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Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence
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We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser
beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the
long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through
a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate
fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent
conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by
implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy.
We show that the permutation entropy estimations at multiple time scales evidence an interplay between different
dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We
confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional
Brownian motion with a Hurst exponent H = 5/6 as the sampling time increases. Besides, we are able to
quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength.
We have also demonstrated that these experimental observations are in very good agreement with numerical
simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling

regimes.
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I. INTRODUCTION

The random nature of the turbulent atmosphere affects the
propagation of any light beam propagating through it. Indeed,
the turbulent velocity field shuffles and breaks pockets of air
with different indices of refraction; in doing so, the index
fluctuations inherit the stochastic properties of the turbulent
velocity field. Consequently, any wave front emerging from a
turbulent region will experience random distortions. Schwartz
et al. [1] hypothesized that turbulence-degraded wave-front
phase fluctuations can be modeled by a fractional Brownian
motion (fBm) with a Hurst exponent H = 5/6, within the
Kolmogorov model. Later, it was proven [2,3] that the wave-
front phase can be correctly described by a two-dimensional
(2D) Levy fBm field in the inertial range. Fractional Brownian
motion is a family of Gaussian self-similar stochastic processes
with stationary increments. The former is a well accepted
model for fractal phenomena that have an empirical spectra
of power-law type 1/f* anda = 2H + 1 with1 <o < 3 [4].
Its long-range correlations are quantified by the Hurst exponent
H € (0,1). These processes exhibit temporal memory for
any value of H except for H = 1/2, which corresponds to
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classical Brownian motion (random walk). Thus, the Hurst
parameter defines two distinct regions in the interval (0,1).
When H > 1/2, consecutive increments tend to have the same
sign so that these processes are persistent. For H < 1/2, on
the other hand, consecutive increments are more likely to
have opposite signs, and the underlying temporal dynamics
are antipersistent [5].

Any laser beam that propagates through the turbulence
experiences perpendicular displacements to the initial un-
perturbed direction of propagation [6]. These displacements
emerge from the beam phase fluctuations. This phenomenon
is commonly known as laser beam wandering because of
the dancing that the beam performs over a screen. Since
it is very sensitive to the turbulence behavior, it has been
used in different experimental configurations to estimate
the characteristic scales and parameters associated with the
turbulence, such as the index of refraction structure constant C>
[6-9]. Recently, Zunino et al. [10] experimentally confirmed
the 5/6 exponent for the angle-of-arrival fluctuations of stellar
wave fronts propagating through atmospheric turbulence.
Later on, they [11] experimentally showed that the Hurst
exponent can be estimated from the coordinate fluctuations of
the laser beam propagating through fully developed isotropic
turbulence without assuming a particular spectral behavior,
independent of any theoretical model, proving tobe H = 5/6.

Usually, the information captured from a laser beam
wandering experiment are temporal records of the coordi-
nates and/or intensity fluctuations. From these measurements
or commonly called time series (TS), it is possible to
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characterize the underlying turbulence dynamics [11,12].
Numerous methodologies focus on the estimation of entropic
quantifiers to characterize the dynamical behavior of a given
system from a TS. In this scenario a probability distribution
function (PDF) is assumed a priori. However, the implemen-
tation of an appropriate methodology, i.e., one that extracts all
the relevant intrinsic dynamical information, for estimating the
PDF related to a TS is a subtle issue. Actually, it depends on
the particular characteristics of the data, such as stationarity,
length of the TS, level of noise contamination, etc. Many
schemes have been proposed for a proper estimation of the
PDF associated with a TS; without being exhaustive, we can
mention binary symbolic dynamics [13], Fourier analysis [14],
wavelet transform [15], permutation analysis [16], Lempel-Ziv
permutation analysis [17], etc. In particular, the permutation
analysis maps a raw TS into a corresponding sequence of
symbols called ordinal patterns [16]. This symbolic method is
simple, robust, and, the most important fact is that it takes
notice of time causality in dealing with the dynamics of
the system. No model assumptions are needed. Distinction
between the deterministic (chaos) and stochastic nature of
TS, as well as identification of dynamic changes at different
temporal scales have been accomplished by this symbolic
approach when it is used to estimate the information quantifiers
in a representation space [18-20]. It is important to stress
that the value of permutation entropy alone cannot be used
to determine whether or not a signal is chaotic. This fact
is evidenced in the case of a highly persistent fBm (H
close to 1) for which the entropy value is significantly
smaller than 1 [21]. This value may erroneously lead one
to conclude a deterministic dynamics. In particular, ordinal
patterns and permutation entropy have become useful in the
characterization of fBm and its increments [21-24].

