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We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several
parameters to play with, the solution may take a variety of forms. We consider most of these cases including the
general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit
produces a combination of breather-soliton structures on a constant background. The case of equal modulation
frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit
of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved.
Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton.
Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover,
the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero
limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude
soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.
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I. INTRODUCTION

Modulation instability (MI) is the initial process of growth
of a small periodic perturbation on a carrier wave or a
continuous wave background leading to the formation of
patterns and structures in nature. This fundamental mechanism
of pattern formation has been observed in nonlinear optics [1],
hydrodynamics [2], plasmas [3], and biology [4]. Early work
on MI that can be traced back to the 50s [4] 60s [1], and 70s
[3] focused primarily on the initial, linear stage of instability.
However, considering only the initial stage cannot answer the
fundamental questions: What happens afterwards? and What
is the final stage of the complex process that starts with MI?
Answers to these questions can be found using numerical
simulations [5,6]. However, exact solutions remain the main
tool when we are dealing with integrable equations. In this
regard, the discovery of Akhmediev breathers [7,8] was a
significant step in the present state of the matter. The latter
is a periodic solution of the nonlinear Schrödinger equation
(NLSE) that is a natural continuation of MI.

The generation of trains of picosecond pulses in an optical
fiber and their evolution are one of the practical aspects of the
periodic solution of the NLSE [8–10]. The universal nature
of this periodic solution is presently well established and the
number of theoretical and experimental studies in connection
with various nonlinear media is growing [9,10]. The signif-
icance of this solution lies also in its intimate connection
with the phenomenon of Fermi-Pasta-Ulam recurrence [11].
Most recently, this breather solution appeared to be useful in
connection with the formation of rogue waves [12,13].

These ideas can be expanded to a wider range of integrable
equations. Indeed, the basic form of the NLSE only includes
the lowest-order dispersion and the lowest-order nonlinear
term. Higher-order effects are essential when describing
ultrashort pulses generated as a result of the MI [14–17]. Each
of the higher-order terms makes a highly specific contribution

to pulse propagation [18]. However, only special combinations
of them in the fiber lead to integrable equations. Despite being
very specific, these cases deserve attention because of the exact
solutions that can be derived for them.

In this work, we present breather solutions for the fourth-
order nonlinear Schrödinger equation [19,20]. Namely, we are
dealing with

iψx + α2(ψtt + 2ψ |ψ |2) + α4(ψtttt + 8|ψ |2ψtt + 4ψ |ψt |2
+ 6ψ2

t ψ∗ + 2ψ2ψ∗
t t + 6ψ |ψ |4) = 0, (1)

where ψ(x,t) may represent, e.g., in the context of optics,
the amplitude of the electric field of the electromagnetic
wave. The coefficient α2 in Eq. (1) scales the terms of the
standard NLSE, while the coefficient α4 scales the fourth-order
terms. Porsezian at el. derived this equation in connection with
integrability aspects of the one-dimensional Heisenberg spin
chain problem [21]. Recently, the NLSE has been extended
to include an infinite number of terms [22–27]. Coefficients
αi representing the higher-order terms in this hierarchy are
arbitrary, in contrast to earlier works [28], where they are
small parameters. Equation (1) is a member of this hierarchy
that includes the second- and fourth-order operators.

Breathers and rogue wave solutions of Eq. (1) have been
found in Refs. [20,22,23,29]. Here, we concentrate on special
cases, transformations, and degenerate solutions which follow
from the general solution. These special cases are far from
trivial and deserve separate study. For example, degenerate
solutions of the NLSE have been discussed in detail in
Ref. [30]. In contrast to the NLSE, Eq. (1) has free parameters,
which make such a study much more involved. Higher-order
terms add more features to solutions. One aspect of the
degenerate solutions presented here is that breathers and rogue
waves can be transformed into solitons [31–33]. We reveal a
variety of these breather-soliton interactions that do not exist
in the case of the standard NLSE.
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II. FIRST-ORDER BREATHER SOLUTION

We start by analyzing the fundamental breather solution
and some particular cases. The first-order breather solution to
Eq. (1) is given by

ψ1 =
(
κ{κ2 cosh[VHxs1] + 2iδ sinh[VHxs1]}

2{κ cosh[VHxs1] − δ cos[κts1]} − 1

)
eiωx, (2)

where VH = 2 δ[α2 − α4(κ2 − 6)], xsj = (x − xj ), and tsj =
(t − tj ). Parameters xj and tj are translations along the x and
t axes. This solution is a direct continuation of the Akhmediev
breather (AB) solution for the NLSE [7,8]. The indices j in
(2) are introduced for convenience of further analysis.

Roughly speaking, the first-order breather solution is
analogous to a one-soliton solution of the fundamental NLSE,
while the second-order solution presented below is analogous
to a two-soliton solution. More specifically, the second-order
solution can be considered the nonlinear superposition of two
first-order ones.

When dealing with two-breather solutions, we can take
j = 1,2 for each of them. For the first-order breather solution
with j = 1, we use xs1 = (x − x1) and ts1 = (t − t1). In
the exponent, ω = 2(α2 + 3α4). The parameter κ is the
modulation frequency of the breather, and δ = 1

2κ
√

4 − κ2

is the growth rate of the modulation leading to Eq. (2). With
α4 = 0, Eq. (1) reduces to the NLSE and the breather solution,
Eq. (2), reduces to the NLSE AB solution [8].

