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Mapping and discrimination of networks in the complexity-entropy plane
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Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic
properties and combinations of the associated metrics are used to discriminate networks into different classes or
categories. However, even with the present variety of characteristics at hand it still remains a subject of current
research to appropriately quantify a network’s complexity and correspondingly discriminate between different
types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility
to classify complex networks by means of a statistical complexity measure that has formerly been successfully
applied to distinguish different types of chaotic and stochastic time series. It is composed of a network’s averaged
per-node entropic measure characterizing the network’s information content and the associated Jenson-Shannon
divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the
same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that
within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation
and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our
framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show
in a second application that the proposed framework is useful to objectively construct threshold-based networks,
such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical
network complexity is maximized.
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I. INTRODUCTION

Many real-world systems are well represented by complex
networks [1,2]. Examples include social systems, such as herds
of one or more species of animals [3,4]; transportation systems,
such as road networks [5,6]; or connectome networks, such as
the human brain [7,8].

The structure of such networks is usually quantified by a
set of topological [9], spatial [10], or information-theoretic
[11] characteristics which measure certain properties of either
distinct nodes (local characteristics) or the entire network itself
(global characteristics). Specifically, the latter may be used to
compare different kinds of networks as well as for categorizing
a given set of networks into different classes [12]. The most
prototypical example of such a discrimination would be the
assignment of the small-world property to a given network
(following Watts and Strogatz) depending on the numerical
values of its clustering coefficient and average path length [13].

Other approaches have successfully distinguished between
different classes of scale-free networks by means of char-
acteristics associated with their degree distribution [14] or
spatial networks by determining bias corrected versions of
macroscopic network characteristics [15]. Further, networks
have been assigned to so-called superfamilies based on the
distribution of certain motifs that form their substructure [16].
One successful approach to quantify topological differences
in networks of different types is based on examining their
community structure and yields statistical properties within
the communities that are unique to different types of networks
under study [17].
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However, while the large variety of present metrics allows
for a quantification of a network’s particular macroscopic and
microscopic structure, it still remains a subject of current
research to (i) assess the actual complexity of a network based
on these sets of characteristics [18] and (ii) to determine
distinct sets of properties for certain classes of networks, such
as infrastructure or social networks, in order to objectively
and comprehensively distinguish between them. While there
exists a variety of such complexity measures [19], most of them
are tailored to specific applications and have so far not been
successfully applied to intercompare different types or classes
of networks as in this respect they often lack a meaningful
interpretation [20].

Contributing to the above issues, we introduce here a
two-dimensional metric based on an entropic and an adjoint
statistical complexity measure to distinguish different types
of complex networks [21,22]. This approach was originally
introduced to distinguish chaotic from stochastic systems in
time series analysis and has been successfully applied to study,
e.g., ordinal patterns in daily stream time series of river runoff
[23]. Its purpose is to assign each system under study a
position in a two-dimensional space spanned by an entropy
and a statistical complexity measure, the latter being a product
of entropy and Jenson-Shannon divergence with respect to a
uniform distribution.

Here we transfer this concept from time series to the
case of complex networks and redefine the above entropy
and statistical complexity accordingly. Various definitions
of network entropies or, more specifically, the underlying
probability distributions have already been proposed. They
may for example be computed in terms of the network’s
topological information content [24] or, quite commonly, its
degree distribution [25–27]. Further definitions of entropy are
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based on the assessment of network ensembles or randomized
correspondents thereof [18,28]. However, particularly entropy
measures that are based on the degree-distribution alone have
been shown to have little discriminative power when applied
to a heterogeneous set of graphs [29]. It is in contrast rather
advisable to rely on local per-node definitions of network
entropies [29,30].

One candidate for such a nodewise definition of entropy is
based on the probability of a random walker to jump from
a specific node to its neighbors in the network [31]. This
notion of entropy is closely related to random walks which
themselves are in their application and interpretation closely
related with the assessment of a networks’ navigability and,
thus, complexity [10,32,33].

We apply our formalism to 29 real-world networks that are
discriminated by context into the four types of social animal,
social affiliation, transportation, and connectome networks.
We show that for most cases the different types occupy
distinct areas in the complexity-entropy plane. Thus, our
formalism naturally distinguishes between different types of
systems under study. We also apply the framework to two
generic classes of benchmark networks, namely an ensemble
of scale-free networks with varying power-law exponents
and a set of networks constructed from the Watts-Strogatz
model for different rewiring probabilities [13]. In a second
application, we show that our complexity measure can be
used to objectively construct threshold-based networks such
as functional climate networks [34,35] or recurrence networks
[36] by choosing a discrete network representation that
maximizes statistical complexity.

