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Relaxation time of the global order parameter on multiplex networks:
The role of interlayer coupling in Kuramoto oscillators
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This work considers the time scales associated with the global order parameter and the interlayer
synchronization of coupled Kuramoto oscillators on multiplexes. For two-layer multiplexes with an initially
high degree of synchronization in each layer, the difference between the average phases in each layer is analyzed
from two different perspectives: the spectral analysis and the nonlinear Kuramoto model. Both viewpoints
confirm that the prior time scales are inversely proportional to the interlayer coupling strength. Thus, increasing
the interlayer coupling always shortens the transient regimes of both the global order parameter and the interlayer
synchronization. Surprisingly, the analytical results show that the convergence of the global order parameter is
faster than the interlayer synchronization, and the latter is generally faster than the global synchronization of the
multiplex. The formalism also outlines the effects of frequencies on the difference between the average phases
of each layer, and it identifies the conditions for an oscillatory behavior. Computer simulations are in fairly good
agreement with the analytical findings, and they reveal that the time scale of the global order parameter is half
the size of the time scale of the multiplex, if not smaller.
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I. INTRODUCTION

The large number of recent investigations on multilayer
networks have contributed to uncovering several topological
and dynamical aspects of complex systems [1–6]. These
studies have been motivated by the observation that several
such systems can be been divided, in a very natural way, into
subsets of components that interact in a different way with
the coparticipants of the same set as compared to members of
other subsets. In this way, each such subset can be represented
by a layer of a multilayer network. This concept has proven
to be broad enough to represent different interaction aspects
of the same agent, provided it also interacts differently with
members of other subsets [7–9].

Multiplexes form a particular class of multilayer networks,
where each layer is formed by the same number N of nodes.
Moreover, a multiplex is formed by agents that are identified as
one network node, with its own label, in every multiplex layer
[9–11]. Because of this, each of these agent’s representation is
connected to its own representations in all other layers [12–14].
The strength of these interactions can be dependent of the agent
and of the layers between which the interaction occurs [15–17].

These properties make multiplexes a suitable representation
of actual complex systems, where each agent has multiple
purposes and abilities. This is the case, for instance, for
economic systems in which each agent represents an investor
that can trade in different world markets. It can use the
communication flow between markets and different market
features expressed by local bylaw restrictions to develop
strategies in each market to maximize hedge, risk, and profits.
Under these circumstances, it is natural to ask how and if
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cooperation and competition [18–23] favor the spread of
information and synchronization [24–29] among the different
layers, or the emergence of collective behavior such as self-
organization [30,31] or epidemics [32].

To help understand real-world complex dynamics, several
synchronous models with nonidentical interacting agents
have been introduced for a description of synchronization,
starting from the Rössler and Kuramoto models [33,34]
in homogeneous structures. More recently, network sci-
ence explored similar models on nonhomogeneous structures
[25,35–37]. These dynamic models are sufficiently complex
to be nontrivial and display a large variety of synchronization
patterns. In particular, the Kuramoto model has the advantage
of being sufficiently flexible that it can be adapted to many
different contexts, and, at the same time, simple enough to be
mathematically tractable [38]. Most of the research done on the
Kuramoto model in complex networks has been summarized
in the review of Rodrigues et al. [39].

The collective dynamics of several interacting populations
of Kuramoto oscillators has been investigated on multilayers
[40–42]. Most of the studies on network synchronization
focus on the effects of network topology on the dynamics
in the stationary regime, or when the asymptotic phase of
the synchronization is reached. Other investigations have
addressed the question of multiplex diffusion [5,43], and the
limits to which it can be enhanced in comparison to the
corresponding spread processes in a single layer. However,
because the question of how fast the network synchronizes in
the steady state is equally important [39], we want to focus
here on the difference between diffusion and synchronization
speed in multiplexes. The two phenomena are certainly related,
but, as we will discuss in the forthcoming sections, they also
present different features in multiplex topology.

In this work, we present analytical results for the multiplex
order parameter derived from Kuramoto’s equations of motion,
both in the linear approximation and in their complete
nonlinear form, under the assumption that the initial order
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FIG. 1. Example of an undirected multiplex network with two
layers, G1 and G2 (data visualization with MUXVIZ [44]).

parameter of each layer is close to unity. Numerical integration
of the equations of motion corroborates these predictions and
presents a consistent scenario in which it is possible to identify
the diffusion relaxation time and the interlayer synchronization
phase. As a consequence, the interlayer synchronization is
observed to proceed at a faster or equal pace as compared to
diffusion.

The paper is organized as follows. In Sec. II, we define
the model and briefly list the main results of the diffusion
relaxation time in multiplexes [1,2,5,43,45]. In Sec. III, the
relaxation time of the order parameter and that of the interlayer
synchronization are deduced from spectral analysis and the
nonlinear Kuramoto model. Numerical results supporting the
analytical expressions are presented in Sec. IV. Section V
summarizes our conclusions.

II. KURAMOTO MODEL IN MULTIPLEXES
AND DIFFUSION

We consider initially an undirected multiplex M with
M layers Gα , 1 � α � M , where each layer contains N nodes
identified by xα

n , 1 � n � N (see Fig. 1). A system of coupled
Kuramoto oscillators, which takes into account the intralayer
and interlayer connections, is defined on M. The oscillator in
each node xα

n of the layer Gα is characterized by its phase θα
n ,

whose dynamics is described by

θ̇ α
n = �α

n + λα
∑

xα
m∈Gα

wα
nm sin

(
θα
m − θα

n

)

+
M∑

β=1
α �=β

λαβwαβ
nn sin

(
θβ
n − θα

n

)
. (1)

Here, �α
n is the natural frequency of the oscillator xα

n , λα

and λαβ are the coupling strength of the layer α and of the
interlayer αβ, respectively, wα

nm is the weight of the connection
between the nodes xα

n and xα
m, and w

αβ
nn is the weight of the

connection between the nodes xα
n and x

β
n . In the case of an

unweighted and undirected M, wαβ
mn = 1 and wα

nm = 1 if there
is a link between the nodes xα

n and xα
m, and 0 otherwise.

