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Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate
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We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement
advanced measurement techniques and long-time numerical simulations makes this system extremely valuable
for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to
handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues
(ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the
forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory.
Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures
look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets
(crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show
that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear
wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data
show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the
strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
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I. INTRODUCTION

Historical investigations of wave turbulence were motivated
by the quest for a statistical modeling of the sea surface
or turbulence in magnetized plasmas [1,2]. It led to the
development of the weak turbulence theory (WTT): a statistical
theory of wave turbulence in the limits of asymptotically
large systems and vanishingly small nonlinearity [2–4]. In
this theoretical framework, it is possible to demonstrate the
occurrence of an energy cascade in forced, out of equilibrium,
dispersive wave systems. This result is remarkable in compar-
ison with the theoretical developments of a statistical theory
of turbulence where such an energy cascade is accepted for a
century but its justification relies mostly on phenomenological
arguments [5].

Although the theory exists for about half a century, clear
experimental and numerical evidence of weak turbulence in
laboratory experiments is much more recent [3,4,6–12]. Part of
the difficulties come from the two above-mentioned hypothe-
ses underlying the theory, which are difficult to fulfill in the
laboratory where the systems are of finite size and dissipative.
Dissipation must be overcome by strong enough a forcing to
develop a nonlinear stage, and this may not be compatible with
the hypothesis of weak nonlinearity. Another difficulty lies in
the measurements. Indeed, waves are characterized by their
propagation. Probing the presence of waves in the nonlinear
system and discriminating them from other structures demands
a space and time resolved measurement of the turbulent field
[7,10,13,14]. This is usually challenging due to the very nature
of turbulence: a wide range of time and space scales. This
is particularly difficult in 3D systems. Note that truly weakly
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nonlinear numerical simulations are also challenging due to the
scale separation between the linear wave period and the much
longer nonlinear timescales. This separation makes numerical
simulations extremely costly.

In that respect, the vibrating elastic plate has been shown to
be a fruitful physical model for studies of wave turbulence.
Thin elastic plates can support the propagation of flexion
waves. These waves become nonlinear when the in-plane
stretching due to large amplitude deformation becomes sig-
nificant. As the nonlinear interactions grow, a turbulent state
can develop [13,15–18]. This state is actually responsible for
the noise radiated from a shaken plate and has been utilized
for centuries to mimic thunder in theaters [19]. The intrinsic
2D character of thin plates made possible experimental studies
by means of a space and time resolved profilometry technique
as well as numerical simulations either of idealized spatially
periodic configurations [8,20–22] or more realistic ones [23].
These studies investigated stationary out of equilibrium cases
and pointed out the consistency with the description offered
by the WTT as well as limitations in the applicability of this
theory, the most serious of which being due to dissipation
in experimental systems [8,24,25]. Nonstationary situations
either of turbulence decay or turbulence buildup have also
been studied that are also consistent with the WTT [26–28].
Furthermore, when the forcing is increased, the vibrating
plate displays a transition to a regime of stronger nonlinearity
characterized by the generation of strongly nonlinear coherent
structures that induce deviations from the WTT in terms
of power spectra as well as the emergence of intermittency
[20–22,29,30]. In the present article, we investigate both
experimentally and numerically this strong forcing regime in
much more detail. We show that the occurrence of singular
structures changes the power spectrum with an additional
component on top of the propagating waves. We quantify the
observed intermittency.
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The article is organized as follow: in Sec. II, we introduce
the governing equations of thin plates and we give a description
of the experimental setup and of the numerical methods.
The different regimes potentially encountered as the forcing
intensifies are presented and qualitatively described in Sec. III.
We identify in Sec. IV the space-time spectral signature of
the coherent structures. From this signature, we infer a first
estimate of their mean velocity. A dual analysis in physical
space is carried out in Sec. V, which confirms the physical
picture of coherent singularities moving following a velocity
distribution that we relate to the space-time spectrum of the
motion. Finally, we demonstrate in Sec. VI that the emergence
of singular structures is associated with the apparition of
intermittency in the system. The last section is dedicated to
concluding remarks.

II. METHODS

A. The wave equation

The dynamics of the deformation ζ of a shaken thin elastic
plate (flat at rest) follows the Föppl–von Karman equations:

∂tt ζ = − Eh2

12ρ(1 − σ 2)
�2ζ + 1

ρ
{ζ,χ} + F + D, (1a)

�2χ = −E
{ζ,ζ }

2
, (1b)

where the physical properties of the material are described
by the following coefficients: Young’s modulus E, Poisson’s
ratio σ , the density ρ. F and D are forcing and dissipation,
respectively. The brackets {·,·} denote the bilinear differential
operator

{ζ,χ} = ∂xxζ ∂yyχ + ∂yyζ ∂xxχ − 2∂xyζ ∂xyχ. (2)

In the limit of vanishingly small amplitude deformations, pure
flexion yields the linear part of Eq. (1a), which translates
into the flexion waves dispersion relation: ω = ±ck2 with

c =
√

Eh2

12ρ(1−σ 2) .
As the amplitude of the deformation grows, in-plane

stretching comes into play and generates nonlinear terms in the
FvK equations. Despite being in the limit of linear elasticity
for the bulk material, nonlinear terms arise for geometrical
reasons: the local stretching induced in an initially flat surface
is proportional to the Gaussian curvature G of the deformation
ζ whose full expression and leading order in the limit of a
weak slope are, respectively,

G(ζ ) = ∂xxζ ∂yyζ − (∂xyζ )2

[1 + (∂xζ )2 + (∂yζ )2]2
, (3a)

= G0(ζ )[1 + O(|∇ζ |2)] where G0(ζ ) = {ζ,ζ }
2

.