The remainder of this paper is organized as follows:
Section II presents the methodology that is put forward in this
work and additionally introduces the kinds of networks that are
studied in the two example applications. The corresponding
results are presented in Sec. III and the work is ultimately
concluded with an outlook in Sec. IV.

II. METHODS AND DATA

An unweighted network G with a set of N nodes labeled
with integers i = 1, . . . ,N and corresponding links between
nodes can be represented by its N×N adjacency matrix A
with entries Aij = 1 if nodes i and j are connected by an
edge and Aij = 0 otherwise. Each node i’s number of directly
connected neighbors ki is computed as ki = ∑

j Aij and is
referred to as the degree of node i. For this work, we further
assume undirected networks with no self-loops. Thus, A=AT,
Aii = 0 ∀ i = 1, . . . ,N , and ki � N − 1.

Analogously to the concept of a complexity-entropy plane
in nonlinear time series analysis, which has been utilized to
discriminate between different types of time series generated
by stochastic and deterministic chaotic processes [21,22], we
aim to characterize a set of complex networks by means
of its average per-node Shannon entropy S and a statistical
complexity measure C. We thereby make use of two notions
that are related with the complexity of a physical system,
namely its information content and its state of disequilibrium
[37–39]. In particular, we relate the information content of the
network with the entropy S and the disequilibrium with the

network’s Jenson-Shannon divergence Q with respect to an
appropriately chosen reference state.

Before going to the case of complex networks we discuss as
a preliminary and as an analogy to classical statistical physics
the two most extreme cases of complexity one might consider,
namely the crystal as well as the ideal gas displaying a large
and a low degree of order, respectively [37,40,41].

It is easily deductible that due to its regular structure,
the crystal usually contains low or almost zero information,
and, hence S → 0. In contrast to this, the ideal gas (due
to its disorder) contains a large amount of information,
implying S � 0. Further, it is observed, that the perfect crystal
displays among the highest disequilibrium (Q � 0), i.e., a
large degree of order, while the ideal gas displays the exact
opposite (Q → 0). As both measures, S and Q, usually in-
crease or decrease monotonically with a system’s complexity,
we ultimately derive a measure of statistical complexity C as
the product of both information content (e.g., Shannon entropy
S) and disequilibrium (e.g., Jenson-Shannon divergence Q)
[37]. In the following we transfer the notion of information
content and disequilibrium to the case of complex networks
and derive corresponding terms for the entropy S and the
statistical complexity C that then ultimately form the two-
dimensional complexity-entropy plane.

A. Network entropy

Generally, the classical Shannon entropy for a discrete
probability distribution P is given by

S(P ) = −
∑

k

pk log pk. (1)

Here pk denotes the probability of occurrence for a given
state k. Since averaged per-node entropies have been shown to
generally serve as a good choice for discriminating between
different types of networks [29], we choose here one specific
definition of entropy that is based on the assessment of
probabilities to jump between nodes when randomly traveling
through the network and that has been successfully applied
to the study of complex networks constructed from univariate
time series [31]. In particular, the entropy Si for each node
i is computed based on the distribution Pi with entries pi→j

that give the uniformly distributed probability to jump from
node i to node j along an edge between them in exactly
one step. Thus, the corresponding random walk is formulated
analogously to its application in computing the recently
proposed random-walk betweenness [42]. If a node i is not
fully disconnected from the rest of the network (i.e., ki > 0),
then the corresponding probabilities pi→j are given by

pi→j = Aij

ki

∈ {0,1/ki} (2)

with
∑

j pi→j = 1. The node entropy then reads

Si(Pi) = −
N∑

j=1

pi→j log pi→j

= −
∑

j

Aij

ki

log
Aij

ki

= log ki. (3)
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In case of an isolated node i with ki=0, we set Si(Pi)=0.
Ultimately, the average normalized entropy taken over all
nodes i is referred to as the network entropy,

S(P ) = 1

N log(N − 1)

∑

i

Si(Pi) ∈ [0,1]. (4)

This specific definition of entropy is in accordance with some
magnitude-based information indices [25] that measure ten-
dencies for complex networks to form branches. In particular,
our measure quantifies the heterogeneity in the network’s
degree distribution in a sense that nodes with low degree,
i.e., peripheral nodes lower the overall network entropy S(P )
while high degree-hubs cause its increase. Thus, the present
definition of S(P ) incorporates not only average statistics of
the network’s degree distribution but implicitly also accounts
for its higher moments, such as the variance.