In this paper, we applied an ordinal pattern analysis to
estimate the entropy of the fluctuations of a laser beam
centroid propagating through an isotropic optical turbulent
medium. Here, we aim to go beyond a previous work [11], by
implementing a multiscale analysis of the permutation entropy
that allows us to characterize all the dynamical information
contained in the temporal measurements. We confirm the
presence of an interplay between two different dynamical
behaviors: an integrated stochastic process for small time
scales and a fBm for large temporal scales. As the turbulence
intensity increases, the permutation entropy estimated from
the experimental records converges to the value associated
with the permutation entropy of a fBm with a Hurst exponent
H = 5/6, as expected. In addition, we are able to quantify the
amount of noise contamination in the measurements.

The remainder of this paper is structured as follows: The
experimental system is introduced in Sec. II. In Sec. III, we
briefly describe the ordinal patterns and permutation entropy.
Experimental results and numerical simulations are presented
and discussed in Sec. IV. Finally, some concluding remarks
are given in Sec. V.

II. EXPERIMENTS

Controlled turbulent air flow is generated using a device
commonly called a turbulator, similar to that originally
proposed by Fuchs et al. [25], and later enhanced by Keskin
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FIG. 1. Schematic diagram of the laboratory experimental setup.
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et al. [26]. Briefly, the optical turbulence extending over a
35-cm channel is the product of the collision of two masses
of air, one hot and one cold, that are pushed by identical fans
through honeycombs placed opposite to each other at the sides
of this chamber. Each fan is spinning at equal velocities so
the turbulence characteristics are only due to the temperature
difference between the two masses of air. The hot source has
an electric heater controlled by changing the current passing
through it. By increasing the temperature of the hot source,
different turbulent intensities can be produced [27,28]. The
turbulator is a fully characterized single turbulent layer that
offers repeatability. The strength of the artificial turbulence is
quantified through the index of refraction structure constant
C2. In this characterization, C? is expressed as a function of
the temperature difference between hot and cold sources (7}
and T, respectively, in Fig. 1) [29].

The experiment was performed in controlled conditions
in which a laser beam propagates through the artificial
turbulence—see Fig. 1 for a schematic view of the optical
setup. The wandering of the laser beam (10-mW HeNe Melles
Griot Model 05-LHP-991) is detected by a position-sensitive
detector with an area of 1 cm? (UDT SC-10 D). This detector
measures the position of the centroid of the impinging laser
beam with an accuracy of 2.5 um, so very small position
deflections can be detected. Fluctuations on the centroid
position along the vertical and horizontal axes were recorded
at 2 kHz. Experiments with 13 temperature differences AT =
T, — T, ranging from 5 to 180°C were performed. It is
worth noting here that the estimated structure constants are,
at least, two or three orders of magnitude larger than those
expected in outdoor experiments. These higher turbulence
strengths are required to become detectable the laser centroid
fluctuations because of the small turbulent path length in the
mixing chamber. For further details about the experiment, see
Ref. [11].

