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Estimation of the degree of dynamical instability from the information entropy of symbolic dynamics
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A positive Lyapunov exponent is the most convincing signature of chaos. However, existing methods for
estimating the Lyapunov exponent from a time series often give unreliable estimates because they trace the time
evolution of the distance between a pair of initially neighboring trajectories in phase space. Here, we propose a
mathematical method for estimating the degree of dynamical instability, as a surrogate for the Lyapunov exponent,
without tracing initially neighboring trajectories on the basis of the information entropy from a symbolic time
series. We apply the proposed method to numerical time series generated by well-known chaotic systems and
experimental time series and verify its validity.
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I. INTRODUCTION

In an isolated system at thermodynamical equilibrium,
the thermodynamical entropy S associated with a thermal
flow is equalized to the logarithmic number, log W , of
distinct microscopic states of the system via Boltzmann’s
equation S = kB log W with Boltzmann’s constant kB . In
nonlinear dynamical systems, which include nonconservative
dissipative systems far from thermodynamical equilibrium,
the Kolmogorov-Sinai (KS) entropy h(ρ) representing the rate
of creation of information with time on an attractor with
a Lebesgue measure ρ is equalized to the sum of positive
Lyapunov exponents λi > 0 (i = 1, . . . ,n) via Pesin’s theorem
expressed as h(ρ) = ∑n

i=1 λi [1]. Under ergodicity, these
theorems enable us to understand the dynamical nature of
a dynamical system on the basis of its statistical properties.

Nonlinear time series analysis is an important tool for
detecting chaos from sparse experimental data measured at
finite sampling time intervals. Previous literature reported nu-
merical algorithms to estimate the largest Lyapunov exponent
from an experimental time series of a single variable; see
for instance, the work of Sano and Sawada [2], Rosenstein
et al. [3], and Kantz [4]. A positive Lyapunov exponent
is the most convincing signature of chaos, which indicates
an exponentially rapid divergence of infinitesimally nearby
trajectories in phase space. However, these algorithms often
yield unreliable estimates, particularly, for noisy time series.
This is because they trace a pair of dynamically unstable
trajectories containing observational noise, which blurs the
initial rapid growth of a small distance between the trajectories.
To circumvent this problem and develop an alternative method
for estimating the degree of dynamical instability, we can resort
to the statistical properties of an observed chaotic behavior
such as the probability density function or the information
entropy, instead of tracing a pair of chaotic trajectories. This
is the motivation of this study.
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The information entropy, originally introduced by Shannon
[5], has been applied to time series analysis by many authors
[6–15]. Fraser and Swinney applied mutual information to
determine the optimal time lag for embedding from a time
series of a single variable [6,7]. Costa et al. demonstrated
a method for estimating a variant of the information en-
tropy, referred to as multiscale entropy, from a sequence
of mean values over segments of a time series to analyze
the dynamical nature of the time series in terms of multiple
time scales [8]. Bandt and Pompe introduced the permutation
entropy [9,10]. In their method, a time series is transformed
into a sequence of symbols expressed by permutations of
data points in short segments of the time series, and the
entropy is estimated from the probability density function
approximated by the histogram of the symbols. They reported
that such coarse-graining of a time series is effective for
assessing the degree of complexity of the series. Amigó et al.
discussed the relationship between the permutation entropy
and the metric entropy rate [11]. The symbolic dynamics
based on permutational coarse-graining have been shown
to be effective for detecting chaos from experimental time
series [12–15]. Politi also applied a modified version of
the permutation entropy to estimate the KS entropy as well
as the fractal dimension for numerical chaotic time series
[16]. Recently, Weilenmann et al. discussed the axiomatic
relationship between the thermodynamic and information
entropies [17].