The entropy S(P ) can further be interpreted with respect
to the underlying formulation of the random walk. In the
limiting case of a fully connected network the probability to
jump between nodes is given as pi→j = 1

N−1 ∀ i �= j . Thus,
the walk becomes fully random in a sense that no node j is
excluded as a possible candidate for the walker to jump to. This
case is directly related to the notion of the ideal gas outlined
above where all micro states are equally probable and, thus,
the entropy is maximized. Analogously, for the fully connected
network all walks through the network of arbitrary length are
equally probable, too. Consequently, the entropy S(P ) is also
maximized and reads S(P ) = 1.

In turn, for a sparsely connected network the jumps of the
walker become more deterministic and in the limiting case
of, e.g., node i only having one neighbor n, its associated
traverse probabilities approach pi→j = δjn (with δjn being
Kronecker’s delta). In this case, the walker has only one
option for jumping to a neighboring node of i. Consequently,
the entropy is lowered and for sufficiently sparse networks
approaches S(P ) → 0. Again, this case may be interpreted in
analogy to a regular crystal that displays perfect order as well
as a deterministic structure and, hence, has a low information
content.

In summary, we thus interpret our definition of S(P ) as a
measure of regularity or order in the network under study with
respect to its navigability that is measured in terms of a random
walk.

B. Statistical complexity

We aim to express statistical complexity or nontriviality in
terms of a system’s disequilibrium and information content
[37], with the latter being defined as the network entropy S(P )
that is introduced above. Along the lines of common statistical
mechanics, disequilibrium is conveniently measured in terms
of the (per-node) Jenson-Shannon divergence [43]

Qi(Pi,Pi,e) = Q0{Si(0.5[Pi + Pe,i])

− 0.5[Si(Pi) + Si(Pe,i)]}, (5)

with Q0 = 1/ log 2 to ensure Qi ∈ [0,1]. This metric takes low
values for systems that are close to equilibrium like an ideal gas
and high values for systems in disequilibrium like the perfect
crystal. Here the probability distribution Pi with entries as

introduced in Eq. (2) again denotes the probabilities to jump
between neighboring nodes i and j when randomly traveling
through the network. The distribution Pe,i denotes the same
but for an appropriately chosen reference or equilibrium state,
i.e., network. Analogously to previous works, we assume that
a system is in equilibrium if its state corresponds to the fully
randomized one [43]. For the case of complex networks, this
equilibrium state would than be a corresponding Erdős-Rényi
[44] random network. We introduce the specific details of this
choice in Sec. II C.

Analogously to the network entropy, the Jenson-Shannon
divergence Q of the entire network is again computed as the
arithmetic mean of all per-node values Qi ,

Q(P,Pe) = 1

N

∑

i

Qi(Pi,Pi,e). (6)

As for the case of the network entropy S(P ), the analogy
with generic physical systems (perfect crystal and ideal gas)
is apparent.

Again, the fully connected network corresponds to the case
of an ideal gas with minimum disequilibrium as any appro-
priately chosen reference network should be fully connected
as well, which implies P = Pe and, thus, Q = 0. In contrast,
a randomly chosen reference to a sparsely connected network
most certainly displays a different microscopic structure.
Hence, the probabilities P and Pe for jumping between nodes
also differ, yielding a high disequilibrium Q � 0.

With the above observations in mind, we demand based
on common sense that neither the fully connected nor the
very sparsely connected (or almost empty) network should
be attributed a large complexity. Hence, neither a measure
of information [S(P )] nor disequilibrium [Q(P,Pe)] alone
may serve as an appropriate quantifier of statistical com-
plexity. However, a measure of statistical complexity C

has been proposed that is based on a product of the two
quantities [21,37],

C(P ) = Q(P,Pe)S(P ) ∈ [0,1]. (7)

This measure intuitively exhibits the required asymptotic
properties, such that for the limiting case S(P ) = 0, it follows
that C(P ) = 0. Analogously, S(P ) = 1 is only achieved for a
fully connected network which implies P = Pe (see Sec. II C
for details) and Q(P,Pe) = 0, which also yields C(P ) = 0. For
all cases 0 < S(P ) < 1, the statistical complexity C(P ) has a
possible upper bound that is determined by S(P ). However,
its analytical expression has so far only been obtained for a
binary state probability distribution [39].