III. PERMUTATION ENTROPY

Bandt and Pompe (BP) introduced a symbolic methodol-
ogy, which arises naturally from a given time series without any
model assumptions [16]. “Partitions” of length D are devised
by appropriately ranking the neighboring series’ values rather
than allocating amplitudes according to different levels. Given
a one-dimensional TS, X = {x,;t = 1, ..., M}, first one has
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to choose two parameters, the embedding dimension D >
2 (D e N, the pattern length) and the embedding delay
T (r € N, the time separation between the values). After
that, the time series is partitioned into subsets of length D
of consecutive (r = 1) or nonconsecutive (tr > 1) values,
generated by (t) = (x;,X/4<, ..., X(D—2)r,Xi+(D—1)r ), Which
assigns to each time ¢ the D-dimensional vector of values
at times ¢, t + 1, ...,t + (D — 1)t. Clearly, more temporal
information is incorporated into the vectors as the D value
increases. Then, each element of the vector is replaced by a
number from zero to D — 1 related to their original temporal
position in the partition. By ordinal pattern related to the
time () we mean the permutation 7; = (ro,7y, ..., rp—1) of
[0,1, ..., D — 1], in accordance with the relative strength of
each element in the ordered vector from low to high. Equal
values in the TS are usually ranked according to their temporal
order. This is justified if the values of & have a continuous
distribution so that equal values are very unusual.

The pattern length D plays an important role in the
evaluation of the appropriate PDF because it determines the
number of accessible states or ordinal patterns D! and also
conditions the minimum acceptable length M > D! of the TS
that one needs in order to work with a reliable statistics [16].
By counting the number of times each possible permutation 7z;
appears in the symbolic sequence divided by the total number
of vectors, one can compute the PDF of the ordinal patterns.
The permutation entropy (PE) is just the classical Shannon
entropy estimated by using this ordinal pattern probability
distribution. Its normalized version is given by

) |2
b =~ 1D ;p(m)ln[p(m)]. ()

To illustrate the BP recipe we will consider a simple
example starting with a TS with seven (M = 7) values X =
{4,7,9,10,6,11,3}, embedding dimension D = 3, and embed-
ding delay t = 1. The first two triplets, (4,7,9) and (7,9,10),
are mapped to the pattern 012 since the values are originally
placed in ascending order. On the other hand, (9,10,6) and
(6,11,3) correspond to the pattern 201 since x,42 < X, < X;41,
while (10,6,11) is mapped to the ordinal pattern 102 since
Xi41 < X; < xr42. Then, the associated probabilities with the
six ordinal patterns are p(012) = p(201) =2/5, p(102) =
1/5, and p(021) = p(120) = p(210) = 0. Consequently, for
this example, H} = ﬁ[—Z(Z/S) In(2/5) — (1/5)In(1/5)] =~
0.59.

With respect to the selection of the parameters, BP suggest
in their cornerstone paper to work with 3 < D < 7 and an
embedding delay T = 1 [16]. Nevertheless, other values of
7 might provide additional information. It has been shown
that this parameter is strongly related, when it is relevant,
to the intrinsic time scales of the system under analysis
[19,22,23,30-32]. By changing the value of the embedding
delay 7, different time scales are being considered since
physically corresponds to multiples of the sampling time of the
signal under analysis. In this work, we report our results with
an embedding delay D =5, yet qualitatively similar results
were found by using D = 3, 4, and 6. On the other hand, the
embedding delay 7 is varied between 1 and 50 for testing the
underlying dynamics at several time scales.
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FIG. 2. Mean and SD (displayed as error bars) of the normalized
PE as a function of the embedding delay 7, using an embedding
dimension D =5, for the integrated fluctuations of the centroid
coordinates of the laser beam for five representative turbulence
strengths C2 (m =23 x 107%): (a) 5.7, (b) 6.7, (c) 8.0, (d) 14.1, (e)
40.2. Qualitative similar results are found with D = 3, 4, and 6.

IV. RESULTS AND DISCUSSION

Twenty-one independent realizations of M = 20 000 points
for each coordinate were recorded for each turbulent condition.
The PE was estimated from the integrated sequences for both
(horizontal and vertical) coordinates. Since a priori there is
no privileged time scale (i.e., an optimal embedding delay 7)
at which the entropy should be estimated, we carried out a
multiscale analysis. Figure 2 shows the mean and standard
deviation (SD) of the normalized PE with D =5, for the 21
realizations, as a function of the embedding delay 7. Five
representative turbulent strengths are depicted for the sake
of better visualization. Similar qualitative results are found
with D =3, 4, and 6. This multiscale analysis confirms a
transition of the PE to a stable value as the time scale t
increases, which seems to be more pronounced for stronger
turbulent intensities [Fig. 2(e)]. Without having any prior
information about the measurements, we can associate the
entropy evolution observed at low time scales with either the
omnipresence of noise (which is inherent to any temporal
sequences of measurements), or the existence of a crossover
between two scaling laws.

