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The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems,
running along the template sequence and giving the statistical properties of the copy sequences, as well as
the kinetic and thermodynamic properties of the replication process. With this method, different effects due to
sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time
of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA
polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without
and with exonuclease proofreading.
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I. INTRODUCTION

During DNA replication, the copolymerization of new
nucleic acid chains is catalyzed by enzymes called DNA
polymerases [1]. These molecular machines perform the
synthesis of new DNA strands by moving along templates
formed by the DNA strands of previous generations. Since
DNA codes genetic information, the template sequences
are heterogeneous and constitute one-dimensional disordered
media for the motion of polymerases [2–10]. This motion is
determined by the enzymatic kinetics of polymerases, which
has been studied experimentally in biochemistry. The main
kinetic parameters have been measured for several DNA
polymerases [11–26]. The knowledge of kinetics is probably
most complete for human mitochondrial DNA polymerase
γ , in which case the kinetic parameters are known for the
16 possible nucleotide pairings between the DNA template
and its copy [18–21]. This knowledge allows us to set up
detailed kinetic models for template-directed DNA copoly-
merization and thus to investigate the effects of sequence
heterogeneity. These effects are overlooked if the kinetic
parameters are supposed to depend only on whether nucleotide
pairing is correct or incorrect [27–34]. However, discrepancies
have been observed between so simplified models and the
Monte Carlo simulations of the complete kinetics [32,33].
As recently shown in Ref. [10], these difficulties can be
overcome by using iterated function systems (IFS) [35,36].
These mathematical recurrences are used for constructing
fractals [35], for image compression [37], as well as in the
theory of diffusion in one-dimensional disordered lattices
[38,39]. In the context of template-directed copolymerization,
IFS provide the exact long-time solution of the kinetic
equations [10].

The purpose of this paper is to describe in detail the
application of the IFS method to DNA replication. With the
IFS method, we can now investigate the effects of sequence
heterogeneity. In particular, the IFS method can determine how
the pairing probabilities, the replication errors, and the local
velocity of the DNA polymerase vary along the template
sequence, allowing the study of sequence-specific properties
as a function of nucleotide concentrations. It turns out that the
variations of the local velocity may have continuous or fractal

distributions, depending on the nucleotide concentrations.
Besides, the mean growth velocity may vanish over a whole
range of nucleotide concentrations where the growth of the
copy can be sublinear in time instead of linear, as for other
processes of random drift in disordered media [40–45]. The
effects of sequence heterogeneity manifest themselves more
strongly if the nucleotide concentrations are imbalanced, in
which case the replication errors become more frequent. It is
shown that such imbalances in the nucleotide concentrations
have important consequences on the composition of DNA
sequences. Furthermore, the effects of sequence heterogeneity
may influence the nonequilibrium thermodynamics of DNA
replication.

The vehicle of our study is the human mitochondrial DNA
polymerase γ , for which the kinetic parameters of the 16
pairings are known [18–21] and the aforementioned issue
thus arises. The same kinetic model as in Refs. [32,33]
will be used, but with the exact IFS method of Ref. [10],
instead of the approximation of Refs. [32,33] simplifying the
kinetics to correct or incorrect pairings. Moreover, the IFS
method will be applied to the DNA polymerases without and
with the dedicated proofreading mechanism provided by the
exonuclease activity.

The plan of the paper is as follows. The IFS method to
solve exactly the kinetic equations of DNA replication is
presented in Sec. II. In Sec. III, the IFS method is applied
to exonuclease-deficient (exo−) human mitochondrial DNA
polymerase moving along templates composed of the four
nucleotides. In Sec. IV, the template is supposed to be
composed of only two different species of nucleotides in
order to analyze more closely the fractal distributions of local
velocities. In Sec. V, the IFS method is applied to (exo+)
human mitochondrial DNA polymerase with exonuclease
proofreading. Conclusion and perspectives are drawn in
Sec. VI.

II. IFS METHOD

A. Kinetic equations

The Michaelis-Menten kinetics of DNA polymerases can
be described as successive random events of nucleotide attach-
ment and detachment, which is schematically represented as
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follows:

ω = m1m2 . . . ml−1 + ml

α = n1 n2 . . . nl−1 nl nl+1 . . .
� ω′ = m1m2 . . . ml−1ml

α = n1 n2 . . . nl−1 nl nl+1 . . . ,
(1)

where α denotes the template composed of the nucleotides nl ∈ {A,C,G,T} and ω the copy composed of ml ∈ {A,C,G,T}. The
template sequence can be periodic, a Bernoulli chain of probabilities {νA,νC,νG,νT}, or else.

The attachment and detachment rates W±mlml−1,l depend not only on the nucleotide ml that is attached or detached, but also
on the previously incorporated nucleotide ml−1, which plays an important role in the case of exonuclease proofreading [13,33].
The rates also depend on the template sequence and vary from site to site, which is denoted by the subscript l after the comma.
Moreover, the rates depend on the nucleotide concentrations as will be explained in Sec. III. The solution surrounding the
macromolecular chains is supposed to be dilute and to contain nucleotide species at invariant concentrations so that the rates do
not change in time.

The kinetics is described at the level of a single DNA polymerase in terms of the probability that the copy has the sequence
ω = m1 . . . ml at time t , provided that the template has the sequence α = n1 . . . nlnl+1 . . . . The kinetic equations ruling the
process are given by

d

dt
Pt

(
m1 . . . ml

n1 . . . nl nl+1 · · ·
)

= W+mlml−1,l Pt

(
m1 . . . ml−1

n1 . . . nl−1 nl . . .

)
+

∑
ml+1

W−ml+1ml,l+1 Pt

(
m1 . . . mlml+1

n1 . . . nl nl+1 nl+2 . . .

)

−
(

W−mlml−1,l +
∑
ml+1

W+ml+1ml,l+1

)
Pt

(
m1 . . . ml

n1 . . . nl nl+1 . . .

)
,

(2)

where the first gain term describes the attachment of the
nucleotide ml to a chain of length l − 1, the second ones the
detachments of the different possible nucleotides ml+1 from a
chain of length l + 1, while the loss terms are, respectively, due
to the detachment of ml and the attachments of ml+1 [32,33].

B. Factorization of the probabilities during steady growth

After a long enough time, the probabilities ruled by
Eq. (2) will factorize as for a Markov chain because the rates
depend on the previously incorporated nucleotide [10,46]. As
a consequence, these probabilities take the following form:

Pt

(
m1 . . . ml

n1 . . . nl nl+1 . . .

)
� pt (l)

l−1∏
j=1

μ(mj |mj+1, j ) μ(ml, l),

(3)
in terms of the conditional probabilities μ(mj |mj+1, j ) of the
Markov chain, the tip probability μ(ml, l) of the last nucleotide
ml that is incorporated at the growing end of the chain, and
the probability that the copy has the length l at time t :

pt (l) ≡
∑

m1...ml

Pt

(
m1 . . . ml

n1 . . . nl nl+1 . . .

)
. (4)

The conditional and tip probabilities are normalized according
to ∑

mj

μ(mj |mj+1, j ) = 1 (5)

for j = 1,2, . . . ,l − 1, and

∑
ml

μ(ml, l) = 1 . (6)

The mean length of the copy is defined by

〈l〉t ≡
∞∑
l=1

l pt (l) (7)

and the mean growth velocity by

v ≡ d

dt
〈l〉t . (8)

In the regimes of steady growth, this velocity is invariant
and positive v > 0. However, the mean growth velocity may
vanish v = 0, while the chain is still growing sublinearly in
time as 〈l〉t ∼ tγ with 0 < γ < 1 [10,46]. The growth stops at
equilibrium where v = 0 and γ = 0.