We ultimately note that a variety of further measures has
been developed that similarly aim to quantify complexity in
dynamical systems [45]. However, most of these measures
are more tailored to other applications, such as the numerical
detection of bifurcations, e.g., order–chaos or chaos–chaos
transitions. We thus focus in this work on the statistical
complexity measure as introduced above.

C. Reference networks

In order to compute the Jenson-Shannon divergences Qi

and Q we need to compare each network’s set of probability
distributions Pi to jump between a node i and its neighbors
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FIG. 1. Selection of 4 of the 29 networks investigated in this
study: Dolphin (a), zebra (b), and bison (c) animal social networks as
well as the network of American revolutionary groups (d).

with an appropriately chosen baseline or equilibrium Pi,e. We
note here that defining the equilibrium state of a network
is a highly nontrivial task that is often achieved by fitting
the network under study to a certain network model using
numerical variational techniques in order to minimize or
maximize a target or cost function [46,47]. However, in order
to demonstrate the applicability of our approach and to focus
on the numerical properties of the statistical complexity C,
we chose to define the equilibrium or reference state of a
given network as its fully randomized counterpart and, thus,
interpret C as an indicator of statistical independence from a
corresponding random state. In this case, one obvious candi-
date for such a baseline network is the Erdős-Rényi random
graph [44]. To account for the stochasticity of this model, we
generate for each network under study an ensemble of n = 100
independent Erdős-Rényi networks with the same number of
nodes N and linking probability ρ = ∑

i ki/[N (N − 1)] and
compute ensemble average quantities of Qi , Q and C from
the resulting probability distributions Pi,e.

D. Real-world networks

We study the entropy S and statistical complexity C of 29
real-world networks, for which we assign types according to
their sub-domains in the Colorado Index of Complex Networks
(ICON) (https://icon.colorado.edu/). Specifically, we study
8 networks that represent social networks among different
species of animals, 5 transportation networks, 4 networks
representing affiliations between people or corporations, and
12 connectome networks for different species. In order to
make the results comparable, we treat all networks under
study as being unweighted, undirected, and without self-loops.
The networks under study, together with their assigned type,
number of nodes N , and link density ρ are summarized in
Table I. Visual representations of the topological structure
of 4 of the 29 networks are shown in Fig. 1. The network
parameters N and ρ will be used to compute corresponding
reference networks as outlined in Sec. II C.

E. Threshold-based networks

In addition to real-world networks, we aim to illustrate
the usefulness of the statistical complexity C as a measure
to objectively construct threshold-based networks. Generally,
these types of networks are constructed from N × N matrices
that describe some spatial or similarity relationship between
nodes [73].

We first study one prototypical example of a threshold-
based network in terms of a recurrence network [36,74]
constructed from the three-dimensional Rössler system given
by

dx

dt
= −y − z, (8)

dy

dt
= x + ay, (9)

dz

dt
= b + z(x − c). (10)

We set a = b = 0.2 and c = 5.7 as in the original study of this
system [75]. In the past, recurrence networks have been shown
to capture essential information on the phase space structure
of the dynamical system under study and thus serve as a good
(or even equivalent) representation of the system’s trajectory
[76,77]. Each node i in the network represents a point
�xi = (x(ti),y(ti),z(ti)) on the system’s trajectory at randomly
chosen times ti ∈ [100,1000], where ti � 100 ensures that for
our choice of initial values x(0) = y(0) = z(0) = 1 the system
has converged onto the chaotic attractor. The entries Dij of the
distance matrix D are then given by the Euclidean distances
between points �xi and �xj [36]. From D, a corresponding
recurrence matrix R with entries Rij is constructed by choosing
a recurrence threshold T such that

Rij = �(T − Dij ), (11)

where �(·) denotes the Heaviside function. R is now inter-
preted as the adjacency matrix of a spatial recurrence network
such that Aij = Rij − δij . Hence, only distances between
points that are smaller than a critical distance T are connected
in the resulting network. The threshold T is chosen such that
a desired link density or recurrence rate ρ is obtained.