In order to better understand this issue, we have simulated
21 independent realizations of a fBm with H = 5/6 using
the MATLAB function wfbm (it uses the algorithm proposed
by Abry and Sellan [33]). The lengths of the simulated
sequences are the same as the measured coordinate fluctuations
(M = 20000). Furthermore, a well-defined crossover time
scale w was defined in the artificial TS, by dividing the series
generated from the increments of the fBms (its derivative),
into segments of length w. Then, we integrate the segments in
such a way as to obtain a process (of length w). Thus, all the
correlations for T > w are preserved, but the scaling exponent
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FIG. 3. Mean and SD (displayed as error bars) of the normalized
PE as a function of the embedding delay t, using an embedding
dimension D =5, for a simulated fBm of length M = 20000 with
a well-defined crossover at time scales (a) 10, (b) 20, and (c) 30.
Different NSRs are also included. Qualitative similar results are found
when D = 3, 4, and 6 are used.

within the segments is modified (H — H + 1). Additionally,
a noisy environment was simulated by adding Gaussian white
noise—different conditions were produced by changing the
noise-to-signal ratio (NSR). The NSR is defined as the SD of
the noise over the SD of the signal [23]. Finally, we integrate
the series to estimate the normalized PE of the processes.
Figure 3 shows the estimated PE with D = 5 (mean and SD)
of 21 realizations as a function of the time scale t for different
noise levels and window sizes w. For the case of noise absence
(NSR = 0, blue circles), we observe that PE converges slowly
from a very low value to a plateau after the time scale equals the
size of the window. In other words, for t = 1, PE quantifies
a strong persistence inside the windows due to the double
integration. As t increases, PE converges to a stable value
(independent on 7) quantifying a fBm with H = 5/6 (black
dots). As it has been proposed by Zunino et al. [21], the
independence on the time scale evidences the presence of a
self-similar stochastic process (fBm). On the other hand, when
dealing with a noisy environment, PE shows a minimum. Now,
for T = 1, the PE “sees” the noise. The greater the noise level,
the greater is the value of the normalized PE. As the time scale
increases, the entropy quantifies the process (of length w) with
a minimum, and finally it stabilizes to the value corresponding
to a pure fBm with H = 5/6. Similar results are obtained
with D = 3, 4, and 6. From this numerical analysis it can be
concluded that PE is able to quantify the interplay between
two different scaling laws in the same TS, even when the noise
contamination is strong.

This numerical analysis leads us to a better interpretation
of the characterization depicted in Fig. 2. The analyzed
sequences present a crossover between an integrated process
for small time scales and a persistent fractal behavior for
larger time scales. The independence of the PE on these
larger time scales evidences a self-similar stochastic series
(fBm) on this temporal range [21]. There exists electronic
noise contamination, and its magnitude is affected by the
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FIG. 4. Mean and SD (displayed as error bars) of the noise
quantifier I's and NSR for the horizontal and vertical coordinates
of the laser beam centroid as a function of the turbulence strength.
In each case, both quantifiers are averaged over 21 realizations. The
inset plot shows I's vs NSR (only mean values are depicted for better
visualization). Qualitative similar results are found with D = 3, 4,
and 6.

turbulent strength. As the intensity of the turbulence increases,
the coordinates’ fluctuations are larger and, consequently, the
related NSRs are smaller. This fact is clearly concluded from
the comparison between experimental and simulation results
(Figs. 2 and 3).