To present a closer comparison between the results for
Eq. (1) and those for multiplex diffusion [1,2,5,43,46,47], we
consider first the simplest case of an undirect M = 2 multiplex,
without sources and sinks of frequency (�α

n = 0), for which
the linear approximation of the Kuramoto model reads

θ̇ α
n (t) = λα

∑
xα

m∈Gα

wα
nm

(
θα
m − θα

n

) + λ12
(
θβ
n − θα

n

)
, (2)

with 1 � n, m � N , 1 � α,β � 2, and w12
nn = 1.

Once Eq. (2) is equivalent to the multiplex diffusion
equation [1,43], it can be written as

�̇θ = −L�θ, (3)

where �θ is a column vector that describes the phase of the
oscillators such that �θT = (θ1

1 , . . . ,θ1
N |θ2

1 , . . . ,θ2
N ), and XT

stands for the transpose of matrix X. L, the supra-Laplacian
matrix of M, is defined as

L =
(

λ1L1 + λ12I −λ12I
−λ12I λ2L2 + λ12I

)
, (4)

where I is an N×N identity matrix and Lα is the usual
N×N Laplacian matrix of Gα , with elements (Lα)nm =
sα
n δnm − wα

nm. sα
n = ∑

xα
m∈Gα wα

nm and δ is the Kronecker delta
function.

To characterize the eigenvalue spectrum S(L) ≡ {�i}, we
rank its eigenvalues in ascending order, 0 = �1 < �2 � · · · �
�2N [43,48,49]. The solution of Eq. (3) in terms of the normal
modes ϕi(t) is given by

�ϕ = BT �θ, (5)

where ϕi(t) = ϕi(0)e−�it , and B = (�v1|�v2| · · · |�v2N ) is the
matrix of eigenvectors of L (i.e., �i �vi = L�vi) [43,48,49].

Consequently, the diffusive relaxation time of multiplex
networks, τM, depends on the network topology and is
dominated by the smallest nonzero eigenvalue �2 of the
L, i.e., τM = 1/�2 [5,43,45]. This behavior is in line with
analogous findings for monolayer networks of coupled Ku-
ramoto oscillators, which have shown that the relaxation time
mainly depends on the smallest nonzero eigenvalue of the
corresponding Laplacian matrix [50–53].

If we consider λ1 = λ2 = 1, the analytical results in
Refs. [5,43] for multiplex diffusion indicate the following
properties of S(L):

(i) 2λ12 ≡ �� is always an eigenvalue of L.
(ii) When the interlayer coupling is small, i.e., λ12 � 1,

�2 = ��.
(iii) When the interlayer coupling is large, i.e., λ12 � 1,

�2 ∼ σs/2, where σs is the smallest nonzero eigenvalue of
the superposition matrix (L1 + L2)/2, and Lα is the Laplacian
matrix of layer α.

In Fig. 2 we show an example of the dependence of �2

on λ12.
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FIG. 2. Dependence on λ12 of the smallest nonzero eigenvalue σ2

of the Laplacian matrices of layer 1 (blue triangles), layer 2 (magenta
squares), the superposition of both layers (red rhombus), �� (black
circles), and �2 (black continuous line). The results are presented
for an M = 2 multiplex M with N = 100 nodes in each layer, when
λ1 = λ2 = 1. Each layer consists of a scale-free network with degree
distribution P (k) ∼ k−3.

III. RELAXATION TIME OF THE KURAMOTO
ORDER PARAMETER

The level of synchronization in a general system S of N
Kuramoto oscillators is described by a parameter r defined as

r(t)eiψ(t) = 1

N
∑
xα

n ∈S
eiθα

n (t) → r(t) = 1

2N

∣∣∣∣∣∣
∑

xα
n ∈M

eiθα
n (t)

∣∣∣∣∣∣, (6)

where ψ(t) is the average phase of the oscillators in the
system. Here, r ≈ 1 (r ≈ 0) indicates a full synchronization
(an asynchronous behavior) of the system M [33,34].

In this work, Eq. (6) is used to both layer (rα) and
global (r) order parameters by appropriately choosing the
set of nodes (Gα or the whole set M) where the sum is
performed. The important issue regarding the definition of
the α-layer order parameter (rα) is to help understand the
synchronization process at the α-layer level when interlayer
coupling is changed. The global order parameter (r), which is
common also to the plain monolayer Kuramoto model, does
not provide a clear picture of the synchronization details by
itself. ψα(t) and ψ(t) indicate α-layer and multiplex average
phases, respectively. When M = 2, it is possible to express r

in terms rα as

r =
√

(r1)2 + (r2)2 + 2r1r2 cos(ψ1 − ψ2)

4
. (7)

This can be easily obtained by multiplying reiψ by e−iψ2
and

conducting the necessary manipulation.
For the purpose of putting forward the analytical results, we

restrict our analysis to the rα(t) ≈ 1 case, i.e., we assume that
θα
n (t) ≈ ψα(t) for 1 � n � Nα , 1 � α � M , ∀ t . In Sec. IV

we show that these conditions are fairly well satisfied for the
system in Eq. (1) when, at t = 0, the degree of synchronization
in each layer is high. Under such restrictions, we rewrite r for
the M = 2 case as

r(t) ≈
∣∣∣∣cos

(
ψ1 − ψ2

2

)∣∣∣∣ =
∣∣∣∣cos

(
�

2

)∣∣∣∣, (8)

where �(t) = ψ1(t) − ψ2(t) is the difference between the
average phases of the layers G1 and G2. Hence, the time scales
of r and | cos (ψ1−ψ2