In this paper, we propose a method for estimating the
degree of dynamical instability, as a surrogate for the largest
Lyapunov exponent or the KS entropy, of a chaotic system
from the information entropy of a sequence of symbols,
referred to as “alphabets,” transformed from a time series. In
particular, unlike the method proposed in Ref. [16], we use the
information entropy as a function of the sampling time interval
of a time series. We apply three different methods based
on permutation, global binarization, and local binarization
to coarse-grain a time series into symbolic sequences. The
alphabets comprising the symbolic sequence can be viewed
as “microscopic states” that are occupied by the time series
representing a macroscopic dynamical behavior of the chaotic
system. As the sampling time interval increases, a chaotic time
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series has more opportunities to occupy different microscopic
states, which should reflect the rapid growth of the distance
between neighboring trajectories. We statistically estimate the
rate of the initial growth of the information entropy, which
may be linearly correlated with the largest Lyapunov exponent
or the KS entropy, without directly measuring the distance
between neighboring trajectories in phase space. The validity
of this idea is examined in the following sections of this paper.
Consequently, it turns out that there is a linear correlation
between the initial growth rate of the entropy and the largest
Lyapunov exponent, and the proportional constant between
them may be unique and indicative of the equivalence of the
growth rate to the KS entropy.

II. MATHEMATICAL METHOD

The methods we use to coarse-grain a time series into
a symbolic sequence are as follows. Given a time series
{x(t0 + nT )}N−1

n=0 consisting of N data points (observations),
where T denotes the sampling time interval of the time series
and t0 is the initial time of measurement (usually set to 0),
we partition the time series into Q nonoverlapping segments
each consisting of D contiguous data points so as to satisfy
N = QD. An alphabet is assigned to each segment using the
following procedures.

The first method is based on the permutation of D data
points in each segment in the same way as that when estimating
the permutation entropy [9,10]. We give an integer score to
each data point in the segment in accordance with its rank
order. The sequence of D rank scores represents the alphabet
assigned to the segment. For example, when D = 4, there
are D! = 24 patterns of the rank-score sequence and the
corresponding 24 alphabets are defined as “1234,” “1243,”
“1324,” “1342,” “1423,” “1432,” “2134,” “2143,” “2314,”
“2341,” “2413,” “2431,” “3124,” “3142,” “3214,” “3241,”
“3412,” “3421,” “4123,” “4132,” “4213,” “4231,” “4312,”
and “4321.” This method cannot define the alphabets for a
flat time series or a partly flat time series. Such cases can
be encountered when handling experimental data observed
with a low measurement resolution. It is also likely to
misassign alphabets when a time series is contaminated with
observational noise. Bian et al. developed a modified version
of the permutation entropy, wherein rank-score sequences
including equal rank scores, such as “1123” and “2221,” are
incorporated in the alphabets [18]. They showed that their
method was effective for characterizing the complexity of
time series for medical data of heart rate variability. However,
owing to the increase in the total number of alphabets, their
method requires a large number of data points to avoid a biased
estimation of the permutation entropy.

The second method is based on the binary coding of a
time series using global threshold crossing. In this method,
we find a global threshold value xc around which the time
series is distributed with equal probability. The time series
is transformed into a binary sequence {b(nT )}N−1

n=0 consisting
of values of 0 and 1 using b(nT ) = 0 if x(nT ) < xc and
b(nT ) = 1 otherwise. We define the alphabet of each segment
using 2D patterns of D binarized data points. For example,
when D = 4, there are 2D = 16 alphabets expressed as “0000,”
“0001,” “0010,” “0011,” “0100,” “0101,” “0110,” “0111,”

“1000,” “1001,” “1010,” “1011,” “1100,” “1101,” “1110,” and
“1111.” The threshold xc can be easily found when the time
series is distributed symmetrically around xc. However, the
probability distribution must be estimated to find xc when the
time series does not have a symmetrical distribution.

The third method is based on the binary coding of a time
series using local threshold crossing. We estimate the mean
over D data points of the ith segment, denoted as x̄i , with i

running from 0 to Q − 1 corresponding to Q segments:

x̄i = 1

D

D−1∑

n=0

x[(iDT + nT )]. (1)

The time series is locally binarized with the threshold
crossing using x̄i instead of xc and the alphabet of each segment
is defined in the same way as in the second method. The third
method can be readily performed even if the data points are
distributed asymmetrically. However, the alphabet “0000” is
always missing and “1111” appears if and only if a segment is
flat.