Another case of threshold-based networks are functional
networks. Here, a similarity matrix M is constructed from
pairwise statistical interdependencies between time series that
are represented by nodes in the network. These nodes may
correspond to different channels of electroencephalography
(EEG) signals in neural networks [7] or records of climatic
variables at different locations of the Earth in so-called
climate networks [34,35]. Specifically, the latter have been
shown to encode valuable information on the large-scale
dynamical organization of spatially extended components of
the climate system, such as ocean currents [78] or the El
Niño Southern Oscillation [79]. As an example for such
functional climate networks, we compute the pairwise Pearson
correlation between all N = 10,224 time series of (i) monthly
averaged surface air temperature and (ii) monthly averaged
sea level pressure from the NCEP/NCAR 40-year reanalysis
project [80] that is provided by the National Center of
Oceanic and Atmospheric Research. Analogously to Eq. (11),
a threshold is applied to the thus obtained similarity matrix
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TABLE I. Overview of the networks evaluated in this study together with their respective number of nodes N and link density ρ as well
as entropy S and statistical complexity C computed over an ensemble of n = 100 reference networks. The provided estimate of the error in C

denotes one standard deviation. Categories have been assigned according to their classification in the Colorado Index of Complex Networks
(ICON) (https://icon.colorado.edu/).

Name Category N ρ S C

Sheep [48] Social Animal 28 0.622 0.825 0.326 ± 0.022
Rhesus [49] Social Animal 16 0.575 0.753 0.341 ± 0.035
Kangaroo [50] Social Animal 17 0.669 0.782 0.285 ± 0.024
Mac [51] Social Animal 62 0.617 0.874 0.339 ± 0.009
Bison [52] Social Animal 26 0.683 0.855 0.281 ± 0.019
Zebra [53] Social Animal 27 0.316 0.571 0.409 ± 0.024
Cattle [54] Social Animal 28 0.542 0.772 0.372 ± 0.018
Dolphins [55] Social Animal 62 0.084 0.342 0.317 ± 0.006
Autobahn [5] Transportation 1,168 0.002 0.099 0.099 ± 0.000
USairport500 [56] Transportation 500 0.024 0.250 0.246 ± 0.001
USairport 2010 [57] Transportation 1,574 0.014 0.248 0.246 ± 0.000
Openflights [57] Transportation 2,939 0.004 0.173 0.173 ± 0.000
Rome99 [58] Transportation 3,353 0.001 0.121 0.121 ± 0.000
South-Africa [59] Social Affiliation 6 0.633 0.601 0.306 ± 0.062
American Revolution [60] Social Affiliation 136 0.017 0.043 0.043 ± 0.001
Club-Membership [61] Social Affiliation 25 0.305 0.576 0.415 ± 0.021
Corporate-Leadership [62] Social Affiliation 24 0.322 0.590 0.417 ± 0.026
Rhesus Brain 1 [63] Connectome 242 0.105 0.523 0.474 ± 0.002
Rhesus Brain 2 [64] Connectome 91 0.142 0.452 0.401 ± 0.006
Mouse Retina 1 [65] Connectome 1,076 0.157 0.693 0.594 ± 0.001
Mixed Species Brain 1 [66] Connectome 65 0.351 0.717 0.478 ± 0.012
Rhesus Cerebral Cortex 1 [67] Connectome 91 0.342 0.710 0.485 ± 0.007
C Elegans Neural Male 1 [68] Connectome 269 0.081 0.486 0.451 ± 0.002
Rattus Norvegicus Brain 3 [69] Connectome 493 0.214 0.684 0.558 ± 0.001
Rhesus Interareal Cortical Network 2 [70] Connectome 93 0.529 0.822 0.413 ± 0.006
Rattus Norvegicus Brain 2 [69] Connectome 502 0.196 0.666 0.556 ± 0.001
Rattus Norvegicus Brain 1 [69] Connectome 503 0.182 0.653 0.553 ± 0.001
Mouse Brain 1 [71] Connectome 213 0.716 0.934 0.272 ± 0.003
C Elegans Herm Pharynx 1 [72] Connectome 279 0.059 0.460 0.436 ± 0.002

M (containing the absolute values of the pairwise Pearson
correlations, i.e., Mij = |Cij |), such that only a certain fraction
of the largest values are considered as links in the resulting
network. Therefore,

Aij = �(Mij − T ) · (1 − δij ), (12)

with Aij being the entries of the resulting adjacency matrix A.
Again, the threshold T is usually chosen such that a desired
network link density ρ is achieved.

III. RESULTS

We now study in a first application the numerical values
of entropy S and complexity C for the different real-world
networks. To further consolidate our findings we then also
study two different classes of synthetic networks, namely
Watts-Strogatz networks with different rewiring probabilities
[13] and random scale-free networks with a prescribed
exponent of the power-law degree distribution. Ultimately,
in a last use case, we illustrate the application of statistical
complexity to objectively determine appropriate thresholds for
the construction of threshold-based networks.