There are particular cases of this solution that distinguish
it from the NLSE AB. This happens because Eq. (1) has
free parameters that the NLSE is missing. The coefficient
VH in the hyperbolic functions in Eq. (2) plays an important
role in reshaping the structure of the breather solution. For
instance, if we take VH = 0, the AB turns into a t periodic
solution. Namely, when α2 = α4(κ2 − 6), the argument of the
hyperbolic function VH becomes 0 and Eq. (2) turns into

ψ1 =
(

κ2

2 − √
4 − κ2 cos[κts1]

− 1

)
eiω′x, (3)

where ω′ = 2α4(κ2 − 3). This is a zero-velocity periodic
solution with frequency κ within the interval 0 < κ < 2. Now,
taking the limit κ → 0, Eq. (3) reduces to a rational solution:

ψ1 =
(

4

1 + 4t2
s1

− 1

)
e−6iα4x. (4)

This can be considered a one-soliton solution on a background
propagating along the x direction.

Another form of the solution, (2), appears when κ is
imaginary. If we assume κ = ip in Eq. (2), then the growth
rate δ = ig, where g = p

√
4 + p2/2. Using the conversion

formulas of hyperbolic to trigonometric functions, sinh(z) →
−i sin(iz) and cosh[z] → cos(iz), we convert VH → VT .
The latter coefficient enters the argument of trigonometric
functions. Now taking the value of VT = 2g[α2 + α4(6 + p2)],
the new solution becomes

ψ1 =
(−p{p2 cos[VT xs1] + 2ig sin[VT xs1]}

2{p cos[VT xs1] − 2g cosh[pts1]} − 1

)
eiωx. (5)

This is the so-called ‘Kuznetsov’ [34] or ‘Ma’ [35] (KM)
soliton solution on a background that is periodic in time and
localized in space. In a particular case, when the argument of
the trigonometric function VT = 0, with the condition α2 =
−α4(6 + p2), we have, from Eq. (5),

ψ1 =
(

p2√
4 + p2 cosh[pts1] − 2

− 1

)
e−2iα4(p2+3)x. (6)

However, in contrast to Eq. (3), which is periodic in t , Eq. (6)
is clearly a one-soliton solution on a background. In the limit
p → 0, Eq. (6) reduces to the soliton solution, (4). However,
a direct limit of Eq. (2) with κ → 0 or Eq. (5) with p → 0
will give us the rational Peregrine soliton, which is localized
in both x and t .

The general expression for the solution of any order has the
form [20]

ψn(x,t) =
(

(−1)n + Gn + i Hn

Dn

)
eiωx, (7)

where n indicates the order of the solution. The functions
Gn(x,t), Hn(x,t), and Dn(x,t) are real. For each particular
case, these expressions are provided in the next sections. For
example, for a first-order rational solution with n = 1, the
polynomials G1, H1, and D1 are given by

G1 = 4,

H1 = 16Bxs1,

D1 = 1 + 4t2
s1 + 16B2x2

s1, (8)

while ω = 2(α2 + 3α4). Here the stretching factor B = (α2 +
6α4). If B → 0 when α2 = −6α4, clearly the first-order rogue
wave solution reduces to a rational soliton, (4). On the other
hand, if α4 = 0, the first-order solution of Eq. (1) reduces to a
standard rogue wave solution of the NLSE [13].

III. SECOND-ORDER BREATHER SOLUTION

Two-breather solutions of Eq. (1) in various forms have
been studied in Refs. [29,36]. However, the results were in-
complete and require more detailed analysis. Several important
special cases were missing, which we augment here. The
technique that we employ to derive the solution is described
in Ref. [10]. It is based on two eigenvalues λj expressed
in terms of the modulation frequencies of the two breathers
κj = 2

√
1 + λ2

j , where j = 1,2 is the number of breathers.
With n = 2 in the general expression, (7), the two-breather
solution of Eq. (1) is given by

G2 = κ2
1 − κ2

2

κ1κ2

{−δ2κ
3
1 cos(ts2κ2) cosh(VH1xs1)

+ κ2 cosh (VH2xs2)
[
δ1κ

2
2 cos (ts1κ1)

+ κ1
(
κ2

1 − κ2
2

)
cosh(VH1xs1)

]}
,

H2 = 2
(
κ2

1 − κ2
2

)
κ1κ2

{δ2κ2 sinh (VH2xs2)[δ1 cos (ts1κ1)

− κ1 cosh (VH1xs1)] + δ1κ1 sinh (VH1xs1)

× [κ2 cosh (VH2xs2) − δ2 cos (ts2κ2)]},
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FIG. 1. Two-breather solution, (9), for two cases: (a) κ1 = 0.6,
κ2 = 0.9,x1 = 5, and x2 = −5; (b) κ1 = 0.7 and κ2 = 1.1i. In each
case, α2 = 1/2 and α4 = 1/16.

D1 = 1

κ1κ2

{
κ1 cosh (VH1xs1)

{
2δ2

(
κ2

1 − κ2
2

)
cos (ts2κ2)

+ κ2 cosh (VH2xs2)
[
κ2

1

(
κ2

2 − 2
) − 2κ2

2

]}
+ 2δ1

[
δ2

(
κ2

1 + κ2
2

)
cos (ts1κ1) cos (ts2κ2)

+ κ2
(
2δ2κ1[sin (ts1κ1) sin (ts2κ2)

+ sinh (VH1xs1) sinh (VH2xs2)]

+ (
κ2

2 − κ2
1

)
cos (ts1κ1) cosh (VH2xs2)

)]}
, (9)

where δj = κj

√
4 − κ2

j /2, VHj = 2δj [α2 − α4(κ2
j − 6)],

xsj = (x − xj ), and tsj = (t − tj ), with xj and tj being
translations along the x and t axes. Modulation frequencies
κ1 and κ2 are two independent free parameters that play the
key role in mutual interaction between the breathers.