(3b)

Formally, in-plane stretching is conveniently taken into
account at the lowest order by introducing the auxiliary Airy
function χ . The Airy function obeys Eq. (1b) where the leading
order of the Gaussian curvature G0 acts as a source term. For
this reason, the statistical properties of the Gaussian curvature

TABLE I. Parameters of the experiments (top) and numerical
simulations (bottom)

Exp. run A B C D E F G

P (relative) 1 4 9 16 25 36 50
Num. run 1 2 3 4 5 6 7 8
P (relative) 1 3.5 14 60 245 910 3760 11 100

are detailed in Secs. V and VI as the wave turbulence intensity
increases in a vibrating plate.

B. Experimental setup

The description of the experiment is briefly recalled here
and the reader is referred to earlier publications for more
details (see Refs. [16,18]). A 1 × 2 m2 stainless steel plate of
thickness 0.4 mm is hanging vertically under its own weight.
The plate is set in motion by an electromagnetic shaker
oscillating at 30 Hz anchored in the lower part of the plate.
The vibration is recorded by a Fourier transform profilometry
technique [31,32] that provides the deformation of the plate
resolved both in time (at frequencies up to 5 kHz) and space
(over about a square meter). Seven experiments (run A to G)
have been realized and the relative range of injected power
P is shown in Table I. The maximum power is 50 times
the smallest. For stainless steel, E ≈ 2 × 1011 Pa, σ ≈ 0.3,
ρ = 7800 kg/m3, thus c ≈ 0.61 m2.

C. Numerical simulations

The numerical simulation has been described in Ref. [8].
The forced Föppl–Von Karman equations of a square plate
with periodic boundary conditions are time-stepped using a
pseudospectral scheme. The linear dissipation Dk = −γk∂t ζk

can be chosen either similar to the experimentally measured
one or as an “ideal” dissipation that is zero below a cutoff wave
number (chosen here as kc/2π = 100 m−1). The former case
has been shown to reproduce qualitatively the measurements
[8], whereas the latter case reproduces the scaling properties
of the theoretical predictions from the WTT. In this article, we
consider only the second sort of ideal dissipation.

The system is driven out-of-equilibrium by a spectral
forcing of the form:

Fk(t) = F0eiψk exp

[
− (|k| − kf )

2σ 2
k

]
cos(ωkt + φk), (4)

which corresponds to forcing with an amplitude F0 an isotropic
crown of wave numbers centered around the value kf =
5π m−1 with a width σk = 1 m−1. Each mode is forced to
its linear frequency ωk and the random phases ψk and φk

ensure a disordered forcing. In the eight runs (named run 1 to
8) reported in this paper, we kept the parameters of the equation
constant such that to correspond to a 2 × 2 m2 plate of steel of
thickness 0.4 mm. The magnitude of the forcing F0 has been
increased by factors of 2 (i.e., the relative amplitude spans 1 to
128). The corresponding injected powers (proportional to F 2

0 )
span four orders of magnitude (Table I), which is much larger
than what is possible in the experiments.
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III. MORPHOLOGICAL EVOLUTION OF THE
DEFORMATION OF THE VIBRATING PLATE WITH THE

FORCING INTENSITY

We characterize in this section the different dynamical
regimes observed as the forcing intensity increases. The shape
of the Fourier power spectrum Eη(k) of the deformation
η (integrated over the direction of the wave vector k,
assuming isotropy) has been previously observed to evolve
with the forcing intensity both experimentally and numerically
[20–22,29]. We illustrate these previously published observa-
tions with a new set of numerical simulations with a higher
forcing magnitude. As is seen in Fig. 1, the low wave number
part of the spectrum steepens progressively as the forcing
increases. The same trend is visible on both experiment
and numerical simulation. In comparison to the experiment,
the numerical simulation is forced much more strongly.
Qualitatively the strongest experiment (run G) appears similar
to the numerical run 4 as far as the low wave number
part is concerned. A direct quantitative comparison is not
possible as the dissipation processes are very different as
well as the boundary conditions. These observations have
been related to the creation of strongly nonlinear structures
that can be observed in physical space [29]. Indeed, Fig. 2
shows four snapshots of the deformation of a vibrating
plate at four increasing values of the forcing amplitude.
The spatial structure of the rugosity of the deformation is
obviously changing when the forcing is increased. Large-scale
structures incorporating ridges and developable cones [33]
are getting more and more visible when the amplitude of the
forcing grows. At the highest forcing intensity the deformation
resembles crumpled paper (be aware though that the magnitude
of the vertical deformation has been strongly amplified in
Fig. 2). These structures can also be identified in spectral
space: the emergence of the steeper part of the spectrum at low
wave number has been shown to correspond to the emergence
of ridges and cones [29].