In order to determine the growth velocity, we may consider
a periodic template with a long period L. If we introduce
the waiting time τl of the polymerase at the location l of the
template, the velocity should take the value

v = L∑L
l=1 τl

. (9)

The length distribution pt (l) is expected to drift towards
longer and longer lengths at the velocity v, while becoming
broader and broader as time increases. The probability pt (l)
of the length l should be proportional to the corresponding
waiting time τl . If this probability distribution was normalized
according to

∑L
l=1 pt (l) = 1 over the period L, we would have

that

pt (l) � v

L
τl = v

L xl

, (10)

where

xl ≡ 1

τl

(11)
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is the local velocity of the polymerase at the location l of the
template. Taking the limit L → ∞ in Eq. (9), the mean growth
velocity is given by

1

v
= 〈τl〉 =

〈
1

xl

〉
, (12)

where 〈·〉 = limL→∞ L−1 ∑L
l=1(·)l denotes the average over

an arbitrarily long template sequence [42,43].

C. Backward and forward recurrences

The kinetic equations (2) being linear, their solutions can
be expressed as linear superpositions of the modes Pt ∼
exp(sq t + iql) where sq is vanishing with q, either as sq �
−ivq if v > 0 or more slowly if v = 0. Since the probability
distribution becomes broader and broader in the long-time
limit, the solutions of Eqs. (2) are dominated by modes with

smaller and smaller values of |q| so that the left-hand sides of
Eqs. (2) will thus also vanish [10,46]. An alternative method
is to use the Laplace transform P̃z of Pt , in which case the
left-hand sides of Eqs. (2) become zP̃z if no chain is already
formed at time zero. In the long-time limit, smaller and smaller
values of z should be considered and, again, the asymptotic
solutions will be given by taking the left-hand sides of Eqs. (2)
equal to zero. On this ground, the asymptotic solutions of
Eqs. (2) can be deduced as follows.

Here, we present an extended version of the deduction
summarized in the Supplemental Material of Ref. [10] by first
introducing the local partial waiting times

uml,l ≡ μ(ml,l) τl. (13)

Using Eq. (10), the factorization (3) becomes

Pt

(
m1 . . . ml

n1 . . . nl nl+1 · · ·
)

� v

L
μ(m1|m2, 1) . . . μ(ml−2|ml−1, l − 2) μ(ml−1|ml, l − 1) uml,l . (14)

Inserting this expression into the kinetic equation (2), we obtain after simplification the following equation:

0 � W+mlml−1,l uml−1,l−1 + μ(ml−1|ml,l−1)

[∑
ml+1

W−ml+1ml,l+1 μ(ml|ml+1, l) uml+1,l+1 −
(

W−mlml−1,l +
∑
ml+1

W+ml+1ml,l+1

)
uml,l

]
.

(15)

Defining the local partial velocities as

vml,l ≡
∑
ml+1

W+ml+1ml,l+1 −
∑
ml+1

W−ml+1ml,l+1 μ(ml|ml+1,l)
uml+1,l+1

uml,l

, (16)

Eq. (15) gives the following expression for the conditional
probabilities:

μ(ml−1|ml,l − 1) = W+mlml−1,l

W−mlml−1,l + vml,l

uml−1,l−1

uml,l

. (17)

If we replace the conditional probabilities in Eq. (16) by their
expression (17), we deduce the backward recurrence [10]

vml−1, l−1 =
∑
ml

W+mlml−1, l

W−mlml−1, l + vml, l

vml, l , (18)

forming an IFS in the four-dimensional space of local partial
velocities vl = {vml,l} [35,36]. An important result is that
the functions vl−1 = fl(vl) of the IFS are explicitly defined
in terms of the attachment and detachment rates of the
kinetics. The recurrence proceeds by picking up the function
fl corresponding to the local subsequence of nucleotides at the
location l of the template. The function fl is chosen at random
if the template sequence is random. There are as many possible
functions fl as nucleotide subsequences determining the rates
of the polymerase, as further explained in Sec. III.

Now, summing the conditional probability (17) over ml−1

and using the normalization condition (5), we get the forward
recurrence [10]

uml,l =
∑
ml−1

W+mlml−1,l

W−mlml−1,l + vml,l

uml−1,l−1. (19)

The backward and forward recurrences (18) and (19) de-
termine all the statistical properties of the copy [10,46]. In
particular, the stationary probability μ̄(ml,l) of the Markov
chain, called bulk probabilities in the following, should satisfy

∑
ml

μ(ml−1|ml,l − 1) μ̄(ml,l) = μ̄(ml−1,l − 1) for every l.

(20)
Replacing therein the conditional probabilities by their ex-
pression (17), comparing with Eq. (18), and using the
normalization condition

∑
ml

μ̄(ml,l) = 1, we see that the bulk
probabilities can be written as

μ̄(ml,l) = uml,l vml,l . (21)

On the one hand, applying the normalization condition of the
tip probabilities to Eq. (13), we find that the waiting times of
the polymerase are given by

τl =
∑
ml

uml,l = 1

xl

. (22)

On the other hand, replacing the quantities uml,l by their
expression (13) in Eq. (21) and using the normalization
condition of the bulk probabilities, the local velocities xl

of the polymerase at every location along the template are
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obtained as

xl =
∑
ml

vml,l μ(ml,l) = 1

τl

. (23)

Finally, the mean growth velocity is evaluated by Eq. (12).
The quantities (13) and (16) are said to be partial because they
represent the partial contribution of each nucleotide species
to the corresponding local quantity, as expressed by Eqs. (22)
and (23).

The IFS method is numerically implemented by considering
a template sequence of long length L forming a loop. The
backward recurrence (18) is run several times on the loop to
achieve numerical convergence for the local partial velocities
{vml,l}Ll=1. Thereafter, the forward recurrence is also run several
times on the loop to obtain the partial waiting times {uml,l}Ll=1,
from which the waiting times {τl}Ll=1 are deduced with Eq. (22)
and finally the mean growth velocity by Eq. (12).

Moreover, the replication error probability is defined by
averaging the bulk probabilities of incorrect pairing along the
sequence:

η ≡ lim
L→∞

1

L

L∑
l=1

[1 − μ̄(ñl ,l)], (24)

where ñl denotes the nucleotide in the copy that is comple-
mentary to the corresponding nucleotide nl of the template.

D. Thermodynamics

For enzymes with both the polymerase and exonuclease
activities, the two corresponding reactions ρ contribute to the
attachment and detachment rates [33]

W±mlml−1,l =
∑

ρ

W
ρ

±mlml−1,l
, (25)

as well as to the thermodynamic entropy production rate

1

R

diS

dt
=

∑
l

∑
m1...ml

∑
ρ

[
W

ρ

+mlml−1,l
Pt

(
m1 . . . ml−1

n1 . . . nl−1 nl . . .

)

−W
ρ

−mlml−1,l
Pt

(
m1 . . . ml

n1 . . . nl nl+1 . . .

)]

× ln
W

ρ

+mlml−1,l
Pt

(
m1...ml−1

n1 ... nl−1 nl ...

)
W

ρ

−mlml−1,l
Pt

(
m1...ml

n1 ... nl nl+1...

) � 0, (26)

where R = 8.31451 J K−1 mol−1 is the molar gas constant
[47–52]. The entropy production rate is always non-negative
in agreement with the second law of thermodynamics.

Replacing the probability Pt by its asymptotic expression
(14) into Eq. (26), the entropy production rate in steady growth
regimes can be expressed as [27,53]

	 ≡ 1

R

diS

dt
= v [ε + D(ω|α)] ≡ v A � 0, (27)

in terms of the mean growth velocity (12), the free-energy
driving force

ε ≡ lim
L→∞

1

L

L∑
l=1

∑
ml−1ml

∑
ρ

μ(ml−1|ml,l − 1) μ̄(ml,l)

× ln
W

ρ

+mlml−1,l

W
ρ

−mlml−1,l

, (28)

and the conditional Shannon disorder of the copy with respect
to the template

D(ω|α) ≡ lim
L→∞

− 1

L

L∑
l=1

∑
ml−1ml

μ(ml−1|ml,l − 1) μ̄(ml,l)

× ln μ(ml−1|ml,l − 1) � 0. (29)

We notice that the latter two quantities are given by averaging
over the template sequence. Since the conditional and bulk
probabilities (17) and (21) vary along the sequence, the free-
energy driving force and the conditional Shannon disorder are
sensitive to the sequence heterogeneity. Their sum defines the
entropy production per incorporated monomeric unit, called
affinity [53]:

A = ε + D(ω|α). (30)

The conditional Shannon disorder characterizes the amount of
replication errors. The higher the replication fidelity, the lower
the conditional Shannon disorder, which is vanishing if the
copying process is error free.