2 )| are the same.
The linear relaxation time of the interlayer synchronization

process can be estimated by the difference between the average
phases of layers G1 and G2, �, defined in Eq. (8). Taking into
account the property (i) of S(L), the column eigenvector of ��,
�v�, is such that �vT

� = (v1
1, . . . ,v

1
N |v2

1, . . . ,v
2
N ) = (1, . . . ,1| −

1, . . . ,−1).
By definition, L1 and L2 are symmetric real matrices with

row and column sums zero, i.e., Lα
�1 = �0, where �x is an

all-x vector. Thus,

L�v� =
(

λ1L1 0
0 λ2L2

)
�v� +

(
λ12I −λ12I

−λ12I λ12I

)
�v�

= �0 + 2λ12�v� = ���v�. (9)

Following [43,48,49], the normal mode related to �� =
2λ12 is

�vT
�

�θ =
∑

x1
n∈G1

θ1
n −

∑
x2

m∈G2

θ2
m = ϕ�(0)e−��t . (10)

According to Eq. (8), when the assumption rα(t) ≈ 1 is
valid, Eq. (10) leads to

�(t) = ψ1(t) − ψ2(t) ≈ ϕ�(0)

N
e−��t . (11)

Since the relaxation time for interlayer synchronization can
be estimated by τ� = 1/��, we draw the following similar
conclusions to the results listed in Sec. II:

(i) When λ12 � 1, the diffusive time scale of M coincides
with the interlayer synchronization time, i.e., �2 = ��.

(ii) When λ12 � 1, the diffusive time scale of M exceeds
the interlayer synchronization time, i.e., �2 � �� (⇔ τM �
τ�).

FIG. 3. Numerical results for N = 500, λ = 2.0, μ1 = π/2,
μ2 = 0, and a = 0.1. Each multiplex layer has the same topological
features described in Fig. 2. Panels (a) and (b): Time evolution of
tan ( �(t)

2 ) (blue continuous line), η�(t) (red circles), and η2(t) (black
squares) for λ12 = 0.1λ (a) and λ12 = 10.0λ (b). Panels (c) and (d):
Time evolution of 1 − r(t) (blue continuous line) and ηr (t) (red
circles) for λ12 = 0.1λ (c) and λ12 = 10.0λ (d).
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To derive the nonlinear relaxation time scale of the interlayer synchronization for the system in Eq. (1), we rewrite it in terms
of the order parameters rα of each layer Gα as

θ̇ α
n = �α

n + λαrαNw̄α
n sin

(
ψα − θα

n

) +
M∑

β=1
α �=β

λαβwαβ
nn sin

(
θβ
n − θα

n

)
, (12)

where w̄α
n is defined by

w̄α
n

∑
xα

m∈Gα

eiθα
m =

∑
xα

m∈Gα

wα
nmeiθα

m . (13)

As rα(t) ≈ 1, we obtain the following approximation for an undirected multiplex M:

ψ̇α = 1

N

∑
xα

n ∈Gα

θ̇α
n = 1

N

[
N∑

n=1

�α
n

]
+

M∑
β=1
α �=β

λαβ sin(ψβ − ψα)

[
N∑

n=1

wαβ
nn

]
= 〈�〉α +

M∑
β=1
α �=β

λαβ sin(ψβ − ψα)
sαβ

N
, (14)

where sαβ is the sum of the interlayer strengths between nodes of the layers Gα and Gβ . Also, the evolution of the average phase
difference between Gα and Gβ becomes

�̇αβ = ψ̇α−ψ̇β = (〈�〉α − 〈�〉β ) − 2λαβ sin(ψα−ψβ)
sαβ

N
+

M∑
γ=1

γ �=α,β

[
λαγ sin(ψγ −ψα)

sαγ

N
− λβγ sin(ψγ −ψβ )

sβγ

N

]
. (15)

Restricting the discussion to M = 2 and w12
nn = 1 ⇒ s12 = N , we consider first 〈�〉1 ≈ 〈�〉2, so that the synchronization of

the system can be estimated as∣∣∣∣tan

(
�(t)

2

)∣∣∣∣ ≈
∣∣∣∣tan

(
�(0)

2

)∣∣∣∣e− ∫ t

0 2λ12dt ′ =
∣∣∣∣tan

(
�(0)

2

)∣∣∣∣e−��t ≡ η�(t), (16)

where we use the short-hand notation �(t) = �12(t). Equation (16) and the series expansion tan(x) � x show that the relaxation
time of � is dominated by ��, i.e., �/2 ∝ e−��t .

Next, if 〈�〉1 �= 〈�〉2, it is possible to integrate Eq. (15) and express the corresponding solution in terms of a variable ξ (t)
such that

ξ (t) =
∣∣ tan

(
�(t)

2

) − sgn(〈�〉12)(|R| − √
R2 − 1)

∣∣∣∣ tan
(

�(t)
2

) − sgn(〈�〉12)(|R| + √
R2 − 1)

∣∣ = ξ (0)e−t |〈�〉12|√R2−1, (17)

(a) (b)

FIG. 4. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t) for N = 50, λ = 2.0, μ1 = π/2, μ2 = 0, and a = 0.1. Each layer contains an

Erdös-Rényi random graph with mean degrees 〈k〉 = 4.04 and 5.4, respectively. The used symbols and lines are the same as in Figs. 3(a) and
3(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.
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(a) (b)

FIG. 5. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t) for N = 50, λ = 1.0, μ1 = π/4, μ2 = 0, and a = 0.01. One layer contains an

Erdös-Rényi random graph with mean degree 〈k〉 = 5.52. The other one contains a network with asymptotic degree distribution P (k) ∼ k−3.
The used symbols and lines are the same as in Figs. 3(a) and 3(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

where sgn(·) is the sign function, 〈�〉12 ≡ 〈�〉1 − 〈�〉2, and

R = ��

〈�〉1 − 〈�〉2
≡ ��

〈�〉12
. (18)

Equation (17) is valid when |R| > 1, while, for the |R| � 1,
the integration of Eq. (15) results in

tan

(
�(t)

2

)
= R +

√
1 − R2 tan

[
〈�〉12

√
1 − R2

2
t

+ tan−1

(
tan

(
�(0)

2

) − R√
1 − R2

)]
. (19)

As can be observed, Eq. (19) shows that tan (�(t)
2 ) is a

periodic function for �� � |〈�〉12|. This drifting behavior
just states that, if the interlayer coupling strength is not large
enough, it is no longer possible to reduce the difference of the
average frequencies between the layers and entrain the whole
system.