With the purpose of quantifying the level of noise in the
measurements from an entropic point of view, we define a
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FIG. 5. Mean and standard deviation of Fs from the interval
7 €[30,50], as a function of the turbulent strength C? for the (a)
horizontal coordinate and (b) vertical coordinate. The gray region
indicates Hs £ 3o from a simulated fBm with H = 5/6 contaminated
with noise according to the NSR computed from the experiments
(see Fig. 4). The entropy Hs estimated from the shuffled data is also
depicted. Qualitative similar results are found with D = 3, 4, and 6.
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FIG. 6. Averaged normalized PE estimated with D =5 for the horizontal and vertical experimental records and for the numerical
simulations. In the former case, the analysis is developed as a function of the embedding delay t and the turbulence intensity, while in
the latter case the NSR is implemented for quantifying the turbulence strength.

noise quantifier,

(HID ) signal

(H}.) ) noise

as the normalized PE associated with the signal at a given
turbulent condition relative to the entropy of the background
noise. Since we have concluded, from Fig. 3, that the entropy
evaluated at T = 1 detects the amount of noise, we evaluate
both entropies in I'p with this embedding delay. The back-
ground noise was considered as the reference measurements
taken with both fans off and the heater disconnected, in order
to characterize electronic noise and room turbulence effects
only. Figure 4 depicts the estimated I's as a function of the
turbulent strength. For the sake of comparison, the NSR is also
plotted. We observe that the noise quantification through I's is
qualitatively equivalent to the results obtained by estimating
the NSR. A similar qualitative characterization is obtained for
other values of D. The inset plot compares both quantifiers.
Regardless of whether I' depends on the parameter D, the
linear dependence observed remains at least for D = 3, 4, and
6. Clearly, as the turbulent intensity increases, the electronic
noise contamination decreases. As it can be concluded from
Fig. 4, a nonlinear relationship is found between these two
quantities.

Now, we focus on the long-range correlations observed for
large temporal scales. From Fig. 2, it can be concluded that
after T = 30, a stability of Hs is reached. Since the constant
value of the PE is a signature of a scale invariant stochastic

1-‘D = ) (2)

process [21], the fBm appears as a suitable model. We chose
the interval T € [30,50] to estimate a single value for the
entropy Hs. This result is depicted in Fig. 5. More precisely,
the mean and SD of the estimated PE over 21 realizations,
averaged over the interval T € [30,50], are depicted. The gray
region indicates a 30 confidence interval (Hs £ 30) estimated
from 21 independent realizations of a fBm with H =5/6
contaminated with noise according to the NSR computed from
the experimental measurements. The similarity between the
entropy estimated from the horizontal and vertical coordinate
sequences accounts for the isotropy of the turbulence within the
laboratory chamber. As the turbulent intensity increases, PE
saturates to the entropy value associated with a fBm with H =
5/6 (gray region). This confirms a persistent fractal behavior of
the laser beam wandering in laboratory-generated turbulence.
As expected, the persistent behavior is absent when the entropy
is estimated from the associated shuffled sequences, since all
temporal structures are destroyed, obtaining a value for the PE
associated with a random walk (Hs ~ 0.92).

With the aim of studying the strong persistent behavior
observed (very low values of the PE) for small time scales,
we consider the highest turbulent intensity [Fig. 2(e)], because
minimum noise contamination exists (no minimum observed
in the normalized PE). For T = 1, the averaged values (+=SD)
of PE over the 21 realizations for the horizontal and vertical
coordinate records are (Hs) = 0.48 & 0.02 and (Hs) = 0.5 &+
0.04, respectively. In addition, we have estimated the PE for
100 independent realizations of a fBm with H — 1, and it
is (Hs) = 0.52 £ 0.02. This is a lower bound of the PE for
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TABLEI Mean (SD) of the Hurst exponents of the 21 realizations
for both coordinate fluctuations and all turbulent intensities C2.

C2 (m=3 x 107) (H,) (SD) (H,) (SD)
5.7 0.49(0.04) 0.49(0.04)
6.7 0.57(0.03) 0.59(0.04)
8.0 0.69(0.04) 0.66(0.03)
9.9 0.74(0.03) 0.71(0.03)
11.4 0.77(0.04) 0.72(0.03)
14.1 0.78(0.03) 0.76(0.04)
16.8 0.82(0.04) 0.76(0.04)
20.5 0.82(0.03) 0.78(0.03)
272 0.86(0.03) 0.81(0.04)
33.1 0.89(0.04) 0.84(0.04)
37.9 0.86(0.05) 0.79(0.06)
39.2 0.80(0.04) 0.88(0.05)
40.2 0.79(0.06) 0.83(0.05)

the fBm stochastic processes; no lower values are allowed if a
fBm model is considered. This result indicates that the scaling
behavior observed at small time scales could correspond to an
integrated process.