One example of the two-breather solution is shown in
Fig. 1(a). Here, the first breather, with modulation frequency
κ1 = 0.6, is located on the x = 5 line, while the second one,
with frequency κ2 = 0.9, arrives with a time delay of x2 = −5.

Depending on the parameters κ , Eq. (9) may represent
both AB and KM solitons. For example, in Fig. 1(b), the first
breather, with κ1 = 0.7, is an AB located on the x = 0 line,
while the second one is actually a KM soliton with κ2 = 1.1i.
It is orthogonal to the AB. When α4 = 0, the solution reduces
to the standard NLSE solution presented in Refs. [8,30]. The
two-breather solution for a higher-order NLSE with quintic
terms has been given in Ref. [37].

How the two breathers interact depends on the ratio of
their modulation frequencies κ1 and κ2. Breather interaction

FIG. 2. Two-breather solution, (9), with integer ratios of modula-
tion frequencies: (a) κ1:κ2 = 2:1, (b) κ1:κ2 = 3:2, and (c) κ1:κ2 = 5:3.
Parameters used for plotting are α2 = 1

2 , α4 = 1
4 , κ2 = 0.6.

descriptions have been given in Refs. [8,30,37]. Here we give
an alternative explanation of similar scenarios. To set the rule
precisely, let us define the relation between them as

κ1:κ2 = a:b, (10)

where a and b are two integers defining the ratio between
κ1 and κ2. When a = 2 and b = 1, the two-breather solution
creates the periodic sequence of second-order rogue wave
profiles shown in Fig. 2(a). In turn, each second-order rogue
wave profile is made up of three individual first-order rogue
waves [38].

Within each periodic sequence, the first-order components
are organized following specific rules. First, the total number
of first-order rogue waves in each period is the sum of the
integers defining the ratios of the modulation frequencies κ1

and κ2, that is, a + b. Second, of the total number, three of
them always merge to form a second-order profile as shown
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in Fig. 2(a). The rest are located symmetrically around the
central line x = 0. Note also that the ratio of a and b should
be chosen such that the modulation frequency remains within
the instability band 0 < κj < 2.

For example, in Fig. 2(a), the modulation frequencies
κ1 and κ2 are related as a:b = 2:1. Therefore, when κ2 =
0.6, κ1 = (a/b)κ2 = 1.2. Thus, the total number of first-
order rogue wave components in each period in this case
is a + b = 3. All three are merged, comprising a periodic
sequence of second-order rogue wave profiles. Similarly, in
Fig. 2(b), a + b = 5, and keeping κ2 = 0.6, the first frequency
component becomes κ1 = 0.9. Now, of the five first-order
components, three of them are merged, forming a second-order
profile. The remaining two are symmetrically located on each
side of the x = 0 line. The same rule applies to Fig. 2(c). Here,
the frequencies κ1 and κ2 also remain within the MI band.

As an illustration of merging of the three first-order rogue
components into a single second-order rogue profile we take
κ1 → 0 in Eq. (9). Applying this limit reduces the two-breather
solution, Eq. (9), into a semirational expression that is given
by

G2 = −κ2
2

[
8 cos (ts2κ2)δ2

+ cosh (VH2xs2)κ2
(
D1κ

2
2 − 8

)]
,

H2 = −2κ2
2 {sinh (VH2xs2)D1δ2κ2

+ 16Bxs1[cos (ts2κ2)δ2 − cosh (VH2xs2)κ2]},
D2 = 2

{
cos (ts2κ2)δ2

(
D1κ

2
2 − 16

)
+ κ2

[−16(sin (ts2κ2)ts1 + 2B sinh (VH2xs2)xs1)δ2

+ cosh (VH2xs2)
(
16 + (D1 − 4)κ2

2

)]}
. (11)

Note that the denominator D1 from Eq. (8) appears
repeatedly in Eq. (11). The limit κ1 → 0 transforms one of
the breather components of Eq. (9) into a rogue wave profile
with a time delay x2 = 5 which is clearly shown in Fig. 3(a).
Now, when choosing zero time delay x2 = 0, the three central
first-order rogue wave components merge into a second-order
profile shown in Fig. 3(b). When α4 = 0, both expressions,
Eq. (9) and Eq. (8), reduce to the expression for the standard
NLSE [30].

A. Solitons in the limits of breathers

We have seen that in the first-order breather solution,
Eq. (2), the argument VH in the hyperbolic function plays
a special role in transforming breather into periodic soli-
tonic structures by unlocking the temporal localization in x.
Similarly, the argument VH1 in the hyperbolic function in
the second-order solution of Eq. (9) influences the breathers
and their dynamics. The field distribution of the second-order
breather solution becomes increasingly complex.

The second-order breather-to-soliton transformation can be
seen when comparing Figs. 2 and 4. For example, comparison
of Figs. 2(a) and 4(a) clearly shows solitonlike tails attached
to the central peaks. The second-order profile in each period
in Fig. 4(a) takes the form of a soliton collision structure
on a constant background. Two local maxima at each side
of the x = 0 line in Fig. 2(a) become elongated as a result
of transformation into solitons, with the central maximum

FIG. 3. Limiting case of the two-breather solution, (9), when
κ1 → 0, κ2 = 0.75, α2 = 1/2, and α4 = 1/16, with (a) x2 = 5 and
(b) x2 = 0.

remaining intact. This happens because we keep the same
frequency ratio in Figs. 2(a) and 4(a).