Supposing that �/2 � 0, tan (�(t)
2 ) � 2|R|, and �� �

|〈�〉12|, the absolute value signs in Eq. (17) can be removed,
thus it can be approximated as

tan
(

�
2

)
tan

(
�
2

) − A
= − 1

A

(
�

2

)
− 1

A2

(
�

2

)2

− (A2+3)

3A3

(
�

2

)3

− · · · ≈ ξ (0)e−��t , (20)

where A = 2|R|sgn(〈�〉12). Under these conditions, the re-
laxation time of � is dominated once again by ��. Hence,
provided that r1(t) ≈ r2(t) ≈ 1 and �� � |〈�〉12|, the non-
linear Kuramoto model [Eq. (1)] and the spectral analysis lead
to the same relaxation time for the interlayer synchronization
process for M = 2: τ� = 1/�� = 1/2λ12.

For small values of �, the time evolution of the order
parameter in Eq. (8) can be approximated by r(t) � 1 − �2/8.
Therefore, the time scale of the order parameter (τr ) is
determined by the smallest nonzero power of �/2, and a rough
estimation is τr � 1/2��.

(a) (b)

FIG. 6. Time evolution of 1 − r(t) and ηr (t) for N = 50, λ = 2.0, μ1 = π/2, μ2 = 0, and a = 0.1. The used symbols and lines are the
same as in Figs. 3(c) and 3(d). The multiplexes are the same as those used in Figs. 4(a) and 4(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel:
λ12 = 10.0λ.
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(a) (b)

FIG. 7. Time evolution of 1 − r(t) and ηr (t). The used symbols and lines are the same as in Figs. 3(c) and 3(d). The multiplexes are the
same as those used in Figs. 5(a) and 5(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

Summarizing the results in Secs. II and III, the asymptotic
synchronization phase of the Kuramoto model on multiplexes
is characterized by the following behavior:

(i) When λ12 � λ1 = λ2, the time scales rank as follows:
τM = τ� > τr .

(ii) When λ12 � λ1 = λ2, the time scales rank as follows:
τM � τ� > τr .

According to Eq. (16), increasing the value of λ12 accel-
erates the transient regimes of the interlayer synchronization
and of the global order parameter, respectively. Additionally, it
reduces the difference between the average phase of each layer,
and hence it favors the full synchronization of the system.
Actually, it is important to call the attention to the fact that this
result stays in opposition to what is observed for the multiplex
diffusive relaxation when rα � 1.

These results are in accordance with the prior findings
on superdiffusion [5,43,45]. Superdiffusion emerges when the
time scale of the multiplex is faster than that of both layers
acting separately [5,43], i.e., �2 > max(σ 1

2 ,σ 2
2 ), where σα

2 is
the smallest nonzero eigenvalue of the Laplacian matrix of
layer Gα . For large coupling between layers, spectral analysis
predicts that superdiffusion is not guaranteed; it depends on the
specific structures coupled together. Increasing the interlayer
coupling accelerates the convergence of the global order
parameter and of the difference between the average phase
of each layer. Nevertheless, it also increases the magnitude of
the perturbations that are transmitted across the interlayer.

IV. NUMERICAL RESULTS

In this section, we show that the prior analytical findings
are in complete agreement with computer simulations. We
compare the results of the numerical integration of the coupled
Kuramoto oscillators for several multiplexes realizations,
using 16-digit variables. From the solution for θα

n (t) we obtain
the time evolution of tan ( �(t)

2 ) and 1 − r(t) for the linear and
nonlinear regimes that are compared, respectively, to

η2(t) =
∣∣∣∣tan

(
�(0)

2

)∣∣∣∣e−�2t , ηr (t) = [1 − r(0)]e−2��t .

(21)

ηr (t) is a measure of the synchronization dynamics, while η2(t)
has the same dependence on time as the multiplex diffusive
dynamics. Besides that, tan (�(t)

2 ) is also compared to η�(t) in
Eq. (16).

A. Linear Kuramoto model

We start by presenting numerical results from the inte-
gration of Eq. (2), where the initial phases θα

n (0) are drawn
randomly from a uniform distributionUθα of width 2a centered
at the value μα . Results satisfying a � 1 can be compared
to the analytical expressions derived in the previous sections
for tan (�

2 ) and 1 − r , as in these cases the condition rα � 1
is satisfied. For the sake of an easier comparison with the
analytical results, we set λ1 = λ2 = λ. We remark that the
results depend on the following factors: coupling strengths,
initial conditions, and network topology.

The dependence on the coupling strengths is in agreement
with Sec. III. Figure 3(a) [see also Figs. 4(a) and 5(a)] shows
that, for λ12 � λ, the time scales of interlayer synchronization

FIG. 8. Time evolution of 1 − r(t) (blue continuous line) and
ηr (t) (red circles) for N = 10, λ = 2.0, λ12 =10λ, μ1 =π/2, μ2 =0,
and a = 0.1. Each layer contains a complete graph. The inset shows
the results by considering a = 0.