We illustrate this phenomenon in Fig. 3(a) where we display
the deformation spectra obtained numerically in runs 1–8 and
normalized by k3/P 1/3. This scaling corresponds to the WTT
prediction, which derives a stationary spectrum of the form:

Eη(k) ∝ P 1/3 log1/3(k∗/k)

k3
. (5)

Observe that in absence of coherent structures (weakest runs
1 and 2) the wave turbulence scaling is observed as the
spectra collapse on top of each other. They also follow quite
convincingly the logarithmic trend predicted by WTT. At
intermediate forcing and for low wave numbers, the spectra
departs from the weak case with a large amplitude steeper part.
It means that the low k part of the spectrum follows a distinct
scaling both in k and P . At higher wave number these spectra
recover the weak amplitude logarithmic scaling from below
and the P 1/3 scaling. For stronger forcing where coherent
structures are observed (runs 5–7), three different regions
are identified successively in the spectra as the frequency
increases: the low-frequency part is heavily affected by the
apparition of ridges and cones and hence develops further
a scaling dubbed ‘coherent structures” (CS) scaling, which
is distinct from the P 1/3 WTT scaling; the small scales
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FIG. 1. Evolution of the Fourier power spectrum Eη(k) of the
deformation η of the plate (integrated over the directions of the wave
vector k) as a function of the forcing intensity. (a) Experiment. The
average forcing power is P = [1,4,9,16,25,36,50] (arb. unit) from
bottom to top. The power is proportional to the square of the force
magnitude (at a given excitation frequency). (b) Numerical simu-
lations. The input power is P = [1,3.5,14,60,245,910,3760,11 100]
(arb. unit) from bottom to top and thus evolves on a much larger range
than the experiment. The dissipation is also quite different (see text).
The vertical dashed line corresponds to the wave number over which
the dissipation operates. The forcing operates at k/2π = 2.5 m−1

(that corresponds to 30 Hz for linear waves as in the experiment).
Black squares show the change of behavior of the spectrum between
structure dominated regime (at low k) and weak turbulence at high k.

remain potentially in a weak wave turbulence regime, as the
high frequencies still follow the weak scaling; the highest
frequencies at the end of the cascades exhibit a dissipation
dominated dynamics associated with a viscous cutoff of
the spectrum. This transition in the regimes observed in
the spectrum are summarized schematically in Fig. 4. Note
that the existence of the intermediate regime of weak wave
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FIG. 2. Snapshots of the deformation of the plate for various forcing intensities (numerical simulation). The corresponding run number
is displayed in the title. The input power is increasing with the run number and the relative values (1,14,245,3760) from (a) to (d),
respectively.

turbulence depends on the relative intensities of the forcing and
the dissipation: we observed with our most vigorous forcing
(run 8) a direct transition from the CS scaling to the viscous
cutoff and a complete absence of the WTT scaling (see upper
curve of Fig. 3). Finally, we identify the low frequency CS
scaling with P to be proportional to P as demonstrated by
displaying the deformation spectra normalized by k3/P on
Fig. 3(b). The spectrum of the singularities has been predicted
in Ref. [17] to be proportional to 1/k−5 and observed to be
proportional to P (thus a global scaling P/k5). This scaling
has been first observed in Ref. [29] and is confirmed in
Fig. 3(b). The KZ spectrum is scaling as P 1/3/k3. The former
dominates at low k whereas the latter dominates at large k.
The two spectra are equal at a critical wave number kc such
that P 1/3/k3

c ≈ P/k5
c , which corresponds to kc ∼ P 1/3. This

behavior is confirmed in Fig. 4 where the boundary of the WT
and CS regimes scales as P 1/3.

IV. SPATIOTEMPORAL SPECTRAL SIGNATURE
OF COHERENT STRUCTURES

The natural way to investigate the dynamics of propagating
waves is the space-time energy spectral density of the wave
elevation Eη(k,ω), which we use in this section to obtain a
more subtle characterization of the structures presented above.
Eη(k,ω) is obtained by computing the Fourier transform of

the plate deformation η(x,y,t) both in time and space so that
to obtain η(k,ω) and thus Eη(k,ω) = 〈|η(k,ω)|2〉. To get a
2D picture that is easier to represent and comprehend than
a full 3D spectrum, one takes advantage of the isotropy of
the system by computing Eη(k,ω) the spectrum summed over
the directions of the wave vectors. This spectrum is shown in
Fig. 5 for a collection of increasing forcing magnitudes in the
numerical simulations. The case of weakest forcing is typical
of weak turbulence, for which energy is localized in the very
vicinity of the linear dispersion relation. A spectacular effect
of the increase of the forcing magnitude is the emergence
of a “tongue” of energy centered around the zero frequency,
in addition to the dispersion relation. This tongue is more
and more present when increasing the forcing at its highest
magnitudes. This extra component of the spectrum is the
most obvious trace of the presence of the structures in the
dynamics.