The first and third methods locally assign alphabets to the
segments of a time series, whereas the second method globally
assigns alphabets to them. Let us denote the assigned alphabets
as ai , with i running from 1 to D! for the method based
on permutation and from 1 to 2D for the methods based
on the global and local threshold crossings. The probability
density function p(ai) of the alphabets is estimated from their
histogram. Thus, the information entropy H (T ) as a function
of the sampling time interval is estimated to be

H (T ) = −
M∑

i=1

p(ai) log2 p(ai), (2)

where M is the total number of the alphabets, i.e., M = D!
or M = 2D . It is convenient to normalize H (T ) with respect
to its maximum value Hmax, where Hmax = log2(D!) bits
for the alphabets generated by permutation and Hmax = D

bits for those generated by the global and local threshold
crossings. Let us define the permutation entropy (PE) as
h(T ) = H (T )/ log2(D!) and the entropy based on the global
and local threshold crossings, referred to as the string entropy
with a global threshold (SEG) and the string entropy with
local thresholds (SEL), respectively, as h(T ) = H (T )/D. For
all entropies, 0 � h(T ) � 1.

We next conduct the Taylor expansion of h(T ) as

h(T ) = h(0) + h′(0)T + O(T 2) + . . . , (3)

≈ h(0) + αT , (4)

where h′ represents the derivative of h(T ) with respective
to time and α = h′(0) is a coefficient having the physical
dimension of the inverse time similar to that of the Lyapunov
exponent. When we observe a time series with a sampling time
interval of T � 1, we may linearize h(T ) to obtain Eq. (4).
In Eqs. (3) and (4), h(0) should be interpreted to represent
PE, SEG, and SEL in the limit of continuous measurement
of a time series at T → 0. In the limit with D = 4, only two
alphabets, “1234” and “4321,” appear in the case of PE, only
“0000” and “1111” almost certainly appear in the case of SEG,
and only “0011” and “1100” appear in the case of SEL. Hence,
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TABLE I. Estimates of α and h(0) calculated from PE, SEG, and SEL for time series of the variables x, y, and w for various chaotic flows
in comparison with the largest Lyapunov exponent λ cited from Ref. [19]. The least-mean-square method was applied to h(T ) for the time
series with �t � T � 5�t to estimate α and h(0). The correlation coefficient indicating the degree of fidelity in the linear fitting is denoted as
γ .

Model and variable Entropy α h(0) γ λ

Driven van der Pol, x PE 1.7978 0.2261 0.9992 0.1933
SEG (xc = 0) 2.0554 0.2611 0.9987

SEL 1.9698 0.2586 0.9998
Forced Brusselator, x PE 0.9744 0.2175 0.9903 0.0140

SEG (xc = 0.345) 0.8768 0.2545 0.9976
SEL 0.9599 0.2547 0.9930

Forced Brusselator, y PE 0.4894 0.1947 0.9982 0.0140
SEG (yc = 2.816) 0.7705 0.2541 0.9990

SEL 0.5308 0.2235 0.9979
Duffing’s two-well, x PE 0.9790 0.2231 0.9987 0.1572

SEG (xc = 0) 0.8446 0.2528 0.9996
SEL 1.0535 0.2559 0.9988

Lorenz, x PE 4.6344 0.2500 0.9986 0.9056
SEG (xc = 0) 2.5031 0.2663 0.9979

SEL 4.1382 0.2955 0.9952
Lorenz, y PE 6.6749 0.2644 0.9982 0.9056

SEG (yc = 0) 3.7457 0.2769 0.9989
SEL 5.8883 0.3143 0.9944

Róssler, x PE 1.1570 0.2231 0.9978 0.0714
SEG (xc = 0) 1.7571 0.2574 0.9996

SEL 1.2462 0.2560 0.9972
Róssler, y PE 1.2033 0.2221 0.9996 0.0714

SEG (yc = 0) 1.6556 0.2588 0.9977
SEL 1.3027 0.2548 0.9994

Chua’s circuit, x PE 2.3384 0.2288 0.9990 0.3271
SEG (xc = 0) 1.1152 0.2547 0.9973