In Monte Carlo simulations, the numerical evaluation of the
conditional Shannon disorder can be quite demanding if the
replication errors are very rare. Indeed, before averaging over
the template sequence, the conditional and bulk probabilities
should have been computed at every location of the sequence
with a good enough numerical precision. The lower the error
probability (24), the larger the statistical ensemble of copies
used to compute these probabilities.

Thermodynamic equilibrium is identified as the state
where the affinity is vanishing, A = 0. Because of sequence
heterogeneity, the equilibrium state does not coincide with
the state where the mean growth velocity is vanishing, v = 0,
which is the threshold for a growth that is linear in time.
Between equilibrium and this threshold, the growth of the copy
is sublinear in time as 〈l〉t ∼ tγ with an exponent 0 < γ < 1
so that the mean growth velocity remains equal to zero. In this
sublinear growth regime, the entropy produced during the time
interval t is also growing sublinearly in time as 〈�iS〉t ∼ tγ , so
that the entropy production rate is also equal to zero although
the process is still out of equilibrium.

In view of these results, sequence heterogeneity may
significantly influence the nonequilibrium thermodynamics of
template-directed copolymerization.

III. APPLICATION TO exo− HUMAN MITOCHONDRIAL
DNA POLYMERASE

In this section, we consider the same kinetic model of exo−
human mitochondrial DNA polymerase as in Ref. [32]. Here,
this model is analyzed with the IFS method of Ref. [10], instead
of the simplifying approximation used in Ref. [32] where the
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kinetics was assumed to discriminate only between correct and
incorrect pairings, although the kinetic parameters are known
to be different for the 16 nucleotide pairings [21]. The results
of Ref. [32] are thus revisited and the IFS method is shown
to provide the sequence-specific properties and their depen-
dencies on the four different nucleotide concentrations, which
has not been possible with the simplifying approximation of
Ref. [32].

A. Kinetics of exo− DNA polymerases

Exonuclease-deficient DNA polymerases are enzymes (E)
catalyzing the polymerization of DNA strands by the in-
corporation of deoxyribonucleoside triphosphate dNTP (i.e.,
dATP, dCTP, dGTP, or dTTP) and the release of inorganic
pyrophosphate PPi:

polymerase activity:

E · DNAl−1 + dNTP � E · DNAl + PPi, (31)

where l denotes the length of the DNA strand counted by the
number of incorporated nucleotides.

The structure and function of DNA polymerases have been
studied experimentally [11–26]. Their kinetics proceeds in
several steps [13]. The two main steps are (1) the formation of
a base pair between a nucleotide dNTP = mlPPi coming from
the surrounding solution and the nucleotide nl of the template;
(2) the release of pyrophosphate PPi and the formation of
a phosphodiester bond between the nucleotide ml and the
previously incorporated nucleotide ml−1 of the growing DNA
strand. Since the first step is typically faster than the second, the
binding of dNTP and its dissociation are in quasiequilibrium
on the time scale of the second step, so that the kinetics is of
Michaelis-Menten type [54,55].

We use the following notations [32]. Given that the previ-
ously formed base pair is ml−1:nl−1, Kmlml−1

nl nl−1
is the dissociation

constant of ml from nl ; k
p
±mlml−1

nl nl−1

are the rate constants for

the polymerization and depolymerization of ml after its
pairing with nl . Furthermore, [mlP] denotes the concentration
of the deoxyribonucleoside triphosphate mlPPi and [P] the
concentration of pyrophosphate PPi. The concentration unit is
the mole per liter (M). With these notations, the attachment
rate of ml is given by

W
p
+mlml−1

nl nl−1

≡
k

p
+mlml−1

nl nl−1

[mlP]

Kmlml−1
nl nl−1

Q ml−1
nl nl−1

(32)

and the detachment rate of ml by

W
p

−mlml−1
nl+1 nl nl−1

≡
k

p
−mlml−1

nl nl−1

[P]

Q ml
nl+1 nl

, (33)

where

Q ml−1
nl nl−1

≡ 1 +
∑
ml

[mlP]

Kmlml−1
nl nl−1

(34)

is the Michaelis-Menten denominator. Note that the denomina-
tor in the depolymerization rate (33) is shifted by one unit with
respect to the denominator in the polymerization rate (32). In

TABLE I. Exo− human mitochondrial DNA polymerase γ at
37 ◦C: the polymerization rate constants and dissociation constants
used in the numerical simulations for a nucleotide attachment
following a correct (c) incorporation. The data are from Ref. [21].

m:n k
p
+m

n |c K m
n |c

Pair (s−1) (μM)

A:T 45 0.8
A:G 0.042 250
A:C 0.1 160
A:A 0.0036 25
C:T 0.038 360
C:G 43 0.9
C:C 0.003 140
C:A 0.1 540
G:T 1.16 70
G:G 0.066 150
G:C 37 0.8
G:A 0.1 1000
T:T 0.013 57
T:G 0.16 200
T:C 0.012 180
T:A 25 0.6

the kinetic Eqs. (2), the rates are thus

W+mlml−1,l = W
p
+mlml−1

nl nl−1

, (35)

W−mlml−1,l = W
p

−mlml−1
nl+1 nl nl−1

, (36)

where the symbol l after the comma in the subscripts on the
left-hand side stands for the subsequence nl+1 nl nl−1 at the
location l of the template.

Experimental data being rare for the depolymerization rate
constants, it is assumed for simplicity that they are proportional
to the corresponding polymerization rate constant according
to

k
p
−ml+1ml

nl+1 nl

= 1

KP
k

p
+ml+1ml

nl+1 nl

, (37)

where the constant associated with pyrophosphorolysis is here
supposed to take the value KP = 200 mM [32].

For exo− human mitochondrial DNA polymerase γ at
37 ◦C, the rate constants have been measured experimentally
for the 16 different pairings following a correct incorporation
and they are given in Table I [21]. After an incorrect
incorporation, the polymerase is known to slow down [13]. In
this case, the polymerization rate constants for the formation
of a correct (c) or incorrect (i) pair are, respectively, given by

k
p
+c|i = 0.52 s−1, (38)

k
p
+i|i = 0.154 s−1, (39)

and the corresponding dissociation constants by

Kc|i = Ki|i = 404 μM, (40)

according to Ref. [19]. Moreover, the dissociation of the
enzyme from DNA is neglected as in Ref. [32].
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For normal cells, the physiological nucleotide concentra-
tions take the following mean values [56]:

[dATP] = 3.2 μM, (41)

[dCTP] = 2.1 μM, (42)

[dGTP] = 1.5 μM, (43)

[dTTP] = 5.4 μM, (44)

while the physiological pyrophosphate concentration is typi-
cally [PPi] = 10−4 M [57].

B. IFS for the exo− DNA polymerase kinetics

Since the rates depend on the nucleotide subsequence
nl−1 nl nl+1 at every location l of the template, the kinetic
equations (2) are solved by considering the IFS

vl−1 = fnl−1 nl nl+1 (vl) (45)

given by Eq. (18) and running backward along the template.
This backward recurrence determines the four local partial
velocities vl = {vml,l} ∈ R4. Next, these latter are used to run
the forward recurrence (19) giving the local partial waiting
times ul = {uml,l} ∈ R4 and thus the conditional and bulk
probabilities, as shown in Sec. II C.

If the template is composed of a single nucleotide species,
the recurrence (45) converges toward a fixed point v∗ in
the four-dimensional space of local partial velocities. If the
template was periodic for instance as α = ACACAC . . . , the
recurrence would converge to an orbit {v∗,v′

∗} of period two,
such that v′

∗ = fACA(v∗) and v∗ = fCAC(v′
∗).