The growth of the tongue of energy is also visible in
Fig. 6, which shows cuts of Eη(k,ω) at two given values of
the wave number k. At low forcing the spectrum is strongly
peaked at frequencies close to the linear dispersion relation
with the previously mentioned slight nonlinear shift. As the
nonlinearity of the waves in the turbulent state is decreasing
with the wave number, so does the nonlinear shift: the
frequency of the peak is almost equal to the linear frequency
at the highest wave numbers. The widening of the peak with
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FIG. 3. Scaling properties of the spectrum of the deformation.
The color code is the same as in Fig. 1. (a) spectra normalized by
k3/P 1/3 to compare to the prediction of the WTT that predicts a

stationary spectrum Eη(k) ∝ P 1/3 log1/3(k∗/k)
k3 . The dashed line corre-

spond to a fitted log1/3(k∗/k) with k∗/2π = 90 m−1. The insert is a
zoom of the logarithmic region in semilogarithmic scale. (b) Spectrum
normalized by k3/P . This normalization was chosen to illustrate the
linear scaling with P of the low-frequency part of the spectrum. Black
squares show the transition as in Fig. 1.

increasing forcing is also visible. At low wave number, the
width of the peak gets of similar order of magnitude than its
central frequency so that at the highest forcing magnitude the
peaks are merging as seen for k/2π = 10 m−1 (top curves
of top panel of Fig. 6). In the range of wave numbers for
which the peaks have merged, a continuous band of wave
numbers and frequencies can be excited, which actually opens
the possibility of observing more complex structures than
propagating sine waves. At the highest forcing magnitude,
a third peak is observed centered on zero frequency. This peak
corresponds to non propagative structures.
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FIG. 4. Sketch of the different regimes encountered in the
spectrum of the motion as the injected power increases. The different
numerical runs labeled from 1 to 8 (see Table I) are represented
by vertical dotted lines. The largest scales and the smallest scales
are dominated by the forcing and the dissipation, respectively. The
intermediate scales exhibit a Weak Turbulence (WT) scaling for
weak forcing, or are dominated by coherent structures (CS) for
very large forcing. At intermediate forcing, the large scales are
populated by the coherent structure while the small scales follow
a WT dynamics. The transition observed in the spectra represented
in Figs. 1 and 3 is denoted by plain squares. They correspond to
the change from the the strongly nonlinear regime [Eη(k) ∝ Pk−5]

to the KZ spectrum [Eη(k) ∝ P 1/3 log1/3(k∗/k)
k3 ]. Thus, the transition

wave number kc is expected to follow roughly kc ∝ P 1/3, discarding
logarithmic corrections.

V. IDENTIFICATION OF THE COHERENT STRUCTURES,
STATISTICAL PROPERTIES, AND INTERMITTENCY

A. Structures and curvature

As we mentioned when we introduced the Föppl–von
Kàrmàn equations, the source of the nonlinearity is the
Gaussian curvature G that induces stretching of the plate which
eventually generates coherent structures. Thus, we will focus
on the study of the statistical properties of this curvature (or
rather its simplified form {ζ,ζ }). In addition to the Gaussian
curvature, we also study the average curvature

L(ζ ) = (1 + ∂xζ
2)∂xxζ − 2∂xζ∂yζ∂xyζ + (1 + ∂yζ

2)∂yyζ

(1 + ∂xζ 2 + ∂yζ 2)3/2
,

(6a)

= L0(ζ )[1 + O(|∇ζ |2)] where

L0(ζ ) = ∂xxζ + ∂yyζ. (6b)

Since L0 is a linear function of ζ , we use it to estimate L.
The root-mean square value of the gradient of the deformation
is at most 0.36 for run 8 and significantly lower for the other
runs. Hence, the square gradient is of the order of 10% which
justifies the use of the approximate expressions of L ≈ L0 and
G ≈ G0 in the following.
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FIG. 5. Examples of the spectrum Eη(k,ω) obtained from the numerical simulations, for run1 (weakest forcing), run 6, run 7, and run 8
(strongest) (P = 1, 910, 3760, and 11 100, from (a) to (d), respectively). For a better contrast the displayed quantity is actually the normalized
spectrum k4Eη(k,ω).

Figure 7 displays some snapshots of both sorts of curvature
for weak and strong forcing intensities. The curvatures are
obviously very small scale quantities as expected from their
expression that involve second order derivatives. At the
weakest forcing, the deformation field is close to Gaussian
statistics and both curvatures look totally disordered. When
increasing the forcing a spatial organisation of the curvature
becomes obvious. At intermediate forcing an organization
under the form of stripes appear. At the strongest forcing, very
intense localized structures dominate over the background.
These localized events show a spatial structure with crescent
shapes. These crescent shapes have been also observed for
G in the case of static developable cones, near the tip of the
singularity and they are the footprint of stress focusing in the
plate’s deformation [33–35].

This observation is confirmed by the shape of the prob-
ability density functions (PDF) shown in Fig. 8. At weak
forcing, the distribution of L is close to Gaussian as expected
for weak turbulence. In very weak turbulence, the statistics
are expected to show very little departure from Gaussian
statistics. The distribution of G is not Gaussian in the weak
case which is expected since G is quadratic in the second
order derivatives of ζ . The distribution of G is seen to be
asymmetric with power law tails, the positive events being
more probable than the negative ones. A sharp cusp is also
observed for G close to zero. This shape is reminiscent of
the distribution of the product of two correlated Gaussian
random variables [36] that displays such an asymmetric shape
with exponential tails. Here the leading order of the Gaussian
curvature G0 = ∂xxζ ∂yyζ − (∂xyζ )2 is more complex than just
the product of two random variables as it is the difference
between two quadratic terms, nevertheless the shape of its
distribution is clearly related to this simple case. When the
intensity of the forcing is increased, the shape deviates from

the Gaussian case. The distribution of both curvatures displays
very wide tails. These tails are symmetric for L as expected
from the ζ ↔ −ζ symmetry of the FvK equations and from
L being an odd function of ζ . By contrast the distribution of
G is not symmetric: this can be understood by noticing that
G is an even function of ζ so that negative events stem from
different relative contributions of the two terms ∂xxζ ∂yyζ and
∂xyζ

2 instead of being merely obtained by symmetry ζ → −ζ .
Extreme negative curvatures (saddlelike structures) are more
probable than the positive ones.