Mathematically, the transformation occurs due to the
argument VH1 = 0 in Eq. (9) as well as the parametric relation
α2 = α4(κ2

1 − 6). Therefore, the two-breather solution takes
the form

G2 = 1

κ1κ2

(
κ2

1 − κ2
2

){−δ2κ
3
1 cos (ts2κ2)

+ κ2 cosh (VH3xs2)
[
κ3

1 + (cos (ts1κ1)δ1 − κ1)κ2
2

]}
,

H2 = δ2
(
κ2

1 − κ2
2

)
2 sinh (VH3xs2)[κ1 − cos (ts1κ1)δ1]

κ1
,

D2 = 1

κ1κ2

{
4δ1δ2κ1κ2 sin (ts1κ1) sin (ts2κ2)

+ κ2
[
κ3

1

(
κ2

2 − 2
)

cosh (VH3xs2) − 2κ1κ
2
2

+ 2δ1
(
κ2

2 − κ2
1

)
cos (ts1κ1)

] + 2δ2 cos (ts2κ2)

× [
κ3

1 − κ1κ
2
2 + δ1

(
κ2

1 + κ2
2

)
cos (ts1κ1)

]}
. (12)

Taking into account the parametric relation α2 = α4(κ2
1 − 6),

the argument VH2 in the hyperbolic function in Eq. (9) takes
the new form VH3 = 2δ2α4(κ2

2 − κ2
1 ).

Comparing Figs. 2(b) and 4(b), where the frequency ratio
κ1:κ2 = 3:2, we can see that all second-order rogue wave pro-
files are transformed into a periodic train of soliton collisions,
while the two first-order rogue wave profiles between them
merge to form parallel low-amplitude solitons.

Similar transformations are shown in Fig. 2(c), where
κ1:κ2 = 5:3. The second-order rogue wave profiles are
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FIG. 4. Two-breather solution, (12), for the same set of integer
modulation frequency ratios as in Fig. 2, namely, (a) κ1 = 1.2, κ2 =
0.6, and α4 = 1/16; (b) κ1 = 1.425, κ2 = 0.95, and α4 = 1/16; and
(c) κ1 = 1.25, κ2 = 0.75, and α4 = 1/4.

transformed into soliton collisions as we can see in Fig. 4(c).
The nearby paired first-order rogue wave profiles become
parallel solitons. The middle one maintains a rogue wave
structure and expands at each side of the x = 0 line as solitons.
Two of these profiles are shown in Fig. 4(c).

Parameters xj and tj specify the position of the j th breather
in the (x,t) plane. A difference in the positions may cause
corresponding shifts. For example, in Fig. 1(a), it introduces
a delay of the second breather, with x2 = −5, relative to
the first one. When the two breathers overlap, the delay
causes deformation of the wave profile. This case is shown
in Fig. 5(a), where the shift t1 = −5 deformed the solution,
which otherwise would have the profile shown in Fig. 4(a).
The phase difference between the two breathers causes the
high-amplitude features in Fig. 4(a) to disappear. A similar
transformation due to the delay is shown in Fig. 5(b). Com-
parison with Fig. 4(b) shows that the constructive interference
here disappears.

FIG. 5. Two-breather solution, (12), with the transverse shift
t1 = −5. Other parameters are (a) κ1 = 0.6, κ2 = 0.9, α4 = 1/16 and
(b) κ1 = 1.0, κ2 = 0.50, α4 = 1/8.

Each of the two breathers in the superposition can be
transformed into a KM soliton. The periodicity and the
localization of an Akhmediev breather and a KM soliton are
opposite to each other. While an AB is periodic in t and
localized in x, a KM soliton is periodic in x and localized in t

[7]. On the other hand, when α2 = α4(κ2
1 − 6) in Eq. (12), the

first breather component becomes a periodic train of solitons.
When, additionally, κ2 = iκ2, the second breather related to κ2

becomes a KM soliton. This case, shown in Fig. 6, corresponds
to the interaction between a periodic soliton train and a KM
soliton.

FIG. 6. Interaction between a periodic train of solitons with
κ1 = 0.9 and a KM soliton with κ2 = 1.1i given by Eq. (12).
Parameter α4 = 1/8.
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FIG. 7. Plot of the same structure as in Fig. 6, but with κ1 = 1.5,
κ2 = 1.98i, and α4 = 1/8.

In Fig. 6, the transformed solitons are periodic in the t

direction, while they maintain their solitonic profile along x.
This becomes clear if we compare Fig. 1(b), where an AB is
interacting with a KM soliton, with Fig. 6. The AB in Fig. 1(b)
is transformed into the periodic train of solitons in Fig. 6
following Eq. (12). The complex profile around t = 0 in Fig. 6
is the result of strong interaction between the KM soliton and
the train of solitons. The KM soliton induces periodicity in the
combined solution and creates a pulsating profile along the x

axis. Figure 7 confirms the features of the complex structure
shown in Fig. 6.

Now, taking κ1 → 0 in Eq. (12), we obtain

G2 = −κ2
2

[
8 cos (ts2κ2)δ2 + cosh (VH4xs2)κ2

(
8 − κ2

2 D′
1

)]
,

H2 = 2δ2κ
3
2 D′

1 sinh (VH4xs2),

D2 = 2 cosh (VH4xs2)κ2[16 + κ2
2 (D′

1 − 4)]

+ 2δ2
[−16 sin (ts2κ2)ts1κ2 + cos (ts2κ2)

(
κ2

2 D′
1 − 16

)]
,

(13)

where VH4 = 2α4 δ2 κ2
2 . In the limit κ1 → 0, the relation

α2 = α4(κ2
1 − 6) in Eq. (12) reduces to α2 = −6α4 in Eq. (13)

and D1 → D′
1, where D′

1 = 1 + 4t2
s1. This solution is shown

in Fig. 8(a). Here, the period of the soliton train goes to
infinity, and only one soliton localized at t = 0 remains.
It interacts with a single AB located at x = 0. There is a
high-amplitude peak at the point of intersection. Parameter κ2

controls both the period of the AB and the amplitude of the
soliton. When κ2 is reduced, the amplitude of the soliton also
goes down as shown in Fig. 8(b). On the contrary, when κ2

is increased, the soliton amplitude also increases as shown in
Fig. 8(c).