Here, the template is chosen as a Bernoulli chain with
equal probabilities for the four types of nucleotides: νA =
νC = νG = νT = 1

4 . In this case, one out of 43 functions is
selected at every location l of the template according to
the random subsequence of nucleotides nl−1 nl nl+1 in the
template. In this way, the recurrence will typically generate
an erratic orbit. The set of orbits corresponding to all the pos-
sible template sequences forms an attractor Fv ⊂ R4 in the
four-dimensional space of local partial velocities [35,36]. This
attractor is bounded because the functions (18) of the IFS (45)
are non-negative and each has a supremum. As shown here
below, this attractor may be fractal.

In order to test the predictions of the IFS method, the
kinetics of the DNA polymerase is numerically simulated
with Gillespie’s algorithm [58,59] explained in Appendix
C of Ref. [32]. For a given template, the growth of many
copies is simulated in order to obtain the conditional and bulk
probabilities at every location of the template, as well as the
other quantities of interest.

C. Sequence-specific properties

Figure 1 depicts the bulk probabilities and the waiting
times of the DNA polymerase under physiological conditions
along the template sequence shown above. In the Monte Carlo
simulations with Gillespie’s algorithm, the statistics has been
carried out over 108 copies and the results are depicted as open
symbols. There is a very nice agreement with the results of the
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FIG. 1. Exo− human mitochondrial DNA polymerase: bulk
probabilities and waiting times of the polymerase moving at the
physiological concentrations (41)–(44) and [PPi] = 10−4 M, along
the Bernoulli template shown above. The theoretical results are
depicted as crosses and those of Monte Carlo simulations with a
statistics over 108 copies as open symbols. Here, the mean growth
velocity and the error probability take the values v � 18.6 s−1 and
η � 1.13 × 10−4, computed with the IFS method over a template of
length L = 105.

IFS method shown as crosses, which confirms at the numerical
accuracy of the computation that the IFS provides the exact
long-time solution of the kinetic equations (2). Furthermore,
the IFS method is about 106 faster than the Monte Carlo
simulations. We see in Fig. 1 that the bulk probabilities are
very close to the unit value for the Watson-Crick (correct)
pairings and very low around 10−4 for incorrect pairings,
which corresponds to the error probability η � 1.13 × 10−4.
Moreover, we observe the sequence-specific variations of the
pairing probabilities and the polymerase waiting times. For
instance, there is a subsequence TTT near the beginning of the
template where the probability for the Watson-Crick pairing
A:T drops below the unit value, while the incorrect pairing
G:T has the largest probability among incorrect pairings.
This is explained by the fact that, for incorrect pairings,
the polymerization rate constant of G:T is the largest in
Table I, while the corresponding dissociation constant remains
relatively low. For this reason, the substitution of A by G is
the most prominent in Fig. 1.

If the pool of nucleotides is no longer balanced as in
Fig. 2 where the dGTP concentration takes a much lower
value than for the three other nucleotides, the replication
errors become more frequent, especially at the locations where
the template has the complementary nucleotide C. At these
locations, a substitution with the nucleotide A in place of G
has a probability of about μ̄ � 0.04–0.05. Such events do
not occur for the locations 226 � l � 250 where the template
sequence does not contain the nucleotide C in the example
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FIG. 2. Exo− human mitochondrial DNA polymerase: bulk
probabilities and waiting times of the polymerase moving at the
physiological concentrations (41), (42), (44), and [PPi] = 10−4 M,
but [dGTPi] = 10−9 M, along the Bernoulli template shown above.
The theoretical results are depicted as crosses and those of Monte
Carlo simulations with a statistics over 108 copies as open symbols.
Here, the mean growth velocity and the error probability take the
values v � 9.02 × 10−2 s−1 and η � 2.98 × 10−2, computed with
the IFS method over a template of length L = 105.

of Fig. 2. In the lower panel of Fig. 2, the waiting time is
seen to become quite large when a nucleotide C occurs in
the template sequence. Thereafter, the waiting time tends to
decrease progressively to the normal level.

If dGTP is no more present in the surrounding solution,
the probabilities of replication errors and the waiting times
are even larger at the template locations with a nucleotide C,
as seen in Fig. 3, in which case the error probability is very
large η � 0.355. Moreover, substitutions by G are no longer
occurring, although they were still possible in the conditions
of Fig. 2.

Instead, if dGTP is supplied at a concentration larger than
the physiological one, the patterns of bulk probabilities and
waiting times are different, as observed in Fig. 4. Under
these conditions, the replication errors tend to occur especially
around the locations where T is present. The reason is again
that the polymerization rate constant of G:T is the largest
among those for incorrect pairings while the corresponding
dissociation constant remains relatively low, as seen in Table I.
As in the previous conditions, the waiting time of the poly-
merase is larger where substitutions with incorrect pairs occur.

All these sequence-specific effects due to template hetero-
geneity are obtained with the IFS method much faster than
with Monte Carlo simulations.

D. Sequence-averaged properties

Aside from knowing how the replication properties vary
along the template, we can also consider the global properties
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FIG. 3. Exo− human mitochondrial DNA polymerase: bulk

probabilities and waiting times of the polymerase moving at the
physiological concentrations (41), (42), (44), and [PPi] = 10−4 M,
but [dGTPi] = 0, along the Bernoulli template shown above. The
theoretical results are depicted as crosses and those of Monte Carlo
simulations with a statistics over 108 copies as open symbols. Here,
the mean growth velocity and the error probability take the values
v � 7.50 × 10−3 s−1 and η � 0.355, computed with the IFS method
over a template of length L = 105.
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FIG. 4. Exo− human mitochondrial DNA polymerase: bulk
probabilities and waiting times of the polymerase moving at the
physiological concentrations (41), (42), (44), and [PPi] = 10−4 M,
but [dGTP] = 10−3 M, along the Bernoulli template shown above.
The theoretical results are depicted as crosses and those of Monte
Carlo simulations with a statistics over 108 copies as open symbols.
Here, the mean growth velocity and the error probability take the
values v � 1.54 s−1 and η � 7.88 × 10−2, computed with the IFS
method over a template of length L = 105.
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FIG. 5. Exo− human mitochondrial DNA polymerase at the
pyrophosphate concentration [PPi] = 10−4 M: velocity v, affinity
A = ε + D, free-energy driving force ε, conditional Shannon dis-
order D, error probability η, and entropy production rate 	 = Av

versus equal nucleotide concentrations. The dots are obtained by
Monte Carlo simulations generating 105 copies of maximum length
105. The lines depict the results of the IFS run over sequences of
length 105.

obtained by averaging over the whole template sequence, such
as the mean growth velocity (12), the error probability (24),
the free-energy driving force (28), the conditional Shannon
disorder (29), the affinity (30), and the entropy production
rate (27).

In Fig. 5, these quantities are shown as a function of equal
nucleotide concentrations. For these global properties as well,
there is a nice agreement between the results of the Monte
Carlo simulations (dots) and those of the IFS method (lines).
The affinity A = ε + D is observed to vanish at the

equilibrium concentration:

[dATP] = [dCTP] = [dGTP] = [dTTP] � 3.83 × 10−10 M,

(46)

while the mean growth velocity v is zero at the

linear growth threshold:

[dATP] = [dCTP] = [dGTP] = [dTTP] � 3.88 × 10−10 M.

(47)

Since both values are very close to each other, the interval
of sublinear growth in time is not apparent in Fig. 5. At
large concentrations away from equilibrium, the mean growth
velocity, the error probability, and the conditional Shannon
disorder reach plateaus at the following values:

v∞ � 34 s−1, (48)

η∞ � 1.7 × 10−4, (49)

D∞ � 1.0 × 10−3, (50)
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FIG. 6. Exo− human mitochondrial DNA polymerase at the
physiological concentrations (41), (42), (44) and pyrophosphate
concentration [PPi] = 10−4 M: velocity v, affinity A = ε + D, free-
energy driving force ε, conditional Shannon disorder D, error proba-
bility η, and entropy production rate 	 = Av versus the concentration
[dGTP]. The dots are obtained by Monte Carlo simulations generating
105 copies of maximum length 105. The lines depict the results of the
IFS run over sequences of length 104.

while the free-energy driving force behaves as

ε∞ � ln
[dNTP]

3.84 × 10−10 M
, (51)

in agreement with the values obtained at full speed in
Ref. [32]. The mean growth velocity manifests the key features
of Michaelis-Menten kinetics, namely, the plateau at large
nucleotide concentrations after the increase at lower concen-
trations. Between equilibrium and the full speed regime, we
notice that the error probability η and the disorder D decrease
to lower values than at full speed. Figure 5 is obtained under
the same conditions as in Figs. 5 and 6 of Ref. [32]. We
see that the IFS method solves the discrepancy that existed
between the results of Monte Carlo simulations and the
theoretical expectations of the Bernoulli- and Markov-chain
models ignoring the effects of sequence heterogeneity [32].
Another difference is that the conditional Shannon disorder
is here calculated by its exact expression (29) while it was
estimated in Ref. [32] by the approximation D � η ln(3e/η)
using the error probability η.