A. Real-world networks

Figure 2(a) displays the entropy S and average statistical
complexity C of all real-world networks under study with
respect to ensembles of n = 100 Erdős-Rényi reference net-
works that reflect the original networks’ respective properties
(the average numerical values of S and C are also presented
in Table I). In addition, error bars indicate the corresponding
standard deviation taken over all ensemble members and are
shown when their size exceeds that of the corresponding
symbol. For reference, we also compute and display the
complexity and entropy of a set of 50 Erdős-Rényi networks
with the number of nodes N and linking probability ρ drawn
uniformly at random from the intervals [10,1000] and (0,1],
respectively [Fig. 2].

We note that the different types of networks under study
generally occupy distinct areas in the complexity-entropy
plane [Fig. 2(a)]. While connectome networks show among
the highest values of C, we note intermediate values for
both types of social networks and the lowest values for the
transportation networks. Additionally, the latter also exhibit
among the lowest values of entropy S. Notable exceptions are
the social networks of dolphins and zebras, which in contrast to
most of the other animal networks display a unique community
structure [see Figs. 1(a) and 1(b) for a visual representation].
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FIG. 2. (a) Mapping of real-world networks in the complexity-
entropy plane. Additionally, gray scatter show the results for 50 dif-
ferent Erdős-Rényi random networks. Here, the size and transparency
denotes the uniformly at random drawn number of nodes N from the
interval [10,1000] and linking probability ρ from the interval (0,1],
respectively. (b) Dependence of the statistical complexity C on the
number of nodes N in each network under study. (c) The same as in
(b) for the link density ρ. Error bars indicate one standard deviation
of statistical complexity taken over the ensemble of n = 100 random
Erdős-Rényi reference networks with respect to the corresponding
real-world network under study and are shown if their size exceeds
that of the corresponding symbol.

Specifically, the dolphin network [Fig. 1(a)] is characterized
by two distinct communities that are connected only via few
nodes while the zebra network [Fig. 1(b)] is composed of one
large almost fully connected community containing roughly
half of the nodes and at least two further distinct communities
with only few nodes that hardly connect with the main herd. In
contrast, all the other animal networks [see Fig. 1(c) for a rep-
resentative example] generally display a similar structure with
only one densely connected community. Another outstanding
exception is the network of American revolutionary groups
[Fig. 1(d)], which due to its distinct hierarchical structure
displays very low values of entropy and complexity. We
conclude from these first observations that the complexity-
entropy plane generally distinguishes well between different
types of networks solely based on their specific and distinct
topology.

For the random Erdős-Rényi networks (gray symbols in
Fig. 2) we find that in many cases they show a higher
statistical complexity than real-world networks. In fact, their
values roughly seem to determine an upper bound of C

for each possible value of S [Fig. 2(a)]. This behavior is
expected, as the two networks that are compared in the Jenson-
Shannon divergence Q(P,Pe), the Erdős-Rényi network under
study and a random reference network, are statistically fully
independent by construction and, more importantly, therefore
less or equally statistically dependent than any real-world
complex network in comparison with a random reference
network. However, we note that this property only seems to
hold for sufficiently large networks [Fig. 2(a)].

Since the topological characteristics of the Erdős-Rényi
network only depend on the given number of nodes N

and linking probability or link density ρ, we examine the
dependence of C on both parameters individually. Figure 2(b)
shows the values of statistical complexity C as a function of the
number of nodes N in each network which displays no clear
dependence between the two variables. In contrast, a possible
dependence between link density ρ and statistical complexity
C is observed [Fig. 2(c)]. Still, we note that networks with
highly dissimilar link densities ρ may exhibit similar statistical
complexity [Fig. 2(c)].

Furthermore, the quantitatively similar functional depen-
dencies between S and C [Fig. 2(a)] as well as ρ and C imply
an expected functional dependence between S and ρ. However,
the S-C plane is a much better choice for categorizing networks
than the ρ-C plane since the entropy S captures all moments
in the degree distribution of a given network [as can be seen
from the series expansion of

∑
i log ki in Eq. (4)], while ρ only

captures its first moment.