Thus, our observations show the appearance of localized
intense structures at strong forcing that are consistent with our
previous interpretation of these structures being developable
cones. At intermediate values of the forcing, a spatial organi-
zation of the curvature is also particularly visible in the case of
the average curvature L in Fig. 7. Strong events are organized
spatially in stripes of either strong positive or negative values.
This spatial organisation is the trace of the large scale folds
that can be seen on the snapshots of the deformation in Fig. 2.
The traces of the folds are less visible on G as for a simple fold
the Gaussian curvature is expected to be zero. The folds are
visible nonetheless because of the fluctuations at the smallest
scales that are sensitive to the flexion present in the vicinity of
the crest of the folds.

B. Motion of the structures

We perform a detection and tracking in time of the strong
events of curvature. D-cones are characterized by strong values
of the Gaussian curvature. One technical issue for detection of
D-cones is that the Gaussian curvature is extremely sensitive to
the presence of small scale waves that propagate on top of the
structures. They induce very strong small-scale fluctuations
of the Gaussian curvature that oscillate between very large
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FIG. 6. Cuts of the k,ω spectrum for two given values of k [(a)
k = 20π and (b) k = 80π m−1] and for all the values of the forcing
magnitude. The linear values of the linear wave frequency at the given
values of k are shown with vertical dashed lines.

negative and positive values. The detection of the position
of the structures is thus very noisy making the tracking
of the structures quite difficult. As the D-cones are always
surrounded by a crescent of strong average curvature (related
to the folds that connect at the cones) that appears to be
much smoother in space, detection using large values of |L| is
more efficient. We then apply a tracking procedure using the
algorithm developed by N. Ouellette [37,38]. In this way we
obtain trajectories of the strong events. These trajectories have
a finite duration as these structures have a finite lifetime and
ultimately fall below the detection threshold. By differentiating
the trajectories in time, we obtain their velocity. This step
requires a low-pass filtering operation to remove the noise
around the actual trajectories due to the errors on the estimate
of the position of the structure. Determining accurately the
cutoff frequency of the filter is an issue and remains somewhat
arbitrary. The PDF of the velocity of the strong events is shown
in Fig. 9. Such tracking is possible only at the highest forcing
intensities for which the strong events are clearly overcoming
the fluctuating background due to the small-scale waves. We
see that the distribution of the velocity is close to Gaussian. The
velocity variance seems to increase slightly with the forcing
intensity and is of the order of 20 m/s (see Table II). We have
no clue so far to explain this particular value for the velocity.

TABLE II. Values of the root-mean square velocities of the
singularities. The major source of uncertainty on the evaluation of
the velocity is the presence of noise in the trajectories. This noise
has to be filtered [40] before differentiating the trajectories to obtain
the velocity. Getting the adequate cutoff frequency of the filter is not
obvious in this case so that the values of the velocity given above
should be taken as an order of magnitude rather than an accurate
estimate.

Run 5 6 7 8

urms [m/s] 18 22 23 26

Let us focus now on the central tongue (peak) of the
spectrum Eη(k,ω) previously shown in Figs. 5 and 6. We
consider the strongest forcing as observed in the numerical
simulations in run 8 (Fig. 10), for which the feature is the
most visible. The frequency bandwidth of this peak is seen to
increase with the wave number so that the peaks observed at
various given wave numbers do not collapse in Fig. 10(a). By
contrast, when the frequency is normalized by the wavelength
λ = 2π

k
, the central peaks for various values of k collapse

fairly on each other. In this representation, the width of the
central peak defines a quantity homogeneous to a velocity.
The dashed line in Fig. 10(b) is a Gaussian shape of width 20
m/s, which reproduces well the shape of the peak. This figure
can also be drawn for the second highest forcing and gives
a similar result. At lower forcing intensities the central peak
is not strong enough so that the estimate of its width is not
possible with enough accuracy. The consistency between our
spectral estimate and our direct measurement in physical space
supports strongly the fact the peak observed in Fig. 10 is indeed
associated to the motion of coherent structures. Furthermore,
the velocity of sweeping of these structures can be estimated
precisely using the spectral analysis described above. This
central peak is actually similar to the space-time spectrum of
isotropic homogeneous Navier-Stokes turbulence in which no
waves are present and only sweeping of vortices is observed
(see Fig. 2 of Ref. [39]).