042312-6



RELAXATION TIME OF THE GLOBAL ORDER PARAMETER . . . PHYSICAL REVIEW E 96, 042312 (2017)

(a) (b)

FIG. 9. Time evolution of 1 − r(t) and ηr (t). λ12 = 10λ in both panels, and the used symbols and lines are the same as in Fig. 8. (a) Left
panel: The multiplexes are the same as those used in Figs. 4(a) and 4(b), except for N = 15 and a = 0.0. (b) Right panel: The multiplexes are
the same as those used in Figs. 5(a) and 5(b), except for a = 0.0.

(a) (b)

FIG. 10. Time evolution of 1 − r(t) (blue continuous line), ηr (t) (red circles), and a guide for the eye proportional to e−2λNt (black squares)
for λ = 2.0, λ12 = 100λ, μ1 = π/2, μ2 = 0, and a = 0.1. Each layer contains a complete graph. (a) Left panel: N = 10. (b) Right panel:
N = 100.

(a) (b)

FIG. 11. (a) Left panel: Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). (b) Right panel: Time evolution of 1 − r(t) and ηr (t). λ12 = 0.1λ in

both panels, and the used symbols and lines are the same as in Figs. 3(a) and 3(c). The multiplexes are the same as those used in Fig. 3.
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(a) (b)

FIG. 12. (a) Left panel: Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). (b) Right panel: Time evolution of 1 − r(t) and ηr (t). λ12 = 10.0λ in

both panels, and the used symbols and lines are the same as in Figs. 3(b) and 3(d). The multiplexes are the same as those used in Fig. 3.

and of diffusion onM are equal: the time evolution of tan ( �(t)
2 )

is well approximated by η�(t) and η2(t), i.e., �2 ≈ ��.
However, when λ12 � λ, these time scales differ, i.e., �2 �=
��, as indicated by lines with different slopes in Fig. 3(b)
[see also Figs. 4(b) and 5(b)]. Moreover, it is also shown
that the agreement between tan ( �(t)

2 ) and η�(t) has a lower
limit ∼10−10. Nevertheless, the difference between the average
phases of both layers relaxes faster than the whole system, i.e.,
τM � τ� for λ � λ12. Both panels reveal the presence of
random fluctuations ∼10−15, which depend on the precision
of the used variables.

The same (somewhat different) features are observed in
Figs. 3(c), 6(a) and 7(a) [Figs. 3(d), 6(b) and 7(b)], where
we compare the approximation ηr (t) with the actual value of
1 − r(t). The evolution of 1 − r(t) is well adjusted by ηr (t) for
λ12 � λ. However, when λ12 � λ, the quantities agree with
each other in a more limited range �10−4.

For a given choice of the coupling parameters, the devi-
ations from the exponential behavior can be influenced by
topological differences among the layers and by the initial

values θα
n (0). To emphasize the importance of the latter, we

consider M = 2 multiplexes where each layer consists of a
complete graph, for which analytical expressions for �2 can be
obtained (see the Appendix). In Fig. 8 we show the numerical
results for 1 − r(t) when a = 0 and 0.1. The inset shows that
the time evolution of 1 − r(t) is well adjusted by ηr (t) when
a = 0 [see also Figs. 9(a) and 9(b)], while departures from the
exponential decay take place when a > 0. Here, the agreement
between the curves is limited to the range �10−6.

Figures 3 and 8 suggest that it may be possible to relate the
range of values of 1 − r where the numerical results coincide
with the analytical predictions to τD , the characteristic time
scale for the emergence of these discrepancies. It turns out
that τD is mainly controlled by the value of �2 as follows:

τD ≈ 1

2�2
. (22)

Therefore, in the case �� ≈ �2, deviations disappear until the
numeric precision of the used variables is reached, whether

(a) (b)

FIG. 13. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). �α

n = 0 for all n in both panels, and the used symbols and lines are the same as in
Figs. 3(a) and 3(b). The multiplexes are the same as those used in Figs. 5(a) and 5(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.
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(a) (b)

FIG. 14. Time evolution of 1 − r(t) and ηr (t). �α
n = 0 for all n in both panels, and the used symbols and lines are the same as in Figs. 3(c)

and 3(d). The multiplexes are the same as those used in Figs. 5(a) and 5(b). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

or not a = 0 [see Figs. 3(a), 3(c), 4(a) 5(a), 6(a), and 7(a)].
However, if �� > �2 and a > 0, discrepancies will manifest.

Finally, still using complete graphs for the sake of com-
parison to analytical expressions, we illustrate the dependence
of the multiplex dynamics on the topology for a given choice
of the coupling strengths and the initial conditions. We note
that the dependence on the topology can be observed just by
changing the number of nodes in each layer of the complete
graph. Indeed, if �� > �2, the smallest nonzero eigenvalue
of the supra-Laplacian matrix is �2 = λN (see the Appendix).
Therefore, according to Eq. (22), the smaller the number of
nodes N , the larger are the deviations for τM > τ� and a > 0.
In Figs. 10(a) and 10(b), we display the time evolution of
1 − r(t), ηr (t), and a guide for the eye proportional to e−2λNt

for N = 10 and 100, respectively, and a > 0. As can be
observed, these results are in good agreement with Eq. (22).
In the Appendix, we show analytically the dependence of the
global order parameter r on e−2�2t (i.e., e−2λNt ), when each
layer of the multiplex network is a complete graph.

FIG. 15. Time evolution of 1 − r(t) (blue continuous line) and
ηr (t) (red circles) for N = 10, λ = 2.0, λ12 =10λ, μ1 =π/2, μ2 =0,
and a = 0.1. Each layer contains a complete graph. The inset shows
a = 0.