In order to understand the consequences of imbalance in
the nucleotide pool, the quantities of interest are depicted
in Fig. 6 as a function of the dGTP concentration with
physiological concentrations for the three other nucleotides.
The minimal value of the error probability is observed at
[dGTP] � 0.8 μM while the mean growth velocity reaches its
maximal value at [dGTP] � 1.57 μM, which are of the same
order of magnitude as the three other concentrations (41), (42),
and (44). Otherwise, Fig. 6 shows that the replication errors
become more frequent as the imbalance increases between the
four nucleotide concentrations.
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FIG. 7. Exo− human mitochondrial DNA polymerase at the
physiological concentrations (41)–(44) and [PPi] = 10−4 M: prob-
abilities of the four bases composing DNA strands of length 106

versus the number of replications during the Monte Carlo simulation
of successive replications. The evolution starts from a Bernoulli
sequence with the equal probabilities of the four bases. The mean
growth velocity and error probability are, respectively, v � 18.8 and
η � 1.1 × 10−4.

E. Molecular evolution after successive replications

Any imbalance in the nucleotide pool generates replication
errors, which may affect the genome composition during evo-
lution. As revealed by Eqs. (41)–(44), the cellular nucleotide
metabolism does not precisely maintain equal nucleotide
concentrations. The total concentration of the complementary
nucleotides dATP and dTTP is typically larger than the total
concentration of dCTP and dGTP [56]. As a consequence,
substitutions with A and T are expected to be more frequent
than by C or G upon replication errors. This phenomenon
is indeed observed in Fig. 7, showing the evolution of DNA
composition after many successive replications. The evolution
is generated by a Monte Carlo simulation starting with a
template given by a Bernoulli chain with equal probabilities
μ̃0(A) = μ̃0(C) = μ̃0(G) = μ̃0(T) = 1

4 . At each replication, a
copy is generated by Monte Carlo simulation and its reversal is
used as template for the next replication. The copy sequence is
reversed before using it as template because the synthesis of the
copy proceeds in the 5’-to-3’ direction along a template with
the opposite direction [1]. In Fig. 7, the evolution of the four
nucleotide frequencies in the DNA sequence can be fitted by

μ̃k(A) � μ̃k(T) � 0.272 − 0.022 exp(−�k), (52)

μ̃k(C) � μ̃k(G) � 0.228 + 0.022 exp(−�k), (53)

as a function of the replication number k. The relaxation rate
towards the mean asymptotic value is evaluated to be

� � 0.000 19 per replication, (54)
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FIG. 8. Exo− human mitochondrial DNA polymerase at the
concentrations [dGTP] = 10−9 M and [PPi] = 10−2 M: velocity v,
affinity A = ε + D, free-energy driving force ε, conditional Shannon
disorder D, error probability η, and entropy production rate 	 =
Av versus the equal nucleotide concentrations [dATP] = [dCTP] =
[dTTP]. The dots are obtained by Monte Carlo simulations generating
105 copies of maximum length 105. The lines depict the results of the
IFS run over sequences of length 105.

which is of the same order of magnitude as the mean error
probability η � 0.000 11, as expected. A similar drift is also
observed [60] for the average nucleotide concentrations [56]
that are about 10 times larger than the values (41)–(44) for
normal cells, which are here used.

A remarkable result is that the bases A and T are known
to be more frequent than C and T in the DNA sequences of
many organisms [61,62]. Therefore, the observed nucleotide
frequencies could be mainly determined by the average intra-
cellular level of nucleotide concentrations, which is typically
lower in dCTP and dGTP than in dATP and dTTP [56].

F. Regime of anomalous drift

Anomalous drift with a sublinear growth in time manifests
itself in the presence of strong disorder if the growth is
slow enough. In order to enhance this effect due to sequence
heterogeneity, the nucleotide concentrations are imbalanced
with equal concentrations for the nucleotides dATP, dCTP, and
dTTP, but the very small concentration [dGTP] = 10−9 M. The
imbalance in the nucleotide concentrations generates a large
variability of the rates along the template, hence disorder in the
landscape where the DNA polymerase is moving. Moreover,
the pyrophosphate concentration here takes the larger value
[PPi] = 10−2 M, which tends to shift equilibrium towards
larger nucleotide concentrations, as seen in Fig. 8. Under these
conditions, the affinity A = ε + D is zero at the

equilibrium concentration:

[dATP] = [dCTP] = [dTTP] � 1.28 × 10−7 M, (55)
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and the mean growth velocity v at the

linear growth threshold:

[dATP] = [dCTP] = [dTTP] � 2.33 × 10−6 M, (56)

as calculated by the IFS method with a template sequence of
length L = 106. In-between these two concentration values,
the growth is sublinear in time so that the mean growth velocity
and the entropy production rate remain equal to zero. However,
the quantities defined per incorporated nucleotide, i.e., the
affinity A, the free-energy driving force ε, the disorder D,
and the error probability η, continue to take nonvanishing
values. In this regime, the computational time required to
have long enough copies in Monte Carlo simulations becomes
prohibitive, although the IFS method continues to provide
accurate estimations of the different quantities. This explains
that, in Fig. 8, the dots giving the results of Monte Carlo
simulations cannot be obtained below the concentration of
2 × 10−6 M, although the results of the IFS method are still
plotted as lines. Otherwise, there is again good agreement
between dots and lines.

At large nucleotide concentrations, plateaus are observed
as before for the mean growth velocity, the error probability,
and the conditional Shannon disorder:

v∞ � 0.17 s−1, (57)

η∞ � 0.35, (58)

D∞ � 0.41, (59)

while the free-energy driving force behaves as

ε∞ � ln
[dNTP]

8.0 × 10−7 M
, (60)

but the velocity is smaller while the error probability and the
disorder are much larger because of the replication errors due to
the nucleotide imbalance. The free-energy driving force takes
the smaller value (60) than (51) because the pyrophosphate
concentration is here larger and, moreover, the more frequent
incorrect pairings tend to decrease the free energy by their
larger dissociation constant Km

n
|c given in Table I.

IV. Exo− HUMAN MITOCHONDRIAL DNA POLYMERASE
MOVING ALONG BINARY TEMPLATES

The purpose of this section is to demonstrate another
effect of sequence heterogeneity, which manifests itself gener-
ically at any nucleotide concentrations. This effect is the
sequence dependence of the local velocities {xl}Ll=1 of the
DNA polymerase or, equivalently, of its waiting times {τl =
1/xl}Ll=1. As a consequence, the local velocities vary along the
template sequence and they form a distribution. Remarkably,
this distribution may be continuous or fractal depending on
nucleotide concentrations. In order to get numerical evidence
for this phenomenon, we consider the motion of the DNA
polymerase along a binary sequence taken as a Bernoulli
chain with the probabilities νA = νT = 1

2 , but νC = νG = 0.
The surrounding solution is supposed to contain only the
nucleotides dATP and dTTP in order to avoid substitutions with
the bases C and G, i.e., [dCTP] = [dGTP] = 0. Moreover, the
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FIG. 9. Exo− human mitochondrial DNA polymerase at the
pyrophosphate concentration [PPi] = 10−2 M, moving along a binary
Bernoulli template composed of the two bases A and T: velocity v,
affinity A = ε + D, free-energy driving force ε, conditional Shannon
disorder D, error probability η, and entropy production rate 	 = Av

versus the equal nucleotide concentrations [dATP] = [dTTP]. The
dots are obtained by Monte Carlo simulations generating 105 copies
of maximum length 105. The lines depict the results of the IFS run
over sequences of length 105.

pyrophosphate concentration is again taken at the large value
[PPi] = 10−2 M.