Solution (13) can also be derived from Eq. (11) by taking
the stretching factor B = 0 due to the relation α2 = −6α4.
Transforming the isolated first-order rogue wave in Fig. 3(a)
into a soliton will provide the same result as in Fig. 8(a).
Translations tj and xj have similar effects on this solution as
described in connection with Figs. 5(a) and 5(b). Namely,

FIG. 8. Two-breather solution, (13), in the limit κ1 → 0. The
second breather frequency (a) κ2 = 1.5, (b) κ2 = 0.6, and (c) κ2 =
1.9. The equation parameter α4 = 1/8.

the t shift applied to the soliton in Fig. 8(a) changes the
profile periodically. However, the x shift applied to the breather
does not change the profile of the collision point between the
soliton and the AB. The same considerations are applicable to
Figs. 8(b) and 8(c).

There is one more aspect of solution (13) worthy of mention.
Changing κ2 → iκ2 transforms the AB to a KM soliton. Fig-
ure 9 shows the result. The solution now consists of two types
of solitons. One is periodic while the other has a fixed profile.
This is obvious when the two solitons are well separated as
in Fig. 9(a). However, the result is a simply periodic solution
when the two solitons are located at the same position in t as in
Fig. 9(b). Pulsations here are significantly more complicated
than for a single KM soliton, although the period stays the
same. Localization in t for this solution is controlled by κ2.
In Fig. 10, κ2 = 1.98i, compressing the transverse dimension
to the interval [−2,2]. In Fig. 11, where the lower value of
κ2 = 0.65i is chosen, the localization is within the larger
interval [−5,5].
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FIG. 9. Two-breather solution, (13), in the limit κ1 → 0 when
α4 = 1/4. Other parameters are (a) κ2 = 1.5i, t1 = 5, t2 = −5 and
(b) κ2 = 1.5i, t1 = 0, t2 = 0.

B. Degenerate two-breather solution

The general breather solution, Eq. (9), is controlled by
two independent frequencies κ1 and κ2. However, there
is one subtlety. When κ1 � κ2, the solution is undefined.
Nevertheless, using l’Hôspital’s rule, the solution can be
recovered even in this case. In order to do this, we put κ1 = κ

and κ2 = κ + ε with small ε in Eq. (9) and carry out Taylor

FIG. 10. Pulsating solution, (13), created by merging a KM and
a fixed-shape soliton on a constant background. Here the modulation
frequency κ2 = 1.98i, while α4 = 1/16.

FIG. 11. Same plot as in Fig. 10, except κ2 = 0.65i.

expansion, where we keep only the lowest-order term in ε.
Following these steps gives us the expressions

G2 = 1

2δ
[−κ cosh(xVH )[(8δ2 + κ4) cos(tκ)

+ 4δκ(−2 cosh(xVH ) + tδ sin(tκ))]

+ κ	 cos(tκ) sinh (xVH )],

H2 = 1

δκ
[	[δ cos(tκ) cosh (xVH ) − κ]

− 4δ3(cos(tκ) + tκ sin(tκ)) sinh (xVH )

− 1

2
κ(−4δ2 + κ4) sinh (2xVH )],

D2 = 1

8δ2κ2

{−x2(−4δ2 + κ4)2V 2
H

+ 2[−κ6 + 2δ2κ2(−6 + κ2) + δ4(12 − 8t2κ2)

+ 4δ4 cos(2tκ) + [8δ4 − κ6 + 2δ2κ2(−6 + κ2)]

× cosh(2xVH ) + 2δκ cosh(xVH )

× [(12δ2 − 12κ2 + 5κ4) cos(tκ) + 8tδ2κ sin(tκ)]

− 4δκ	 cos(tκ) sinh(xVH )

+ 16xδ3κ2α4(−	 + 8xδ3κ2α4)]
}
, (14)

where δ = κ
2

√
4 − κ2, VH = 2δ[α2 − α4(κ2 − 6)], and 	 =

x[(−4δ2 + κ4)VH + 16δ3κ2α4]. Here, the translation parame-
ters xj = 0 and tj = 0. The solution contains combinations
of trigonometric and hyperbolic functions with only one
frequency component κ . The growth rate for both interacting
breathers is the same and given by δ. The contour plot of this
solution is shown in Fig. 12(b). Two ABs in this figure, with
the same frequency κ and with the same growth rate δ, merge
at ψ2(0,0) but diverge when |t | is increasing.

Solution (14) is transformed into colliding KM solitons
when κ → iκ . The growth rate is transformed into the
frequency δ → iδ of the periodic structure along the x axis.
This solution is illustrated in Fig. 12(b). When α4 = 0, solution
(14) is reduced to the form given in Refs. [30,37].

042209-7



AMDAD CHOWDURY, WIESLAW KROLIKOWSKI, AND N. AKHMEDIEV PHYSICAL REVIEW E 96, 042209 (2017)

FIG. 12. Degenerate two-breather solution, (14), with (a)
κ = 0.65 and (b) κ = 0.65i while translations t1 = t2 = x1 = x2 = 0.
In each case, α2 = 1/2, α4 = 1/8.