B. Nonlinear Kuramoto model

The numerical results for the nonlinear equations (1) were
obtained using the same procedure described in the previous
subsection. When all natural frequencies of the oscillators are
set to zero, i.e., �α

n = 0 ∀n, the time evolutions of tan ( �(t)
2 )

and 1 − r(t) for λ12 � λ are essentially the same as those in
Figs. 3(a) and 3(c) [see Figs. 11(a) and 11(b), respectively].

However, when λ12 � λ, which causes �2 �= �� and
τM � τ�, tan (�(t)

2 ) deviates from both η2(t) and η�(t),
and 1 − r(t) deviates from ηr (t). The comparison between
Figs. 3(b) and 12(a) shows that the nonlinear terms affect the
evolution tan ( �(t)

2 ). Notice that the effect on the evolution of
1 − r(t) ∼ �2 is much smaller, in such a way that the changes
induced by the nonlinear terms in Fig. 12(b) are minute in
comparison to Fig. 3(d).

Other examples for different values of the interlayer and
intralayer coupling constants and several initial conditions for
the coupled Kuramoto oscillators are presented in Figs. 13(a),

FIG. 16. Time evolution of 1 − r(t) (blue continuous line), ηr (t)
(red circles), and a guide for the eye proportional to e−2�2t (black
squares). λ12 = 10λ and �α

n = 0. The multiplex is the same as those
used in Figs. 4(a) and 4(b), except for N = 15 and λ = 1.0.
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(a) (b)

FIG. 17. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). The multiplex parameters, symbols, and lines are the same as in Figs. 3(a) and 3(b),

except for �α
n ∈ U(0.8,1.2). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

13(b), 14(a), and 14(b). All of them are in complete agreement
with the results described in this section.

The dependence of 1 − r(t) on a for M = 2 multiplexes
formed by complete graphs is very similar to that in Fig. 8.
When a = 0, 1 − r(t) and ηr (t) are in complete agreement if
they are greater than or similar to 10−12, while for a = 0.1,
deviations appear when ηr (t) � 10−5 (see Figs. 15 and 16).

Let us now discuss the results when the natural frequencies
�α

n are different from zero so that, in general, 〈�〉1 �= 〈�〉2.
Following [54], the values of the frequencies are drawn
randomly from a uniform distribution U(0.8,1.2). As observed
in Figs. 17(a) and 17(b), the time evolution of tan ( �(t)

2 )
diverges from η�(t) when 〈�〉1 �= 〈�〉2 for both λ12 � λ and
λ12 � λ. In both cases, � converges to a nonzero value and,
consequently, the oscillators do not reach full synchronization
in accordance with Eqs. (17) and (18). We notice that the
deviations from the exponential predictions for λ12 � λ occur
at a larger value of η2(t) as compared to λ12 � λ. This stays
in opposition to the previously observed behavior for �α

n ≡
0. Indeed, a relatively small interlayer coupling favors the
emergence of the deviations once interlayer synchronization
is impeded for λ12 ≈ 0. Hence, if |〈�〉12| > 0 and λ12 ≈ 0, the
exponential decay barely takes place. In the case of λ12 � 0,
the relaxation time of the synchronization error gets closer to
the estimation given by ηr (t) whether or not λ � λ12.

The asymptotic value of the difference between the average
phases of both layers can be estimated from Eq. (17).
If tan (�(t)

2 ) � sgn(〈�〉12)(|R| + √
R2 − 1), Eq. (17) can be

rewritten as

tan

(
�(t)

2

)
=

(
|R| −

√
R2 − 1

1 + ξ (0)e−t |〈�〉12|√R2−1

1 − ξ (0)e−t |〈�〉12|√R2−1

)

× sgn(〈�〉12), (23)

so that its asymptotic value t → ∞ is given by

lim
t→∞ tan

(
�(t)

2

)
= (|R| −

√
R2 − 1)sgn(〈�〉12). (24)

If 〈�〉1 � 〈�〉2, R diverges and � decays to zero exponentially.
On the other hand, in Fig. 18 we expose the time evolution of
tan (�(t)

2 ) for 2〈�〉12 = ��. In that case, according to Eqs. (17)
and (24), the asymptotic value of the difference between
the average phases of both layers is ψ1 − ψ2 = π/6 (green
triangles). It is easy to see that the prior estimation is very
accurate. Other examples for different conditions are presented
in Figs. 19(a) and 19(b). All of them are in complete agreement
with the results described in this section.

Figures 20(a) and 21(a) [Figs. 20(b) and 21(b)] illustrate
the behavior of 1 − r(t) for small (large) interlayer coupling,
respectively. As can be observed, synchronization error departs
from ηr (t) values whether or not λ12 � λ. As expected, its
asymptotic value does not decay to zero.

Finally, we show that �(t) is a periodic function in the case
of �� � |〈�〉12| (see Fig. 22). As can be observed, its time
evolution is in complete agreement with that obtained from
Eq. (19).

FIG. 18. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). The

multiplex parameters, symbols, and lines are the same as in Fig. 3(b).
The model parameters are λ = 2.0, λ12 = 10λ, and 2〈�〉12 = ��.
Green triangles indicate the asymptotic value obtained with Eq. (17).
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(a) (b)

FIG. 19. Time evolution of tan ( �(t)
2 ), η�(t), and η2(t). The used symbols and lines are the same as in Fig. 18. The multiplex parameters are

the same as those used in Figs. 5(a) and 5(b), except for �α
n ∈ U(0.8,1.2) for all n. (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

(a) (b)

FIG. 20. Time evolution of 1 − r(t) and ηr (t). The multiplex parameters, symbols, and lines are the same as in Figs. 3(c) and 3(d), except
for �α

n ∈ U(0.8,1.2). (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

(a) (b)

FIG. 21. Time evolution of 1 − r(t) and ηr (t). The used symbols and lines are the same as in Figs. 20(a) and 20(b). The multiplex parameters
are the same as those used in Figs. 5(a) and 5(b), except for �α

n ∈ U(0.8,1.2) for all n. (a) Left panel: λ12 = 0.1λ. (b) Right panel: λ12 = 10.0λ.