B. Synthetic networks

To further consolidate the above findings we now
systematically study numerically the statistical complexity
C for two different types of synthetic networks, i.e., random
scale-free and Watts-Strogatz networks. Figure 3(a) shows the
statistical complexity C averaged over an ensemble of n = 50
random scale-free networks with power-law-shaped degree
distributions at different exponents α and different numbers
of nodes N = 2500, N = 5000, and N = 10,000. Here, each
individual scale-free network is compared to one realization of
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FIG. 3. (a) Average statistical complexity C for different power-
law exponents α in the degree distribution of randomly generated
scale-free networks. Each scatter denotes the average over an
ensemble of 50 networks consisting of N = 2500, N = 5000 and
N = 10,000 nodes, respectively. (b) The same for different choices of
the rewiring probability β in the Watts-Strogatz model with an average
degree of K = 20. For comparison all average statistical complexities
are rescaled by C(β = 0) of the regular ring graph. Error bars denote
one standard deviation in the respective statistical complexity and are
shown if their size exceeds that of the corresponding symbol.

a corresponding random reference network. In particular, the
scale-free networks are constructed by first generating a degree
sequence with a power-law-shaped distribution according to
the considered power-law exponent α. Then, each network is
created by iteratively inserting links between nodes according
to the configuration model [1,2]. Ultimately, self-loops and
multiple links are again excluded from the assessment. We
observe a decrease in statistical complexity C with increasing
α [Fig. 3(a)]. For small values of α the networks display a het-
erogeneous degree distribution with the presence of both hubs

and peripheral nodes. Consequently, the statistical complexity
C takes comparatively large values. In contrast, for high
values of α the networks become increasingly sparse with only
few links present per node and, thus, they display a narrower
degree distribution. In this case the distinction between hubs
and peripheral nodes is less apparent and the network itself
may be considered less statistically complex which manifests
in comparably low values of C. We also note that due to the
scale-free property of the considered networks the statistical
complexity C seems to be independent of the number of
nodes N [Fig. 3(a)].

As a second family of model networks we study the statis-
tical complexity C for an ensemble of networks constructed
from the Watts-Strogatz model for different choices of the
rewiring probability β. Again, we construct networks of dif-
ferent sizes with N = 1000, N = 2500, and N = 5000 nodes
and a fixed average degree of K = 20. Starting from a ring
graph where every node has K/2 left and right neighbors, each
link in the network is rewired with probability β. As above,
we obtain for each choice of N and β an ensemble of n = 50
randomly generated networks and compute the corresponding
statistical complexity C by again comparing each ensemble
member with one realization of a corresponding Erdős-Rényi
random network and averaging the obtained results [Fig. 3(b)].
In order to render the results comparable, we rescale all
obtained values by the corresponding statistical complexity
of the ring graph with β = 0. The corresponding values of
this rescaling-factor read C(β = 0) = 0.425 for N = 1000,
C(β = 0) = 0.380 for N = 2,500, and C(β = 0) = 0.350
for N = 5000, respectively. Thus, C decreases with increasing
N as the networks become more sparse. In contrast to the
above case of scale-free networks we note only minor, yet
systematic, changes of C with varying β [Fig. 3(b)]. In
particular, the observed drop in statistical complexity occurs
for values of the rewiring probability between β = 0.01 and
β = 0.1. These values coincide with the onset of the transition
between small-world and random network structure in the
Watts-Strogatz model [13].

The observed small variations in C may be explained from
the underlying definition of the statistical complexity as a result
of a random walk between nodes in the network. Rewiring
the network structure of a ring graph only induces minor
changes to its degree distribution, i.e., from a single peak at
the average degree K for β = 0 to approximately a Poisson
distribution centered around K for β = 1. Since the random
walk is to a large extent determined by the functional form of
this underlying distribution, resulting values of C consequently
vary only little with β. Ultimately, we note that by rescaling
the obtained values of C with corresponding values of the ring
graph, the relative changes in C with varying β are largely
similar for all choices of N .

C. Threshold-based networks

We now turn our focus to the threshold-based networks in-
troduced in Sec. II E. Figure 4 shows the statistical complexity
C of three recurrence networks with N = 2500, N = 5000,
and N = 10,000 nodes obtained from the Rössler system
[Eqs. (8)–(10)] depending on the link density ρ that is applied
to obtain the recurrence matrix R [Eq. (11)]. For all cases, C
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FIG. 4. Statistical complexity C depending on the threshold-
based networks’ link densities ρ for three recurrence networks
with different numbers of nodes N constructed from the Rössler
system and two functional climate networks representing surface air
temperature and sea level pressure variations, respectively. Filled
symbols denote the maximum value of statistical complexity for
each network. Dotted lines indicate the corresponding link density
ρmax, which maximizes the statistical complexity. No error bars are
shown as the standard deviation of C taken over all n = 100 reference
networks is always smaller than the size of the symbols.

is computed as the average statistical complexity taken over
an ensemble of n = 100 reference networks.

