 6 agree well with our analytic
expectations.

Large α expansion

Criterion (25) provides a useful inequality for determining
the existence of resonant activation based on qualitative
arguments. However, one may obtain a more quantitative

criterion for the existence of a minimum. Specifically, we
perform an expansion of the system about large α. If a
minimum exists, then the gradient with respect to α at large α

must be positive.
After some algebra, the solution to the matrix Eq. (8) may

be written in closed form as

T + =
[

I − 1

α+ + α− M̄−1M−M+
]−1

×
[

I − 1

α+ + α− M̄−1M−M̄
]
τ̄ , (27)

where the various matrices take on the forms introduced in
Eqs. (10). Expanding to first order in a/α, we obtain the
expression

T + ≈
[

I + 1

α+ + α− M̄−1M−(M+ − M̄)

]
τ̄ . (28)

Accordingly, the sign of the first-order correction term

T+,0 ≡ [M̄−1M−(M+ − M̄)]τ̄ (29)

constitutes a test for the existence of resonant activation, where
negative T+,0 corresponds to resonant activation occurring.

In the left panel of Fig. 7 we compute T+,0 for four cases.
In each case, A is held fixed while ε varied. On plotting T+,0

against the resulting K∞, we see that T+,0 changes sign at
values of K∞ ≈ 1, with the transition occurring closer to
K∞ = 0 as A is increased (Fig. 7, right panel). Generally
speaking, these results suggest that resonant activation will
only occur if the mean state possess a sufficiently long
extinction time (either by lowering A or ε).

V. DISCUSSION

In this work, we have computed the mean time to extinction
of a stochastic birth-death process subject to environmental
forcing. Such forcing was modelled as a random fluctuation in
the death rate, with characteristic frequency α, between two
states. We demonstrated, through both analytical techniques
and numerical simulation that this system exhibits “resonant
activation” [16] whereby there exists a fluctuation time scale
that minimizes the mean time to extinction.

A key contribution of our work has been to provide a
heuristic explanation for the emergence of resonant activation.
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FIG. 7. Left: The first-order correction term T
0,+
K+ [Eq. (29)] to the extinction time as α → ∞. When T

0,+
K+ < 0 the system exhibits resonant

activation (i.e., a minimum extinction time). Right: The critical value of the carrying capacity in the mean state K∞, above which the system
exhibits resonant activation as a function of A (i.e., a minimum exists if K∞ > K∞

crit). As the bad state gets worse (A increases), the critical
carrying capacity crosses K∞

crit = 1, below which the mean state possess no stable stationary number of individuals in the mean-field limit.
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However, it is not immediately obvious whether the results
are specific to our chosen form of environmental forcing,
i.e., where bad states typically last a time interval of 1/αε

and the good states last 1/α, with ε � 1. Environmental
noise is unlikely to behave in this manner identically, but
our framework ensures that rare events are more likely to
cause extinction (because they last longer). At small α the bad
states last long enough to almost ensure extinction and so the
mean extinction time decreases with α. When 1/αε begins to
exceed the mean extinction time within the bad state, more
than one bad event is required for extinction and so the mean
extinction time begins to rise again, and hence the minimum
in the extinction time curve.

Regardless of the exact form of forcing, the understanding
acquired in our specific model may be applied to more general
systems. For example, Ref. [21] examined a system forced
by noise parameterized as an Ornstein-Uhlenbeck process
with autocorrelation time, analogous to our fluctuation time
scale 1/α. They, too, found that the mean escape time
was minimized at a given autocorrelation time. Using our
qualitative understanding we may similarly conclude that the
minimum arises due to the system reaching a point that is
balancing the severity of rare events with the time interval
between them.

We emphasize that all of our time scales are scaled by 1/a,
and so the minimum in extinction time should be interpreted
as a minimum number of generations before extinction. A
focus on generation number naturally leads to a discussion
of how the picture might alter in the presence of biological
evolution. In particular, we may consider two values of α

sharing the same T + (i.e., on either side of the minimum).
As illustrated in Fig. 4, the exact mechanism of extinction
differs between the higher α and lower α regimes. At lower α

extinction occurs during one long-lived bad event. In contrast,
at larger α the population survives numerous short-lived bad
events, with extinction occurring as a result of unfortunate
clustering of events.

With no evolution, the population typically goes extinct
after the same number of generations in both cases. In reality
the population in the faster switching environment will have
encountered the bad state before, giving it the opportunity to
adapt (essentially decreasing A) before finally going extinct.
We thus speculate that evolutionary adaptation may extend the
extinction time at α larger than the “resonant” value, perhaps
sharpening the minimum in real populations—species adapt
more easily to the events that occur more frequently. The topic
would benefit from future work that examines more generally
the importance of adaptation within the context of resonant
activation.

Although our model has been conceptualized thus far
as pertaining to births and deaths of individuals within a
population, a potential consequence to evolution emerges if we
apply it instead to specific alleles in a population. In particular,

suppose a population possesses two alleles for one gene, but the
species’ fitness optimum sits at some nonzero ratio between the
two alleles (a form of fitness landscape [26,27]). If the fitness
optimum is fluctuating, then the mean time to fixation of one
allele will depend on the time scale of fluctuations. Resonant
activation within this picture would manifest as a minimum
fixation time of one of the alleles, essentially maximizing the
evolutionary rate.

Though qualitative, the above argument suggests that
stochastic time scales may have important influences on evo-
lutionary rates. Indeed, it is interested to highlight recent work
demonstrating the importance of environmental fluctuation
rate to fixation probabilities of one population over another
[28,29]. This scenario is conceptually similar to the case of
two alleles, lending credence to the potential for noise time
scales to influence evolutionary rates. More work is needed to
examine this further.

A separate interpretation of our model, aside from births
and deaths of individuals, is the originations and extinctions
of different taxa within a lineage [1,30]. In this case the
per-taxa speciation time scale 1/a could be as large as
hundreds of thousands to millions of years [31], with the kinds
of environmental fluctuations leading to resonant activation
scaling accordingly. A major difference between the taxon-
level and individual cases, however, is that a could vary
significantly within lineages, which is beyond the scope of
the model presented here.

The greater physical understanding of resonant activation
developed here has facilitated simplified expressions for the
extinction time to be derived from a heuristic perspective.
Furthermore, a criterion for the existence of resonant activation
is derived, indicating a dependence on the chosen numerical
parameters. Accordingly, we anticipate that the phenomenon
may yet emerge within a broader range of dynamical systems
than previously reported.
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