We propose below a simple 1D model of the random motion
of such structures in the spirit of previous work by Kuznetsov
[41]. Let us assume that some spatial structures f (r) (assumed
identical and isotropic for simplicity) are placed randomly
in space (following a Poisson distribution) with an average
density n. The structures translate with velocities that are
distributed following a isotropic distribution. P (u) is the prob-
ability distribution of the velocity u. Although we are not able
to demonstrate it rigorously, Monte-Carlo–like simulations
suggest that the space-time spectrum of such signal may be

Eη(k,ω) ∝ n|f̂ (k)|2
k

P (ω/k), (7)

where f̂ (k) is the Fourier transform of a single structure f (r).
If we trust this expression, then the shape of the collapsed

cuts of the spectrum (at given values of k) shown in Fig. 10(b)
is reminiscent of the distribution of the velocity. The shape of
the observed peak is seen to follow a Gaussian variation. As
has been shown above the distribution of the velocity of the
structures is indeed very close to a Gaussian distribution.
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FIG. 7. Snapshots of both sorts of curvature L and G at various forcing intensities in the DNS. Top line, L; bottom line, G. (a), (b) Run
1 (weak forcing), (c), (d) run 6 (intermediate forcing), (e), (f) run 8 (strongest forcing). The input power are, respectively, P = 1, 910, and
11 100.

If one takes the case ω = 0 in Eq. (7), we obtain E(k,0) ∝
n|f̂ (k)|2

k
P (0), which is mainly the spectrum of the structure

f (r). Similar spectra at ω = 0 for the numerical simulation
are shown in Fig. 11. The spectrum E(k,0)/

∫∫
Eη(k,ω)dkdω

that is shown has been summed over directions which induces
an extra k factor so that the curves that are shown should
correspond to |f̂ (k)|2 following Eq. (7). The three curves
corresponding to the lowest forcing are almost superimposed
and correspond to cases without structures. They are not zero
because of the slight spread of the energy concentrated around
the dispersion relation. When the forcing is further increased
the spectrum at zero frequency shows the appearance of the
structures and their spectrum is then extending more and to
small scales. At the strongest forcing they tend to go to a limit

shape that appears to follow a power law which exponent
is close to k−20/3. This observation is slightly steeper yet
comparable to the spectrum of the D-cones which has been
predicted by Düring et al. to be proportional to k−6 [15]. The
discrepancy may be explained by the fact that the D-cones are
actually 2D structures that are regularized by dissipation at
small scales. Furthermore, they are not isotropic at small scale
and/or that they are most likely distributed in size.

VI. STATISTICAL PROPERTIES AND INTERMITTENCY

A. Numerical simulations

The strong events of curvature seem to have an internal
structure and a spatial organization. These are the ingredients
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FIG. 8. PDF of L0 (left) and G0 (right) at various forcing intensities. In each figure: from top to bottom, runs 1 to 8 (the curves have been
shifted vertically by a factor 4 for clarity). Left: the dashed line is a Gaussian distribution.
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FIG. 9. Distribution of the velocity of the strong events of |L|
at the three highest forcing intensities (runs 6 to 8, blue, red, and
green, respectively). The dashed line is a Gaussian distribution. The
corresponding forcing powers are, respectively, P = 910, 3760, and
11 100.

for statistical intermittency as was observed in Navier-Stokes
turbulence [5]. The statistical tools to study this intermittency
are for instance the structure functions that probe the statistics
at various scales. For Navier-Stokes turbulence, one often
studies the spatial increments of velocity δrv = v(x + r) −
v(x) or the gradients of the velocity gradient averaged over a
sphere of radius r . Following a similar approach we study
the evolution of the statistics of the curvature when first
smoothing the picture of the deformation by low-pass filtering.
In practice, the deformation field is low-pass filtered by a
Gaussian kernel. The curvature of the filtered images is then
computed. Note that the order of the operations of filtering and
calculation of the curvature does not matter for the average
curvature which is approximated by the linear operator L0.
By contrast, the Gaussian curvature, even evaluated using the
simplified form G0, is not a linear operator and the order of
the calculation matters. After computing the curvatures G and
L of the smoothed deformation with different low-pass filter
cutoff scales, we compute the distributions and the moments
of these curvatures.

Examples of the curvature of such low pass filtered
deformation are shown in Fig. 12. At small forcing the
picture of the curvature remains disorganized and close to
Gaussian statistics regardless of the scale of smoothing. At
strong forcing the intense localized structures visible at small
scales are progressively filtered and filamentary organization
in the picture appears at intermediate smoothing scale. These
observations are the trace of a spatial organization of the
curvature that is not self similar in scale.

The lack of self similarity is visible when computing the
distribution of the curvature of the smoothed deformation.
In Fig. 13, the curvatures are computed for run 5 (top line).
The distribution of L is seen to be close to Gaussian at small
scales, develops wider tails at intermediate scales and then
evolves back to Gaussian at the largest scales. The distribution
of G also develops wider tails at intermediate scales. For run 1
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FIG. 10. Cuts of the (k,ω) spectrum at various values of k/2π =
15,20,25,30,35,40,45 m−1 for run 8 (strongest forcing). Main figure:
Eη(k,ω)/E(k,0) as a function of ω/k. The dashed line is a Gaussian
shape of width 20 m/s. Insert: Eη(k,ω)/E(k,0) as a function of ω

(weak turbulence, bottom line of Fig. 13, the PDF are almost
unchanged whatever the smoothing scale). This shows that
the intermittency (understood as the lack of self similarity of
the deformation field) is due to the existence of the coherent
structures.