As a further analysis of the whole experimental data
set, in Figs. 6(a) and 6(b) we depict the averaged PE, Hs
over 21 realizations, as a function of the time scale t, for
all turbulence intensities considered in the experiment. In
addition, Figs. 6(c)-6(f) show the averaged entropy as a
function of 7 and the NSR, from a simulation of noise
contaminated fBms with a well-defined crossover at a time
scale T = 30 [Figs. 6(c)-6(e)] and T = 5 [Figs. 6(e) and 6(f)],
between a process and long-range correlated fluctuations,
as previously described. To simulate the fBms, we have
used the averaged Hurst exponents estimated by using the
traditional detrended fluctuation analysis (DFA) [34], from
the 21 experimental measurements for each C2. The DFA
methodology has been widely proved to be robust in the
analysis of experimental data [11]. For its implementation in
MATLAB we recommend Ref. [35]. A detrending polynomial
of second order and 96 different scales s € [10,5000] equally
spaced in the logarithmic scale were employed in the DFA
implementation [11]. The mean and SD of the exponents are
outlined in Table I. With a first sight of Fig. 6, it is well
established that PE exhibits a transition to a stable value as the
time scale increases for almost all C2. For the case of lowest
turbulentintensity (C? = 5.7 x 1072 m~%/) the detector is un-
able to resolve the fluctuation of the coordinates, consequently
the entropy quantifies a fully uncorrelated electronic noise
associated with the detector for all time scales with a value
Hs ~ 0.92, which is the value corresponding to the entropy of
a random walk. Since the noise level in the measurements
is directly related to the turbulent conditions (see Fig. 4),
we can qualitatively compare the evolution of the entropy
as a function of C? (the one estimated from the measured
sequences), with the evolution of the entropy with the NSR in
the numerical simulations. From the simulations, we conclude
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that for high turbulent intensities, the crossover happens for a
time scale T ~ 30. On the other hand, for the lowest intensities,
the crossover is located at a shorter time scale (r ~ 5). A
more detailed comparison between these crossovers and those
estimated by using other methodologies such as DFA and/or
adaptive fractal analysis (AFA) [36—40] is beyond the scope
of the present work and will be a subject of further study. It
is worth remarking the good match between the experiments
and the numerical simulations.

V. CONCLUSIONS

We have experimentally characterized the temporal struc-
tural diversity of laser beam wandering in isotropic optical
turbulence, through a multiscale permutation entropy analysis.
In addition, we have performed a numerical analysis based
on simulations of fBm stochastic processes, in order to
interpret the experimental results. Our findings show that the
multiscale permutation entropy characterizes all the relevant
dynamical information contained in the laser beam coordinate
fluctuations. The role played by the time scale t is crucial to
observe dynamical changes in the series.

We have quantified the amount of noise contamination by
defining a measure, namely, I'p, as the ratio between the
entropy of the signal over the entropy of the background noise
for r = 1. We showed that " is qualitatively equivalent to the
NSR. From an entropic point of view, we demonstrated that
the turbulent strength is related to noise contamination. Thus,
we were able to associate the NSR in the simulations with the
intensity of the turbulence C?.

We have also demonstrated the presence of a crossover
between two different scaling laws in the integrated centroid
coordinates of the laser beam. We observed an integrated fBm
process, for small time scales, while for larger time scales we
have identified a transition to a self-similar correlated time
series. Actually, the laser beam wandering could be modeled
by a persistent fractal behavior with a Hurst exponent H = 5/6
for the stronger turbulence as the sampling time increases. The
quantitative similarity between the entropy estimated for both
horizontal and vertical coordinate fluctuations accounts for
the isotropy of the turbulence within the laboratory chamber.
Finally, we conclude that a multiscale estimation of PE is
essential for uncovering all the dynamical information of the
experimental measurements of a laser beam wandering.
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