Here, the IFS is also given by Eq. (45), now acting in
the two-dimensional space of the local partial velocities vl =
{vA,l ,vT,l} ∈ R2. Because of Eq. (23), the local velocities are
related to the partial ones according to

xl = vA,l μ(A,l) + vT,l μ(T,l), (61)

where μ(A,l) and μ(T,l) are the corresponding tip probabili-
ties.

A. Sequence-averaged properties

Figure 9 shows the sequence-averaged properties as a
function of equal nucleotide concentrations [dATP] = [dTTP].
Here, the error probability η is much smaller than in the
presence of the four nucleotides. The reason is that, in the
presence of the four nucleotides, substitutions with the other
bases C and G occur at a relatively larger rate than with the
bases A and T.

At full speed, the plateau values of the mean growth
velocity, the error probability, and the conditional Shannon
disorder are given by

v∞ � 31.5 s−1, (62)

η∞ � 4.9 × 10−6, (63)

D∞ � 5.3 × 10−5, (64)
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while the free-energy driving force behaves as

ε∞ � ln
[dNTP]

3.465 × 10−8 M
, (65)

according to the IFS method with a template sequence of
length L = 105. The numerical evaluation of the conditional
Shannon disorder is here made difficult by the low error
probability. Even with a Monte Carlo statistics using 105

copies, the disorder is still underestimated at the value D
(MC)
∞ �

4.7 × 10−5, which is lower than the value (64) predicted
by the IFS method. Numerical convergence is observed if
the statistics is increased, which becomes computationally
expensive in the present conditions, although the IFS method
quickly provides an accurate value.

In the conditions of Fig. 9, we have the

equilibrium concentration:

[dATP] = [dTTP] � 3.46 × 10−8 M, (66)

where A = 0 and the

linear growth threshold:

[dATP] = [dTTP] � 3.50 × 10−8 M, (67)

where v = 0, as calculated by the IFS method with a
template sequence of length L = 106. Therefore, the regime of
sublinear growth in time extends over a very small interval of
concentrations because the nucleotide concentrations [dATP]
and [dTTP] are well balanced since they are equal. However,
the purpose is here to investigate the distribution of local
velocities along the binary template.

B. Fractal distribution of velocities

Figure 10 shows the distribution of the local partial veloci-
ties {vA,l}Ll=1 as a function of equal nucleotide concentrations
[dATP] = [dTTP] in the same conditions as in Fig. 9. We
observe in Fig. 10 that the local partial velocities vA,l are
distributed around either large values of order one or small
values of the order vA � 1300 × [dATP] s−1. The large values
occur with a bulk probability very close to one, although the
low values occur with a tiny probability of the same order
as the error probability (63). Therefore, the distribution is
dominated by the large values due to Watson-Crick pairings,
which manifest a self-similar structure as the nucleotide
concentration increases. The local partial velocities {vT,l}Ll=1
have a similar distribution as in Fig. 10.

The corresponding distribution of the local velocities (61)
is shown in Fig. 11 versus the nucleotide concentrations
as in Fig. 10. As aforementioned, the term corresponding
to incorrect pairings is very small so that xl is essentially
determined by the term due to Watson-Crick correct pairings
ñl :nl where ñl denotes the base that is complementary to the
base nl of the template: xl � vñl ,l μ(ñl ,l). However, this latter
expression is given by a partial velocity vñl ,l multiplied by
the associated tip probability μ(ñl,l). The partial velocity has
the distribution depicted in Fig. 10, but the tip probability is
also distributed. Consequently, the product of both quantities
(giving xl) has a broader distribution than the local partial
velocity. This explains the fact that the self-similar structures
are thicker in Fig. 11 than in Fig. 10.
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FIG. 10. Exo− human mitochondrial DNA polymerase at the
pyrophosphate concentration [PPi] = 10−2 M, moving along a binary
Bernoulli template composed of the two bases A and T: the distribu-
tion of the local partial velocity vA versus the equal concentrations
[dATP] = [dTTP]. The computation is carried out with the IFS
method along a sequence of length 104.

This is confirmed by the calculation of the fractal dimen-
sions in Fig. 12 for both distributions. The dimension of the
distribution Fv of local partial velocities is computed from the
number of points of the distribution in a ball of radius r around
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FIG. 11. The distribution of the local velocity x versus the equal
concentrations [dATP] = [dTTP] under the same conditions as in
Fig. 10.
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FIG. 12. The fractal dimensions of the support of the distributions
of the local partial velocities v (dimFv) and the local velocity x

(dimFx) versus the equal concentrations [dATP] = [dTTP] under the
same conditions as in Fig. 10.

a set of Nref reference points:

Nv(r) ≡
Nref∑
j=1

L∑
l=1

θ (r − ‖vl − vjL/Nref ‖) (68)

in the space of partial velocities vl , where θ (·) denotes the
Heaviside function equal to one if its argument is positive and
zero otherwise, while ‖ · ‖ is the Euclidean distance. As the
radius r decreases, this number scales as

Nv(r) ∼ rdimFv , (69)

with an exponent giving the dimension dimFv of the distri-
bution in the space of partial velocities vl [63]. A similar
expression holds for the dimension dimFx of the distribution
Fx of local velocities xl . In Fig. 12, the dimensions are
computed for the distributions obtained with the IFS method
running along a template sequence of length L = 105 and with
Nref = 5000 reference points. We observe that the dimensions
are smaller than the unit value for the concentrations

[dATP] = [dTTP] � 7.5 × 10−8 M, (70)

where the distributions are fractal, manifesting self-similar
structures. For lower concentrations, the dimensions reach the
unit value, in which case the distribution of the local velocities
xl has a continuous support in the one-dimensional space of x.
In the fractal regime (70), the dimension is smaller in the space
of partial velocities v than in the space of local velocities x for
the reason explained here above that the local velocities x are
given by Eq. (61) where the tip probabilities are distributed as
well as the partial velocities v, which has for consequence to
broaden the distribution of the local velocities (61).

TABLE II. Exo− human mitochondrial DNA polymerase γ at
37 ◦C: the rates of the error-free model (71) at the concentrations
[dATP] = [dTTP] = 10−7 M, [dCTP] = [dGTP] = 0, and [PPi] =
10−2 M.

nl nl+1 W
p
+ñl

nl

(s−1) W
p

−ñl
nl+1 nl

(s−1)

A A 3.56 1.07
A T 3.56 1.11
T A 4.99 1.92
T T 4.99 2.00

C. Error-free models

The self-similar structures of the distribution of local partial
velocities can already be understood by neglecting replication
errors. Indeed, the error probability is very small under the
present conditions so that the replication process can be
described by error-free models, in which only Watson-Crick
pairs are possible. The rates of incorrect pairings being very
small, they may be assumed to be negligible, so that the copy
sequence is precisely the complementary sequence of the
template, ω = m1m2 . . . ml . . . = ñ1ñ2 . . . ñl . . . . Since there
is no error, the tip and bulk probabilities are equal to one for
Watson-Crick pairs and zero otherwise, so that the relevant
local partial velocities are those of Watson-Crick pairs, which
coincide with the local velocities xl according to Eq. (23).
Moreover, since the previously formed pair ñl−1:nl−1 is always
correct, the error-free model of the human mitochondrial DNA
polymerase only uses the kinetic parameters of Table I, so that
there is no dependence on nl−1. For error-free kinetics, the IFS
(18) thus becomes

xl−1 = fnlnl+1 (xl) with fnlnl+1 (x) =
W

p
+ñl

nl

x

W
p

−ñl
nl+1 nl

+ x
(71)

in terms of the rates (32) and (33) for Watson-Crick correct
pairings.