042312-11



ALLEN-PERKINS, DE ASSIS, PASTOR, AND ANDRADE PHYSICAL REVIEW E 96, 042312 (2017)

FIG. 22. Time evolution of sin ( �(t)
2 ) (blue continuous line) and

the results adapted from Eq. (19) (red circles) for N = 500, λ = 2.0,
λ12 = 10λ, μ1 = π/2, μ2 = 0, a = 0.1, and 2.8�� = |〈�〉12|. The
multiplex parameters are the same as those used in Fig. 3.

V. CONCLUSIONS

We have developed a simple formalism to study the
time scales of the global order parameter and the interlayer
synchronization of multilayer networks. Our approach has
been adapted to a two-layer multiplex with high degrees of
synchronization in each layer [i.e., rα(t) ≈ 1 for 1 � α � 2
and t � 0] in a particular setup in which nodes are preserved
through layers.

We have analyzed the difference between the average phase
of each layer of the multiplex network from two different per-
spectives: spectral analysis and the nonlinear Kuramoto model.
Our analytical results showed that the time scales of the global
order parameter τr and the interlayer synchronization τ� are
inversely proportional to the interlayer coupling strength λ12.
Surprisingly, the convergence of the global order parameter
is faster than the convergence of interlayer synchronization,
and the latter is generally faster than the relaxation time of
the multiplex network τM. These features do not depend on
the specific structures coupled together. Therefore, increasing
the interlayer coupling always shortens the global order pa-
rameter and the interlayer synchronization transient regimes.

On the other hand, our formalism outlined the effects of
frequencies on the evolution of the global order parameter
and on the interlayer synchronization process. In addition,
conditions for an oscillatory behavior were also identified.

The analytical findings were in fairly good agreement with
computer simulations. In the case of multiplex networks with
relatively small interlayer coupling (i.e., λ12 � λ), similar
average frequencies in each layer (i.e., 〈�〉1 ≈ 〈�〉2), and high
degrees of synchronization in each layer at the initial time (i.e.,
rα(0) ≈ 1 for 1 � α � 2), the analytical and numerical results
were in complete agreement. However, supposing similar
average frequencies in each layer, if the interlayer coupling
is relatively large (i.e., λ12 � λ), and if there exists an initial
intralayer phase heterogeneity (i.e., there is at least one layer
Gα that contains two or more oscillators whose phases are
different at t = 0), the numerical results show deviations from
the predicted exponential decay, although major changes of the

global order parameter and of the interlayer synchronization
were fairly well adjusted by our analytical approach. The time
scale of these discrepancies, τD , is inversely proportional to
2�2, where �2 is the smallest nonzero eigenvalue of the
supra-Laplacian matrixL of the multiplex network. According
to prior works [5,43], this dependence on �2 implies that
deviations from our analytical results are shaped by topological
characteristics of the layers involved as well as the respective
values of λ and λ12.

When the average frequencies of each layer are dissimilar
(i.e., 〈�〉12 = 〈�〉1 − 〈�〉2 �= 0), computer simulations are in
good agreement with our analytical results. If �� � |〈�〉12|,
the asymptotic values of the global order parameter and of
the interlayer synchronization converge to a nonzero value. If
�� � |〈�〉12|, a periodic behavior is obtained. Discrepancies
from our analytical description do not appear unless the
asymptotic values of the global order parameter and of the
interlayer synchronization are close to zero (i.e., 〈�〉12 ≈ 0).

Thus, under the hypotheses of this work, we conclude that
the time scale of the global order parameter is at least twice
as small as the time scale of multiplex networks (i.e., 2τr ≈
2τD ≈ τM = 1/�2), and the major changes of this parameter
are fairly well adjusted by our analytical findings (i.e., τr ≈
τ� = 1/�� = 1/2λ12).

ACKNOWLEDGMENTS

This work was supported by the project MTM2015-63914-
P from the Ministry of Economy and Competitiveness of Spain
and by the Brazilian agency CNPq (Grant No. 305060/2015-5).
R.F.S.A. also acknowledges the support of the National
Institute of Science and Technology for Complex Systems
(INCT-SC Brazil).

APPENDIX: ANALYTICAL RESULTS FOR A MULTIPLEX
NETWORK FORMED BY COMPLETE GRAPHS

1. Eigenvalue spectrum of the supra-Laplacian matrix

Given an undirected multiplex network M with M = 2
layers, if both layers contain a complete network, then the
supra-Laplacian matrix L has the following eigenvalues �:

(i) � = 0. It is a nondegenerate eigenvalue.
(ii) � = λN . It is a degenerate eigenvalue. It appears N − 1

times.
(iii) � = 2λ12. It is a nondegenerate eigenvalue.
(iv) � = 2λ12 + λN . It is a degenerate eigenvalue. It

appears N − 1 times.
Thus, in the case of λ12/λ � N/2 (λ12/λ < N/2), the

smallest nonzero eigenvalue of the supra-Laplacian matrix is
� = λN (� = 2λ12).

2. Estimation of the average time evolution
of the linear Kuramoto model

Given an undirected multiplex network M with M = 2
layers, if both layers contain a complete network, then Eq. (2)
results in

θ̇ α
n (t) = λαN〈θα〉 − λαNθα

n + λ12
(
θβ
n − θα

n

)
, (A1)

042312-12



RELAXATION TIME OF THE GLOBAL ORDER PARAMETER . . . PHYSICAL REVIEW E 96, 042312 (2017)

where

〈θα〉 = 1

N

∑
xα

n ∈Gα

θα
n . (A2)

We estimate the average value of θ̇ α
n in the layer Gα , 〈θ̇ α〉.