A way to quantify the change of the shape of the distribution
is to compute its moments made dimensionless by normalizing
by the variance. For instance the flatness F = 〈L4〉

〈L2〉2 is a
measure of the evolution of the width of the tails of the
distribution. The evolution of the flatness with the smoothing
scale is shown in Fig. 14. At low forcing the flatness only
shows a slight evolution when increasing the scale: The
average curvature evolves from 3, the value for a Gaussian
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=
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FIG. 11. Decay of the space-time spectrum at zero frequency
k6E(k,ω = 0)/

∫∫
Eη(k,ω)dkdω for all simulations. The normaliza-

tion of the spectrum means that the deformation has been normalized
to be of variance 1. The dashed line shows a decay k.−2/3. The forcing
increases from bottom to top.
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FIG. 12. Examples of principal curvature L of the low pass filtered deformation. Top line (a), (b), (c), weakest forcing (run 1, P = 1).
Bottom line (d), (e), (f), strongest forcing (run 8, P = 11 100). (a), (d) Curvature of the deformation. (b), (e) Curvature of the deformation after
smoothing over 5 pixels (1.3 cm). (c), (f) Curvature of the deformation after smoothing over 32 pixels (8.3 cm). The images display only a
portion of the full plate.

random field, to about 2.5 and back to 3 at large scales. The
Gaussian curvature displays a similar trend. At larger forcing
intensity, the evolution of the flatness displays a maximum
at intermediate scales (or order 1 cm). This shows indeed
that the distribution of the PDF displays wider tails at these
intermediate scales. At the stronger forcing the flatness takes
very large values at small scales and decays continuously to
the Gaussian value at large scale.

B. Experiments

The PDF of the Gaussian curvature of the smoothed
experimental deformations are shown in Fig. 15 for two forcing
intensities. Computing the curvature of a real image is quite
challenging as it involves differentiating twice an image which
contains measurement noise. Thus, this cannot be achieved at
the smallest forcing intensities for which the noise has a big
impact. For this reason, we restrict ourselves to the analyses of
a medium intensity forcing and of the largest experimental
forcing. Figure 15 should be compared to the equivalent
Fig. 13. A similar trend emerges: almost no evolution of the
shape is observed at the smallest forcing whereas the tails
of the PDF are wider at intermediate scales at the highest
forcing. This widening of the tails is much less pronounced on
the experiments than on the numerical simulation due to not as
strongly nonlinear a motion, resulting itself from experimental
limitations on the forcing [8,27]. Indeed, as seen in Fig. 1, the
experiment with the strongest forcing is qualitatively similar
to the numerical run 4. Run 4 corresponds to a mild forcing
for which most of the features discussed above are not clearly
visible. Nevertheless, the emergence of the structures in the
experiment can be observed clearly from the change of shape
of the spectrum (Fig. 1). Concerning the distribution of the

curvature in Fig. 15, the emergence of structure is visible only
in the very far tails that correspond to extremely rare events.
Unfortunately, we could not achieve a stronger forcing in the
experiment because the instantaneous input power is strongly
fluctuating. Thus, the shaker must intermittently provide an
instantaneous (electrical) power several orders of magnitude
larger than the average, which the power supply unit can
not provide despite being strongly oversized compared to the
average power required (see discussion on the statistics of
input power by Cadot et al. [42]).

This evolution of the shape of the PDF can be quantified by
the flatness and hyperflatness (order 6 moment) represented on
Fig. 16. As the change in shape of the PDF occurs in the very
far tails the evolution is best seen on the hyperflatness, which is
a higher-order moment and thus more sensitive to rare events.
The change of shape of the PDF can be seen only on the statis-
tics of the Gaussian curvature which is the only one shown.
At low forcing (blue curve), the flatness and hyperflatness are
quite flat except at small scales at which the noise dominates
over the signal. When the forcing is increased a local maximum
of the flatness (barely visible) and the hyperflatness (more
visible) emerges, which is in qualitative agreement with the
observations for numerical simulations although not as strong
(see Fig. 14).

VII. CONCLUDING REMARKS

We have described in this paper the gradual emergence
of coherent structures in a wave turbulence system: in the
case of flexural waves, coherent structures first appear at large
wavelength and march toward small scales as the forcing
is increased. These structures are composed of developable
cones, which imprint at small scale is the crescent shape

042204-10



INTERMITTENCY AND EMERGENCE OF COHERENT . . . PHYSICAL REVIEW E 96, 042204 (2017)

-10 -5 0 5 10
L/L

rms

10-10

10-5

100

P
D

F

(a)

-20 -10 0 10 20
G/G

rms

10-10

10-5

100

P
D

F

(b)

-10 -5 0 5 10
L/L

rms

10-10

10-5

100

P
D

F

(c)

-20 -10 0 10 20
G/G

rms

10-10

10-5

100

P
D

F

(d)

FIG. 13. PDF of both curvature L and G as a function of the smoothing for run5 [(a), (b) P = 245] and run1 [(c), (d) P = 1]. (a), (c) L,
the dashed line shows a Gaussian distribution; (b), (d) G. In each subfigure, the length scale is increasing from top to bottom and the curves
have been shifted vertically for clarity. The smoothing scales are from bottom to top: 0.05, 0.14, 0.29, 0.43, 0.57, 0.86, 1.1, 1.7, 2.3, 3.4, 4.6,
6.9, 9.2, 13, and 18 cm.

structure observed in the numerical simulation, which are
connected by folds [33]. At the smallest scales though, these
structures are regularized and dominated by a bath of weakly
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FIG. 14. Evolution of the flatness of (a) L and (b) G with scale.

nonlinear waves with small wavelength (except possibly for the
highest forcing case) or by dissipation. Observe that all these
structures appear, evolve dynamically, and die. This network of
interconnections between cones generates some intermediate
scale structures, namely ridges and facets, resulting in a
crumpled paper appearance. The weak turbulence scaling
is confined to a range of small scales that diminishes and
eventually disappears at the highest forcing. A change in the
statistical properties of the system accompanies this transition:
intermittency appears.