The limit of κ → 0 further reduces solution (14) to the
second-order rogue wave:

G2 = −12{−3 + 8[2t4 + t2(3 + 48B2x2)

+ 4Bx2(40B3x2 + 9α2 + 102α4)]},
H2 = −48{256B5x5 + x α2[−15 − 24t2 + 16t4

+ 32B2(1 + 4t2)x2] + 6x α4[−23 − 56t2 + 16t4

+ 32B2(5 + 4t2)x2]},
D2 = 9 + 64t6 + 48t4(1 + 16B2x2)

+ 12t2[9 + 256B4x4 − 96Bx2(α2 + 22α4)]

+ 16x2
[
256B6x4 + 48B3x2(9α2 + 86α4)

+ 9
(
11α2

2 + 228α2α4 + 1228α2
4

)]
. (15)

It is shown in Fig. 13. This solution was presented in
Refs. [20,23]. It is similar to the second-order Akhmediev-
Peregrine solution of the NLSE [39,40] except for the
stretching factor B = α2 + 6α4. The role of the stretching
factor in generating rogue wave solutions for higher-order
equations of the NLSE hierarchy has been discussed in
Refs. [24,25]. Briefly, all even-order terms add stretching to the
solution profile, while odd-order terms add velocity. When α4

is 0, Eq. (15) becomes the second-order Akhmediev-Peregrine
solution of the standard NLSE [13,41]. It is assumed here that
α2 = 1/2 [10].

Now returning to Eq. (14), clearly it contains trigonometric
and hyperbolic functions. The argument of the trigonometric
functions depends on the variable t , and therefore the solution

FIG. 13. Second-order rogue-wave solution of Eq. (1) with α2 =
1/2 and α4 = 1/16 given by Eq. (15).

FIG. 14. Plot of the t-periodic solution, (16), with frequency
κ = 1.0 and α4 = 1/8.

is periodic along the t axis. The argument of the hyperbolic
functions contains the x variable with coefficient VH . Thus,
the solution is localized in x. The trick is that the expression
for VH depends on both α2 and α4. It may become 0 when
α2 = α4(κ2 − 6). Then Eq. (14) reduces to

G2 = − 1

2δ
κ{(8δ2 + κ4) cos(tκ) + 4δκ[−2 + tδ sin(tκ)]},

H2 = 16xδ2κ[−κ + δ cos(tκ)]α4,

D2 = 1

2δ2κ2

{−κ6 + 2δ2κ2(−6 + κ2) + δ4(10 − 4t2κ2)

+ δκ(12δ2 − 12κ2 + 5κ4) cos(tκ) + 2δ3[δ cos(2tκ)

+ 4tκ2 sin(tκ)] − 64x2δ6κ4α2
4

}
. (16)

This solution is shown in Fig. 14. Comparing Fig. 14 with
Fig. 12(a), we note that the localization along the x axis is
lost. The two parallel breathers in Fig. 12(a) are transformed
into a plane wave in Fig. 14, with low-amplitude ripples on
the background. The main feature of this solution is the high-
amplitude central peak at the origin (0,0). Now, due to the
absence of localization along x, it looks more like a collision
of two solitons as shown in the inset in Fig. 14.

Solution (16) for the higher value of κ = 1.7 is shown in
Fig. 15. This profile is similar to the one shown in Fig. 14

FIG. 15. Two-breather solution, (16), with the higher modulation
frequency κ = 1.7 and α4 = 1/8.
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FIG. 16. Solution (17) with α2 = 1/2 and α4 = 1/8.

except for the weaker periodic modulation of the background
and lower amplitude of the central peak. In the limit κ → 2 in
Eq. (16), any modulation disappears and only flat background
is left.

Another limiting case appears when κ → 0 in Eq. (16). It
is given by

G2 = −12(−3 + 24t2 + 16t4),

H2 = 2304(1 + 4t2)xα4,

D2 = 9 + 108t2 + 48t4 + 64t6 + 36864x2α2
4 . (17)

Equation (17) can also be derived from the second-order rogue
solution, (15), by taking the stretching factor B = 0, using the
relation α2 = −6α4. This solution is shown in Fig. 16. It is
reminiscent of the degenerate case of two-soliton collision
[42] but occurs on a finite background. The solution, Eq. (17),
was obtained recently in Ref. [33].

C. Influence of differential shifts

The Taylor expansion that we carried out in deriving
Eq. (14) does not allow us to obtain the solution with nonzero
translation parameters xj and tj . To take their influence
into account we have to use the concept of differential
shifts [38,43]. The latter are modulation-frequency-dependent
translations. Applying the concept of differential shift to the
degenerate solution requires special treatment [30], as general
procedures fail.

Namely, taking series expansion of the numerator compris-
ing G2 and H2, the lowest-order coefficient remains with ε1.
Carrying out a similar series expansion on the denominator
D2, the lowest-order coefficient remains with the term ε0

and is 4δ2{cos[κ(t1 − t2)] − cosh[VH (x1 − x2)]}. Applying the
l’Hôspital rule when using the Taylor expansion will not
produce an appropriate limit unless x1 = x2 and t1 = t2 in the
denominator. In order to overcome this difficulty, we replace
xj = Xjε and tj = Tjε and then perform the series expansion.
As a result, we obtain the desired limit of (G2 + iH2)/D2 with
the lowest-order coefficient at ε1:

G2 = 1

2δ
{κ cosh(xVH )[−(8δ2 + κ4) cos(tκ)

+ 8δκ cosh(xVH ) − 4δ2κ(t + tdκ) sin(tκ)]

+ κ	′ cos(tκ) sinh (xVH )},

FIG. 17. Degenerate solution, (18), with nonzero differential shift
parameters td and xd : (a) td = −6, xd = 0; (b) td = −14.88, xd = 0;
(c) xd = 1, td = 0; and (d) xd = 40, td = 0. Other parameters are
κ = 0.65, α2 = 1/2, and α4 = 1/8.