For the equal concentrations [dATP] = [dTTP] = 10−7 M,
these rates are given in Table II. We note that the attachment
rates do not depend on nl+1 while the detachment rates have
a weak dependence on nl+1. Taking the median values of the
detachment rates for nl+1 = A and T, the IFS (71) can be
approximated by

xl−1 = fnl
(xl) with

{
fA(x) = 3.56 x

1.09+x
if n = A,

fT(x) = 4.99 x
1.96+x

if n = T,
(72)

with the probabilities νA = νT = 1
2 . Successive iterations of

this simplified IFS are depicted in Fig. 13, showing how the
fractal distribution (in red) is generated by iterating random
functions fn(x) backward along the template sequence. We
see in Fig. 13 that the fractal distribution extends between
the two fixed points of the functions, which are located at the
intersections of the functions with the diagonal: xn = fn(xn)
for n = A,T. We notice that the IFS (72) satisfies the condition
of hyperbolicity, which guarantees the existence of a compact
attractor [36].
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FIG. 13. The IFS of the simple error-free model (72) at the
concentrations [dATP] = [dTTP] = 10−7 M, [dCTP] = [dGTP] =
0, and [PPi] = 10−2 M. The iterations are shown giving the local
velocities over a sequence containing 15 successive nucleotides. The
fractal is shown in red along the horizontal and vertical axes.

As the concentration increases, the attachment rates also
increase because they are essentially proportional to the
concentrations. Consequently, the functions fn(x) take larger
values and the interval containing the fractal distribution shifts
towards larger values of the velocities, as observed in Figs. 10
and 11.

At the concentration [dATP] = [dTTP] = 10−7 M, the
fractal dimension can be estimated by finding the root d of∑

n f ′
n(xn)d = 1, where f ′

n = dfn/dx is the derivative and xn

the fixed point of the function fn(x) [46]. This calculation
gives the estimation d � 0.66 in good agreement with the
numerical computation in the presence of replication errors:
dimFv � 0.65 at this concentration. For the IFS given by
Eq. (71), the numerical calculation of the fractal dimension
also gives d � 0.65.

Therefore, replication errors are not required to generate
the fractal distribution of local velocities. We should notice
that the regime of anomalous drift also exists in the error-free
models if the attachment rates are small enough with respect
to the detachment rates [46].

In the presence of replication errors at the concentration
[dATP] = [dTTP] = 10−7 M, the dominant term correspond-
ing to Watson-Crick pairings in Eq. (61) ranges in the interval
vñl ,l μ(ñl ,l) � 2.4-3 s−1, as seen in Fig. 11. The second term
corresponding to incorrect pairings ml �= ñl is in the range
vml,l μ(ml,l) � 3–6 × 10−6 s−1. In this regard, the approxi-
mation xl � vñl ,l μ(ñl ,l) is well justified. Nevertheless, the tip
probabilities of correct pairings are distributed in the range
μ(ñl,l) � 0.96–0.98, which represents variations of the order
of 2%–4%. Since the tip probabilities multiply the local partial
velocities to give the local velocities, these latter are more
distributed by this amount than the partial velocities, which
explains the difference of self-similar structures between
Figs. 10 and 11, as well as the larger value dimFx � 0.76

for the local velocities than the value dimFv � 0.65 for the
partial velocities. In the presence of replication errors, the
error-free models provide good approximations for the fractal
dimension of the partial velocities because these latter are
directly given by the IFS (18). However, the fractal dimension
of the local velocities cannot be directly obtained from the
sole IFS (18) since they are further broadened by the tip
probabilities according to Eq. (23).

V. APPLICATION TO exo+ HUMAN MITOCHONDRIAL
DNA POLYMERASE

In this section, the same kinetic model as in Ref. [33] is
adopted for the exo+ human mitochondrial DNA polymerase.
Here, the analysis is carried out with the exact IFS method of
Ref. [10], showing that this method also applies in the presence
of a dedicated proofreading mechanism.

A. Kinetics of exo+ DNA polymerases

The IFS method can also be applied to DNA polymerases
with exonuclease proofreading. Such enzymes have both the
polymerase activity (31) described in previous sections and
the exonuclease activity performed by specific subunits that
cleave the lastly incorporated nucleotide and release a nucleo-
side monophosphate to the surrounding solution:

exonuclease activity:

E · DNAl + H2O � E · DNAl−1 + dNMP. (73)

Proofreading is performed because the polymerase activity is
slowed down upon incorrect pairings so that the DNA strand
has the time to switch to the exonuclease subunit where the
error correction happens [13]. The rates of the exonuclease
activity have been obtained in Ref. [33]. The rate of dNMP
dissociation by the exonuclease is given by

W x
−mlml−1

nl+1 nl nl−1

≡
kx

−mlml−1
nl nl−1

Q ml
nl+1 nl

(74)

and the rate of the reversed reaction that is dNMP binding by

W x
+mlml−1

nl nl−1

≡
kx

+mlml−1
nl nl−1

[ml]

Q ml−1
nl nl−1

(75)

with the same denominators (34) as in Sec. III. If the rate
constants of dNMP dissociation were known, the rate constants
of dNMP binding would be given by

kx
+mm′

n n′
= kx

−mm′
n n′

KP

Kmm′
n n′

c0
exp

(
�G0

RT

)
, (76)

where �G0 = −45.6 kJ/mol is the standard free enthalpy
of hydrolysis into pyrophosphate [28,64,65], R the molar
gas constant, T the temperature, and c0 = 1 M the standard
concentration [33].

The rates of the exonuclease activity should be added to
those of the polymerase activity so that the transition rates in
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the kinetic Eqs. (2) here have the following expressions:

W+mlml−1,l = W
p
+mlml−1

nl nl−1

+ W x
+mlml−1

nl nl−1

, (77)

W−mlml−1,l = W
p

−mlml−1
nl+1 nl nl−1

+ W x
−mlml−1

nl+1 nl nl−1

. (78)

In the regime of steady growth, the mean growth velocity
v is equal to the difference

v = rp − rx (79)

between the polymerase and exonuclease rates [33]. Conse-
quently, the growth velocity is vanishing v = 0 if the rates
of the polymerase and exonuclease activities are equal to each
other: rp = rx. Therefore, dNTP continues to be consumed and
the system here remains out of thermodynamic equilibrium,
even if the growth velocity is zero.

The polymerase and exonuclease rates can be expressed
in terms of the mean growth velocity (12), the conditional
probabilities (17), and local partial waiting times (13) as

rρ = νρ v lim
L→∞

1

L

L∑
l=1

∑
ml−1ml

[
W

ρ
+mlml−1

nl nl−1

uml−1,l−1

−W
ρ

−mlml−1
nl+1 nl nl−1

μ(ml−1|ml,l − 1) uml,l

]
, (80)

where νp = +1 is the stoichiometric coefficient of the poly-
merase activity ρ = p, and νx = −1 the one of the exonuclease
activity ρ = x. The free-energy driving force is given by
Eq. (28) with the sum extended to ρ = p,x, while the other
quantities are as before.

The rate constants of the exonuclease activity have been
measured experimentally for the exo+ human mitochondrial
DNA polymerase γ at 37 ◦C and they take the values

kx
−c = 0.05 s−1, (81)

kx
−i = 0.4 s−1 (82)

for the cleavage of correct and incorrect nucleotides [20]. The
concentration of monophosphate nucleoside is taken equal to
[dNMP] = 10−5 M in the range of physiological values [56].
At such concentrations, the rate of dNMP binding is extremely
small and negligible.

The IFS is given by Eq. (18) with the rates (77) and (78)
and the method is otherwise similar.

B. Sequence-averaged properties

The calculation of the sequence-averaged properties in
Ref. [33] is revisited with the IFS method. In Figs. 5 and 6
of Ref. [33], a discrepancy was observed between the results
of Monte Carlo simulations and the theoretical expectations
with the Bernoulli- and Markov-chain models, especially for
the exonuclease rate rx. Here, the different quantities of interest
are recalculated under the same conditions, but with the IFS
method. We see in Fig. 14 that there is now agreement
between the results of the Monte Carlo simulations and the
IFS method, which provides a complete understanding of the
effects of sequence heterogeneity, even in the presence of
the exonuclease proofreading mechanism.
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FIG. 14. Exo+ human mitochondrial DNA polymerase at the
concentrations [PPi] = 10−4 M and [dNMP] = 10−5 M: velocity
v, affinity A = ε + D, free-energy driving force ε, conditional
Shannon disorder D, error probability η, and entropy production
rate 	 = Av versus the equal nucleotide concentrations [dATP] =
[dCTP] = [dGTP] = [dTTP]. The dots are obtained by Monte Carlo
simulations generating 105 copies of maximum length 105. The lines
depict the results of the IFS run over sequences of length 105.