In a thin elastic plate, we associate the occurrence of
intermittency with the observation of coherent structures.
Indeed, the apparition of intermittency at large forcing in-
tensity is correlated with the development of wide tails of the
curvature distribution at small scale, a signature of developable
cones. Our observations can be compared to the case of
fluid turbulence. It was suggested in the last decades that
the intermittency observed in Navier-Stokes turbulence could
be associated with the observed intense coherent vorticity
filaments but this issue is still a matter of debate.

The vibrating plate appears to be a relatively simple
physical setup in which to observe the transition from weakly
nonlinear wave turbulence compatible with the theory of weak
turbulence to a regime of stronger nonlinearity that generate
coherent structures. Although such behavior may be expected
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FIG. 15. Evolution with scale of the Gaussian curvature of the
smoothed images for experiments. (a) Higher forcing (runG, P =
50). (b) Smallest forcing, which is not affected by the noise (run C,
P = 9).

generically in other wave systems, the variety of possible
coherent structures probably makes each system specific.
In other words, this transition results from the “breakdown
of weak turbulence” as worded by Newell et al. [43]. The
widening of the dispersion relation is related to the nonlinear
time scale. The nonlinear time scale TNL(k) can be defined as
the correlation time of the modulation of the Fourier modes
as in Ref. [25]. One can write that the Fourier mode of
the plate deformation as ζk(t) = Ak(t)eiωkt , where Ak(t) is
the modulation. The width (in frequency) of the deformation
spectrum (around the dispersion relation) shown in Fig. 5 is
thus directly related to the characteristic timescale of Ak(t)
that can be extracted from the temporal correlation of Ak(t)
[25]. As seen in Fig. 5, at strong forcing the widening is so
high that the two branches of the dispersion relation overlap
at low frequency. This is the scenario predicted by Newell
et al.: the hypothesis of scale separation between the nonlinear
time scale TNL(k) and the linear period of the wave T (k)
must breakdown either at large scale or small scale depending
on wether TNL/T is increasing of decreasing with k on the
KZ spectrum. For surface gravity waves the ratio TNL/T

is increasing with k so that wave turbulence becomes more
and more nonlinear as the cascade proceeds to small scales
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FIG. 16. Evolution with scale of the flatness (a) and hyperflatness
(b) of the curvature for the experiment for runs E, F, G (colors
blue, red, and black, respectively, input power P = 25, 36, and 50,
respectively).

and this may lead ultimately to whitecapping. By contrast,
for elastic plates, the ratio TNL/T is decreasing when the
frequency is increasing (as for capillary waves for instance).
So the breakdown of weak turbulence occurs at low frequency
(near the forcing scales), but the time-scale separation remains
valid at large enough frequency. We confirmed experimentally
this breakdown in Fig. 11 of Ref. [25], where we observed
indeed that the nonlinear time scale is indeed comparable to
the wave period at the strongest forcing (run G). Note that
the coherent structures appear at large scale in Fig. 2 but
are originating from stress focusing at the smallest scales.
Thus, the vibrating plate corresponds to another class of
systems than the case of surface gravity waves. Newell
et al. suggest that for surface gravity waves the breakdown
should lead to the observation of the Philipps spectrum. This
spectrum does not depend on the input power P anymore as it
corresponds to a saturated spectrum. Whitecap events dissipate
extra energy so that to remain on the Philipps spectrum. This
is not what is observed in the ideal elastic plate. The spectrum
changes from being proportional to P 1/3 in the weak case to
being proportional to P in the strong case. This corresponds
to the behavior predicted by Kuznetsov [41] for the spectrum
of point singularities that is expected to be proportional to P .
Increasing the forcing generates more and more singularities. It
should be noted though that dissipation may alter this scenario
in real plates. In our simulations, the dissipation is simply
linear in the velocity and only present at small scales so that
strongly nonlinear dissipation analogous to that occurring in
whitecap events of sea waves cannot exist. We also assume the
Föppl–von Karman equation to remain valid, as a toy model of
weak turbulence, rather than to simulate real plates. In actual
plates, it is likely that, at extremely strong forcing, strongly
nonlinear deformation can lead to nonlinear dissipation and
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even irreversible events due to plasticity. It may be possible
that for plates that would be large enough another transition
could occur from the Kuznetsov-like regime to a saturated
Philipps-like spectrum at large scales and thus a spectrum that
becomes independent of P but this remains very speculative
and clearly beyond the possibilities of our simulations, where
the linear dissipation is enough to regularize the singularities
at small scale.
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