H2 = 1

δκ

{
	′[δ cos(tκ) cosh(xVH ) − κ] − 4δ3[cos(tκ)

+ κ(t + tdκ) sin(tκ)] sinh(xVH )

− 1

2
κ
(−4δ2 + κ4

)
sinh (2xVH )

}
,

D2 = 1

8δ2κ2

{
8δ4 cos(2tκ) + 2[8δ4 − κ6

+ 2δ2κ2(−6 + κ2)] cosh(2xVH )

− 8δκ	′ cos(tκ) sinh (xVH ) + 4δκ cosh(xVH )

× [(12δ2 − 12κ2 + 5κ4) cos(tκ)

+ 8δ2κ sin(tκ)(t + κtd )] − κ6
(
2 + x2κ2V 2

H

)
+ 4δ2κ2[−6 + κ2 + 2xκ2V 2

H (x + κxd )]

− 8δ4[−3 + 2t2κ2 + 2κ3td (2t + κtd )

+ 2V 2
H (x + κxd )2] − 32xδ3κ2α4

(
	′ − 8xδ3κ2α4

)}
,

(18)

where xd=(X1 − X2), td=(T1 − T2), and 	′=xκ2(κ2VH+
16δ3α4) − 4δ2VH (x + κxd ). The parameter δ remains the
same as in Eq. (14). Equations (18) contain additional free
parameters, xd and td . When these are 0, Eqs. (18) are the
same as Eqs. (14).

How do the values td and xd affect the solution? Figure 17
provides a few illustrations answering this question. The
parameter td shifts one breather relative to the other. For
example, a small shift may unbalance the synchronization
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achieved in Fig. 12(a). Comparing Fig. 17(a) with Fig. 12(a),
we can see that for the small value of td = −6 and xd = 0, the
central second-order profile breaks into three first-order rogue
waves. As the breathers are periodic, a larger value of td may
restore the synchronization. This is achieved precisely at the
value td = −14.88 as shown in Fig. 17(b). The second-order
structure is restored here but shifted along the t axis to the right.
Disintegration and restoration of the second-order structure
occur periodically with a change in the parameter td value. The
use of a negative value of td results in a move in the positive t di-
rection. A negative sign will reverse the direction of this move.

The differential shift xd separates the two breathers along
the x axis. This is shown clearly in Figs. 17(c) and 17(d).
With a small separation, when xd = 1, the central second-order
structure splits into three first-order rogue waves. This is shown
in Fig. 17(c). When the separation is larger, xd = 40, the two
breathers are completely separated as Fig. 17(d) demonstrates.
Changing the sign of xd leads again to separation of the two
breathers, with the patterns reversed in x. Thus, changing either
of the parameters, td or xd , may break apart the second-order
profile at the origin. However, the reason for the splitting in
each case is different. Unlike changing td , increasing the value
of xd cannot restore the triplets to form a second-order profile
periodically.

Changing κ → iκ in Eq. (18) transforms ABs to KM
solitons. This action introduces the 90◦ rotation shown in
Fig. 12. This is explained in Sec. III B. In order to see the effect
of the differential shift parameters on KM solitons we must
also change td → itd and xd → ixd . When these parameters
are varied, the degenerate KM solution experiences effects
analogous to those shown in Fig. 17.

The limit κ → 0 in Eq. (18) is also not simple. In order to
approach this limit, the coefficient in front of the differential
shift parameter must be ∼κ2 [43]. In Eq. (18), the coefficients
in front of td and xd are ∼κ and taking the limit will lead
us to a plane wave solution unless we replace td → kt ′d and
xd → kx ′

d , thus defining the coefficients in front of t ′d and
x ′

d ∼ κ2. Now taking the limit κ → 0 in Eq. (18) reduces it to
a second-order triplet solution:

G2 = −12{−3 + 8[2t4 + 160B4x4 + t2(3 + 48B2x2)

− 24t td + 12Bx(−8Bxd + 3xα2 + 34xα4)]},
H2 = −48{256B5x5 + 24B(1 + 4t2 − 16B2x2)xd

+ x[−15 − 24t2 + 16t4 + 32B2(1 + 4t2)x2

− 192t td ]α2 + 6x[−23 − 56t2 + 16t4

+ 32B2(5 + 4t2)x2 − 192t td ]α4},
D2 = 9 + 64t6 + 4096B6x6 + 48t4(1 + 16B2x2)

+ 12t2(9 + 256B4x4)

+ 48td
{
4t(−3 + 4t2 − 48B2x2)

+ 48t2
d + 192B2x2

d − 16Bxxd [9α2

+ 2(−6Bt2 + 8B3x2 + 51α4)]

+ x2
[
33α2

2 + 12α2(−2Bt2 + 12B3x2 + 57α4)

+ 4α4(−132Bt2 + 344B3x2 + 921α4)
]}

, (19)

where, for simplicity, we have omitted the primes over the free
parameters td and xd . This solution is shown in Fig. 18. It was

FIG. 18. Rogue-wave triplet, (19), for xd = 25, td = −25, α2 =
1/2, and α4 = 1/32.

given in Refs. [20,23]. As shown in Fig. 18, the differential
shift parameters xd and td break apart the second-order profile
shown in Fig. 13 and disintegrates it into three separate first-
order rogue waves. Naturally, if we take xd = td = 0, Eq. (19)
will reduce to Eq. (15) and the triplet will merge and form a
second-order rogue wave solution. Taking α4 = 0 in Eq. (19)
will further reduce the solution to the standard NLSE rogue
wave triplet that has been given in Refs. [38,43].