Otherwise, Fig. 14 confirms the observations already made
in Ref. [33]. At zero velocity v = 0, the entropy production
rate 	 does not vanish because of the ongoing antagonistic
exonuclease and polymerase activities at the concentration
value:

v = 0 : [dATP] = [dCTP] = [dGTP] = [dTTP]

� 1.44 × 10−9 M, (83)

given by the IFS method with a template sequence of total
length L = 105. Furthermore, we see in Fig. 14 the implication
of the exonuclease activity for the error probability and the
conditional Shannon disorder, i.e., these quantities become
significantly smaller than with the sole polymerase activity
at nucleotide concentrations lower than about 5 × 10−4 M.
The exonuclease proofreading thus improves the replication
fidelity by a factor of 100 under physiological nucleotide
concentrations, confirming the results of Ref. [33].

Thanks to the IFS method, the effects of imbalance in the
nucleotide pool can now be investigated for the polymerase
with its exonuclease activity, which has not been possible with
the simplifying assumptions of Ref. [33]. Figure 15 shows the
sequence-averaged quantities versus equal concentrations for
dATP, dCTP, and dTTP, but a much lower concentration for
dGTP. Here also, there is agreement between the results of
Monte Carlo simulations (dots) and those of the IFS method
(lines). The velocity is here vanishing at the concentrations

v = 0 : [dATP] = [dCTP] = [dTTP] � 1.69 × 10−9 M,

(84)
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FIG. 15. Exo+ human mitochondrial DNA polymerase at the
concentrations [dGTP] = 10−9 M, [PPi] = 10−4 M, and [dNMP] =
10−5 M: velocity v, affinity A = ε + D, free-energy driving force
ε, conditional Shannon disorder D, error probability η, and entropy
production rate 	 = Av versus the equal nucleotide concentrations
[dATP] = [dCTP] = [dTTP]. The dots are obtained by Monte Carlo
simulations generating 105 copies of maximum length 105. The lines
depict the results of the IFS run over sequences of length 105.

as calculated by the IFS method with a template sequence of
L = 105 bases. The sequence heterogeneity effects manifest
themselves by the higher error probability and conditional
Shannon disorder than in the conditions of Fig. 14. On the
one hand, the polymerase rate rp, as well as the mean growth
velocity and the entropy production rate, are here lower than
in Fig. 14. On the other hand, the exonuclease rate reaches
its maximum value rx � kx

−c given by Eq. (81) at the low
nucleotide concentration where the velocity is vanishing, as in
Fig. 14. At high concentrations, the exonuclease rate decreases
as rx ∼ [dNTP]−1, playing a negligible role in error correction.
Therefore, the exonuclease activity achieves proofreading at
nucleotide concentrations lower than about 10−4 M. The
mechanism is that the polymerase is slowed down if an error
occurs, allowing the transition to the exonuclease where the
incorrect nucleotide is cleaved and the error thus corrected
[13,33]. With imbalance in the nucleotide concentrations, the
exonuclease proofreading is still very efficient since the error
probability is reduced by a factor of 1000 with respect to its
full speed value η∞ � 0.35, as seen in Fig. 15 at physiological
concentrations for dATP, dCTP, and dTTP.

VI. CONCLUSION AND PERSPECTIVES

This paper develops the iterated function system (IFS)
method for DNA replication. In Ref. [10], the IFS method
has been shown to provide the exact long-time solution of
the kinetic equations for template-directed copolymerization.
For the case of DNA replication, this method determines
the probability of any sequence for a copy grown on some
template. This probability factorizes into the conditional

probabilities to find some nucleotide given that the next one
is known. Inserting this factorization in the kinetic equations
and taking the long-time limit, we deduce the recurrence (18)
running backward along the template and forming an IFS for
the local partial velocities. Besides, the local waiting times of
the polymerase are calculated by the complementary forward
recurrence (19). Together, these two recurrences determine all
the statistical properties of the copy sequences, including the
local pairing and error probabilities, as well as the kinetic and
thermodynamic properties of the growth process, such as the
entropy production.

Remarkably, the IFS method allows us to study the
effects of sequence heterogeneity, which are (1) the sequence
dependence of the pairing probabilities, replication errors, and
local velocities of the DNA polymerase along the template;
(2) the existence of a regime of anomalous drift of the
polymerase close to equilibrium; (3) the continuous or fractal
distribution of the local velocities; (4) a modification of the
conditional Shannon disorder due to sequence heterogeneity;
among others. Moreover, we can now investigate these effects
as a function of different concentrations for the four species
of nucleotides. Therefore, the IFS method overcomes the
difficulties encountered in simplified models where the rates
are assumed to depend only on whether pairing is correct
or incorrect. For this simplifying assumption to hold, the
concentrations of the four nucleotide species should be equal
and the template is considered as homogeneous.

Since DNA template sequences are typically heteroge-
neous, DNA polymerases perform random drifts along the
one-dimensional disorder tracks constituted by the templates.
Accordingly, the pairing probability, the replication errors, as
well as the local velocity of the polymerase undergo sequence-
specific variations. In the presence of strong heterogeneity,
e.g., caused by some imbalance in the nucleotide concentra-
tions, the random drift may become sublinear instead of linear
in time and the mean growth velocity vanishes over a whole
interval of nucleotide concentrations between the thermo-
dynamic equilibrium where the growth stops and the thresh-
old of growth with a positive velocity. If some nucleotide
imbalance manifests itself, the replication errors become more
frequent so that the error probability increases and the mean
growth velocity decreases. The imbalance thus enhances the
replication errors and leads to base substitutions with the
most concentrated nucleotides. As a consequence, the DNA
composition may undergo an evolution after many successive
replications. The present results suggest that there is a link
between the nucleotide metabolism, which is known to be
poorer in dCTP and dGTP than in dATP and dTTP [56], and
the DNA composition where the bases A and T are observed
to be more frequent than C and G [61,62].

Another important effect of sequence heterogeneity ex-
plained by the IFS method is that the distribution of the
polymerase local velocities along the template is either
continuous or fractal. In the latter case, the distribution presents
self-similar structures that are here studied in detail for a
polymerase drifting along a binary template only composed of
the bases A and T. These structures are characterized by their
fractal dimension. It is shown that the fractal distribution is not
caused by the replication errors because this effect persists in
error-free models, to which the IFS method also applies.
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Since the IFS method shows that the probabilities of the
copy sequences factorize into the conditional probabilities
to find successive bases along the copy, the conditional
Shannon disorder can be determined with precision taking into
account the sequence heterogeneity, which is not possible with
theoretical models reducing the template to a homogeneous
medium.

The IFS method has been here applied to the kinetics
of the human mitochondrial DNA polymerase γ without
and with its exonuclease activity. By the way, the results of
Refs. [32,33] have been revisited, solving discrepancies that
remained between Monte Carlo simulations and theoretical
models ignoring the heterogeneity of template sequences.
As here shown, the statistical, kinetic, and thermodynamic
properties of DNA replication can now be determined with full
accuracy, even in the presence of the exonuclease dedicated
proofreading mechanism. In this latter case, the exonuclease
proofreading activity is shown to be robust with respect to
some imbalance in the nucleotide concentrations.

The IFS method opens broad perspectives in our un-
derstanding of the kinetics and thermodynamics of DNA
replication, transcription, and translation because this method
provides the exact solution of the kinetic equations giving
in detail the sequence-specific effects [10]. Such effects also
concern transcription by RNA polymerases [6–9,66,67], as
well as translation by ribosomes [68,69]. In the future, it is
expected that the IFS method will be applied as well to these
other processes of fundamental importance in biology.
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