We note that C increases with increasing ρ until a maximum
is reached at ρmax = 0.16, ρmax = 0.14 and ρmax = 0.13 for
N = 2500, N = 5000, and N = 10,000, respectively (Fig. 4).
For values ρ > ρmax the statistical complexity decreases
monotonically and approaches C = 0 for ρ = 1 (not shown).
Usually, when constructing recurrence networks a link density
of order O(10−2) is chosen heuristically, even though it was
suggested that with such comparably low choices of recurrence
rates possibly significant interdependencies between nodes
might be suppressed [36,81,82]. Our results indicate that
larger choices of recurrence rates and corresponding thresholds
T might yield a recurrence network with higher statistical
complexity and, thus, a larger degree of nontrivial structure
than the ones that were previously typically studied.

For the functional networks that are constructed from
climate time series across the globe according to Eq. (12)
at different link densities ρ, we find that the link densities
that are maximizing the statistical complexity are ρmax =
0.15 and ρmax = 0.14 for the temperature and pressure field,
respectively. As for the recurrence network studied above,
these values are again considerably larger then the usually
employed link densities of order O(10−2) [35,78]. However,
it has again been reported that these usually employed small
choices of link density and the corresponding high threshold
may suppress statistically significant signals associated with
comparably lower pairwise similarity values [83]. Thus, future
work in this area could apply our formalism to determine a
more objectively chosen threshold than in previous studies.

We emphasize that even though we only present two differ-
ent use cases as examples, our framework may be applicable to
any kind of functional network that is constructed from some
pairwise functional interdependencies between nodes, includ-
ing neural [7,69] or economic networks [84]. Beyond this, our
framework might also be applicable to networks constructed
from non-pair-wise interdependencies that are investigated in,
e.g., causal effect networks [74,85,86]. The assessment of
statistical complexity could help to more objectively choose
thresholds for the construction of such networks and comple-
ments existing approaches based on, e.g., the assessment of
the recurrence network’s percolation threshold [76,87,88].

IV. CONCLUSION AND OUTLOOK

We have presented a methodology to categorize complex
networks by means of an entropy measure and an estimator
of statistical complexity. In particular, our method computes
for each network under study an average per-node Shannon
entropy that is based on probabilities to randomly jump
between neighboring nodes in the network. From this, we
estimate a network’s statistical complexity by computing the
Jenson-Shannon divergence between a given network and a
set of corresponding Erdős-Rényi random networks. We find
that networks of different types, such as social or infras-
tructure networks, generally occupy distinct regions in the
two-dimensional complexity-entropy plane and our proposed
framework thus discriminates well between them. Moreover,
we find that connectome networks are among the statistically
most complex ones while infrastructure networks generally
display a lower complexity. These properties might intuitively
be expected when considering the term complexity with
respect to real-world structures and the associated functions
thereof.

We have further shown in a second application that the
notion of statistical complexity can be applied to objec-
tively estimate thresholds for the construction of functional
networks, such that a network’s statistical complexity is
maximized and, hence, contains most non-trivial information.

Starting from the demonstrated possible scenarios for
applying the proposed methodology, future work should
investigate in more detail the discriminating power of the
statistical complexity for a broader set of real-world complex
networks. In particular, as we have observed that within
our framework connectome networks are among the most
complex ones, we suggest to further investigate the interplay
between the statistical complexity and the complexity of
structure-function relations in such networks [89] in future
work. Additionally, the framework should be generalized to the
case of weighted and/or directed networks. For this purpose,
more emphasis must be put into the definition of the reference
networks, which for now have been assumed to just be a
randomized correspondent of the specific network under study.
Another interesting line of inquiry would be to study the
dependence of the statistical complexity with respect to the
choice of the underlying random walk, such as the maximum
entropy random walk [90], as an alternative to the generic
one-step random walked used in this paper.

In general, our framework expands the understanding of
complex topological structures and helps to quantify varying
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degrees of complexity in various systems. Our approach
should be useful for many disciplines of (applied) complex
network science, such as neuro-, social, or even climate
science.
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