Now, if we look at Eqs. (14) and (18), again, the parameter
VH is responsible for localization in x. It can be 0, VH = 0,
when α2 = α4(κ2 − 6). In this particular case, the solution,
Eq. (18), is reduced to

G2 = − 1

2δ
κ{(8δ2 + κ4) cos(tκ)

+ 4δκ[−2 + δ sin(tκ)(t + κtd )]},
H2 = 16xδ2κ[−κ + δ cos(tκ)]α4,

D2 = 1

2δ2κ2

{−κ6 + 2δ2κ2(−6 + κ2)

+ δκ(12δ2 − 12κ2 + 5κ4) cos(tκ)

+ 2δ3(δ cos(2tκ) + 4κ2 sin(tκ)(t + κtd ))

− 2δ4[−5 + 2κ2(t + κtd )2] − 64x2δ6κ4α2
4

}
. (20)

Solution (20) is more general than (16), as it has a free
parameter td . However, there is no xd in this solution. This

FIG. 19. Plot of degenerate solution, (20), with td = 0.5 and
α4 = 1/4.
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FIG. 20. Transformation of a triplet into a single rogue wave
revealed by Eq. (21) with α4 = 1/4 when the differential shift
parameter is small, td = 1.

happens because xd always appears in Eq. (18) in combination
with VH , which is 0.

Solution (20) is shown in Fig. 19. It is similar to the one
shown in Fig. 14 but the central high-amplitude profile is
broken and has shifted along the t axis with the influence
of the parameter td . The latter is shown in the inset in Fig. 19.
In the limit κ → 2, the modulation amplitude becomes 0 and
solution (20) reduces to the background level. In the opposite
limit, κ → 0, Eq. (20) reduces to the expressions

G2 = 12[3 − 8t(3t + 2t3 − 24td )],

H2 = 2304(1 + 4t2)xα4,

D2 = 9 + 108t2 + 48t4 + 64t6

+ 192td (−3t + 4t3 + 12td ) + 36864x2α2
4 . (21)

Similarly to the case of Eq. (18), the limit κ → 0 in Eq. (20)
is not simple. We first have to replace td → kt ′d and only then
take the limit κ → 0, thus obtaining Eq. (21). This solution
can also be obtained from Eq. (19). In this case, we need to
take the stretching factor B = 0 with the relation α2 = −6α4.

The question arises, What happens to the triplet solution in
the limit B → 0 in Eq. (19)? Figure 20 shows clearly that the
triplet undergoes a transformation. Two of the first-order rogue
waves from the triplet disappear into the background, leaving
only one first-order rogue wave. This transformation becomes
clearer with a further increase in the value of td as shown in

FIG. 21. Plot of solution (21) with a large value of the differential
shift parameter, td = 40, and α4 = 1/4.

Fig. 21. When td = 40, only a single rogue wave remains,
with the highest amplitude 3, i.e., the same amplitude as for
the Peregrine solution. This transformation takes another form
when we take td = 0, reducing Eq. (21) to Eq. (17).

Thus, the influence of the differential shift parameters
xd and td on the wave profiles is far from trivial. Higher-
order solutions (n > 2) could be even more complicated. For
example, in the case of the NLSE, the nth-order rogue wave
solution has n(n + 1)/2 peaks due to the influence of the
parameters xd and td [43]. Similar and even more complicated
effects can be found for solutions of Eq. (1).

IV. CONCLUSIONS

Our main results are as follows.
(1) We derive and analyze the first-order breather solution

of Eq. (1). Particular cases of this solution are rogue waves and
KM solitons. We show that for a specific choice of parameters,
the breather solution loses localization but remains periodic.
On the other hand, the rogue wave can be transformed to
a soliton solution. Moreover, a special choice of equation
parameters transforms a periodic KM soliton to a stationary
soliton.

(2) We present a general two-breather solution of Eq. (1)
which has several independent free parameters. Two of them
are the modulation frequencies, which describe the periodicity
of each breather evolving on a constant background. Variations
of them produce a rich variety of wave profiles.

(3) We derive the degenerate two-breather solution when
the modulation frequencies of the two breathers coincide.
Several particular cases of this solution are presented. For
example, the zero-frequency limit of the degenerate solution
leads to a second-order rogue wave solution of Eq. (1).

(4) We introduce two additional differential shift
parameters in the degenerate solution and analyze their
influence on the wave profile.

These structures and their mutual transformations are
relevant to nonlinear optics, plasmas, and hydrodynamics [44]
and Bose-Einstein condensates. In optics, these effects can
be studied similarly to the higher-order modulation instability
that has been found experimentally in Ref. [45]. Turbulence
[46–48] and supercontinuum generation [49,50] are two other
examples of highly complex nonlinear wave phenomena where
our results could be useful.

An important property of the solutions is their stability.
There are various approaches to stability problem [51]. One
of them is stability relative to small perturbations of the
solution [52]. Another one is stability relative to perturbations
of the original equation [53]. There is also an approach
based on numerical simulations [54]. The problem is far from
being simple because the background is involved. Preliminary
studies indicate that solitons on a background are stable
[55]. However, complex analysis is required which we cannot
provide here. Clearly, exact solutions have to be presented
first before stability problems can be even posed in accurate
form as mathematical problems. We leave these problems for
future studies as each of the above mentioned aspects require
a separate lengthy investigation which cannot be presented in
the frame of a single publication.
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