The result is given by

〈θ̇ α〉 = 1

N

N∑
n=1

θ̇ α
n = −λ12(〈θα〉 − 〈θβ〉). (A3)

Note that according to Eq. (A3), the sum of the phases of
the multiplex network is constant, for M = 2, when each layer
contains a complete graph, i.e., 〈θ̇1〉 + 〈θ̇2〉 = 0. Therefore,

〈θ1(t)〉 + 〈θ2(t)〉 = 〈θ1(0)〉 + 〈θ2(0)〉 = �. (A4)

On the other hand, according to Eq. (A3), it can be written
that

〈θ̇1〉 − 〈θ̇2〉 = −2λ12(〈θ1〉 − 〈θ2〉). (A5)

It results in

〈θ1(t)〉 − 〈θ2(t)〉 = [〈θ1(0)〉 − 〈θ2(0)〉]e−2λ12t = γ e−2λ12t .

(A6)

Hence, the evolutions of the average value of θ1 and of the
average value of θ2 are given by

〈θ1(t)〉 = γ

2
e−2λ12t + �

2
(A7)

and

〈θ2(t)〉 = −γ

2
e−2λ12t + �

2
. (A8)

By considering the series expansion,

eiθα
n = ei〈θα〉 + iei〈θα〉(θα

n − 〈θα〉)
− 1

2ei〈θα〉(θα
n − 〈θα〉)2 + · · · , (A9)

we observe that

∑
xα

n ∈Gα

eiθα
n = Nei〈θα〉 + iei〈θα〉

⎛
⎝

⎡
⎣ ∑

xα
n ∈Gα

θα
n

⎤
⎦ − N〈θα〉

⎞
⎠ − 1

2
ei〈θα〉

⎛
⎝

⎡
⎣ ∑

xα
n ∈Gα

(
θα
n

)2

⎤
⎦ + N〈θα〉2 − 2〈θα〉

∑
xα

n ∈Gα

θα
n

⎞
⎠ + · · ·

≈ Nei〈θα〉 − 1

2
ei〈θα〉[N〈(θα)2〉 + N〈θα〉2 − 2N〈θα〉2]. (A10)

We characterize the degree of synchronization of each layer
Gα by means of its own order parameter, rα , expressed by

rα(t)eiψα(t) = 1

N

∑
xα

n ∈Gα

eiθα
n (t) → rα(t) = 1

N

∣∣∣∣∣∣
∑

xα
n ∈Gα

eiθα
n (t)

∣∣∣∣∣∣.
(A11)

Consequently, according to Eqs. (A10) and (A11), it is
straightforward to realize that ψα ≈ 〈θα〉 and

rα ≈ 1 + 1
2 〈θα〉2 − 1

2 〈(θα)2〉. (A12)

In the case M = 2, we obtain the following expressions for
〈(θ1)2〉, 〈(θ2)2〉, and 〈θ1θ2〉, respectively:

〈(θ1)2〉 = �2

4
+ K1e

−2λNt + γ 2

4
e−4λ12t − K2e

−2(λN+2λ12)t

+ γ�

2
e−2λ12t + K3e

−(2λN+2λ12)t , (A13)

〈(θ2)2〉 = �2

4
+ K1e

−2λNt + γ 2

4
e−4λ12t − K2e

−2(λN+2λ12)t

− γ�

2
e−2λ12t − K3e

−(2λN+2λ12)t , (A14)

and

〈θ1θ2〉 = �2

4
+ K1e

−2λNt − γ 2

4
e−4λ12t + K2e

−2(λN+2λ12)t ,

(A15)

where K1, K2, and K3 are constant values that depend on the
initial conditions, given by

K1 = 2〈θ1θ2〉(0) − �2 + 〈(θ1)2〉(0) + 〈(θ2)2〉(0)

4
, (A16)

K2 = 2〈θ1θ2〉(0) + γ 2 − 〈(θ1)2〉(0) − 〈(θ2)2〉(0)

4
, (A17)

and

K3 = 〈(θ1)2〉(0) − 〈(θ2)2〉(0) − γ�

2
. (A18)

Thus, according to Eqs. (A7), (A8), (A13), and (A14), the
order parameters for layers G1 and G2 are given by

r1 ≈ 1 − 1
2K1e

−2λNt + 1
2K2e

−2(λN+2λ12)t

− 1
2K3e

−(2λN+2λ12)t = ζ − χ (A19)

and

r2 ≈ 1 − 1
2K1e

−2λNt + 1
2K2e

−2(λN+2λ12)t

+ 1
2K3e

−(2λN+2λ12)t = ζ + χ, (A20)

where

ζ = (
e2λNt − 1

2K1 − 1
2K2e

−4λ12t
)
e−2λNt (A21)

and

χ = 1
2K3e

−2λ12t e−2λNt . (A22)
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FIG. 23. Time evolution of 1 − r(t) (blue continuous line) and
the results obtained with Eq. (A23) (red circles) for N = 10, λ = 2.0,
λ12 = 100λ, μ1 = π/2, μ2 = 0, and a = 0.1. Each layer contains a
complete graph.

Finally, the global order parameter of the multiplex network
M [given by Eq. (7)] can be approximated as

r =
√

(r1)2 + (r2)2 + 2r1r2 cos(�)

4

≈
√

ζ 2 cos2

(
�

2

)
+ χ2 sin2

(
�

2

)
, (A23)

where

� = ψ1 − ψ2 ≈ 〈θ1〉 − 〈θ2〉 = γ e−2λ12t . (A24)

In Fig. 23, we compare the numerical results for 1 − r(t)
with the estimation obtained from Eq. (A23) when �� � �

(i.e., 2λ12 � Nλ) and there exists an initial intralayer phase
heterogeneity (a > 0). As can be observed, they are in good
agreement.
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