SEL 2.4591 0.2631 0.9982
Chua’s circuit, y PE 2.5941 0.2317 0.9990 0.3271

SEG (yc = 0) 3.4551 0.2758 0.9971
SEL 2.6794 0.2671 0.9984

Driven pendulum, y PE 1.9822 0.2269 0.9982 0.1633
SEG (yc = 0) 0.7581 0.2508 0.9964

SEL 2.0769 0.2615 0.9977
Hénon–Heiles, x PE 1.2558 0.2171 0.9935 0.0450

SEG (xc = 0) 1.8525 0.2510 0.9978
SEL 0.9129 0.2596 0.8763

Hénon–Heiles, w PE 1.6396 0.2091 0.9802 0.0450
SEG (wc = 0) 1.9315 0.2513 0.9968

SEL 1.4812 0.2471 0.9244

h(0) = 1/ log2(D!) ≈ 0.2181 for PE and h(0) = 1/D = 0.25
for SEG and SEL. Such tendencies should appear when D is
set to an even integer. For SEL, however, there is inevitably
ambiguity in defining the alphabets corresponding to h(0)
when D is set to an odd integer. For example, when D = 5,
the alphabets appearing in the limit can be the pair of “00011”
and “11100,” or the pair of “00111” and “11000.” This will
be demonstrated through numerical experiments in the next
section.

Since h(T ) → h(0) as T → 0 and h(T ) → 1 as T → ∞,
α is expected to take positive values for chaotic time series.
Let us tentatively assume h(T ) to be a sigmoid function of T

of the form

h(T ) = h(0)

h(0) + [1 − h(0)]e−βT
, (5)

≈ h(0) + αT , (6)

α = βh(0)[1 − h(0)], (7)

where β is assumed to be a real function f of the Lyapunov
exponent λ: β = f (λ). In the case of a single positive Lya-
punov exponent, λ represents the largest Lyapunov exponent.
In the case of multiple positive Lyapunov exponents, λ should
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FIG. 1. Histograms of alphabets for the time series of the variable
x of the Lorenz model. T = 0.01 (k = 1) and D = 4. (a) PE and (b)
SEG (closed triangles) and SEL (open circles).

be interpreted to represent the sum of positive Lyapunov
exponents, i.e., the KS entropy. The simplest form of f is
β = cλ, where c is a positive constant. This holds if there is a
linear correlation between α and λ, which leads to

c = α

λ

1

h(0)[1 − h(0)]
. (8)

The validity of this idea is examined through our numerical
experiments in the following section.

III. NUMERICAL ANALYSIS

A. Numerical time series

We conducted numerical experiments on estimating h(0)
and α for well-known dynamical models of chaotic flows
published in Ref. [19], in which the mathematical forms of the
models and their Lyapunov spectra were shown. In this study,
D is set to 4. We numerically integrated the dynamical models
using the fourth-order Runge-Kutta method with a time width
�t of 1 × 10−2 (1 × 10−4 only for the Hénon-Heiles system
in Table I). The bifurcation parameters as well as the initial
conditions were the same as those given in Ref. [19]. For
all the dynamical models shown in Table I, the first 104 data
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FIG. 2. Histograms of alphabets for the time series of the variable
x of the Lorenz model. T = 3 (k = 300) and D = 4. (a) PE and
(b) SEG (closed triangles) and SEL (open circles).

points were discarded to eliminate the transient part depending
on the initial conditions. We thus obtained numerical time
series consisting of 105 data points (106 data points only
for the Hénon-Heiles system) at sampling time intervals of
T = k × �t with k = 1, 2, 3, 4, 5, 10, 30, 50, 100, and
300. Estimates of h(0) and α were obtained by applying
least-mean-square fitting to h(T ) for �t � T � 5�t on the
basis of Eq. (4).

Table I summarizes our numerical results, where estimates
of α, h(0), and the correlation coefficient of the linear fitting
as well as the largest Lyapunov exponent cited from Ref. [19]
are shown for various chaotic models. The estimates of h(0)
are about 0.22 for PE and 0.25 for SEG and SEL, as have been
theoretically predicted. As typical results, Figs. 1(a) and 1(b)
show the histogram of the 24 alphabets for PE and those of the
16 alphabets for SEG and SEL, respectively, for the time series
of the variable x of the Lorenz model with T = �t . Similar
results for T = 300�t are shown in Figs. 2(a) and 2(b). In
Fig. 1(a), a pair of large peaks appear at the alphabets “1234”
and “4321.” In Fig. 1(b), a pair of large peaks appear at “0000”
and “1111” for SEG and at “0011” and “1100” for SEL. In
Figs. 1(b) and 2(b), “0000” and “1111” for SEL are missing.
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FIG. 3. Estimates of h as a function of T for the time series of
the variable x of the Lorenz model. D = 4. (a) PE, (b) SEG, and
(c) SEL. Dashed curves indicate the approximate functions defined
by Eqs. (5) and (8), where the coefficient c was determined using the
estimates of α, λ, and h(0). The largest Lyapunov exponent λ is cited
from Ref. [19].

Figures 3(a)–3(c) show estimates of h(T ) for the time series
of the variable x of the Lorenz model for PE, SEG, and SEL,
respectively, where the approximate curves of h(T ) defined
by Eqs. (5) and (8) are also depicted using the estimates of
α and h(0) with the largest Lyapunov exponent λ published
in Ref. [19]. The approximate curves appear to reproduce the
overall features of h(T ).

Figures 4(a)–4(c) show the plots of α as functions of λ

summarized in Table I for PE, SEG, and SEL, respectively,
where linear lines determined by least-mean-square error
fitting represent α = ch(0)[1 − h(0)]λ defined by Eq. (8). The
linear correlation between α and λ is summarized in Table II.
For PE and SEL, there are high linear correlations between
α and λ, which is consistent with our assumption underlying
Eq. (8).

To clarify the effect of the choice of D, the dependencies
of α and h(0) on D were examined through numerical
experiments for the time series of the variables x and y of
the Lorenz equations under the settings of D = 5 and 6. Other
parameters and conditions were the same as those of the Lorenz
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FIG. 4. Plots of α versus the largest Lyapunov exponent λ for
(a) PE, (b) SEG, and (c) SEL.

equations shown in Table I. The results are summarized in
Table III . As mentioned in Sec. II, our theoretical prediction
regarding h(0) is 1/D = 0.2 and approximately 0.1667 for
SEG and SEL and 1/ log2 D! ≈ 0.1448 and 0.1054 for PE
when D = 5 and 6, respectively. Notice that for PE the total
number of alphabets amounts to D! = 720, much larger than
2D = 64, when D = 6. When D = 5, PE, and SEG reproduce
the theoretical predictions regarding h(0) as well as estimates
of α similar to those shown in Table I. On the other hand,
SEL yields different estimates. This is due to the ambiguity
in defining the alphabets corresponding to h(0), as mentioned
in Sec. II. The ambiguity vanishes when D = 6. Figures 5(a)
and 5(b) show histograms of the alphabets for SEG and SEL
at T = 0.01 with D = 5 and 6, respectively. In Fig. 5(a), for
SEL, there are four major peaks, which reflects the ambiguity

TABLE II. Estimates of α/λ and the correlation coefficient of the
λ versus α plot, calculated from PE, SEG, and SEL for the chaotic
models in Table I.

Entropy α/λ Correlation coefficient

PE 6.4937 0.9361
SEG 4.2117 0.6686
SEL 6.0731 0.9357
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TABLE III. Estimates of α, h(0), and the correlation coefficient of the linear fitting, calculated from PE, SEG, and SEL for the numerical
time series of the variables x and y of the Lorenz equations. D = 5 and 6.

D Model and variable Entropy α s−1 h(0) Correlation coefficient

5 Lorenz, x PE 4.7339 0.1760 0.9971
SEG 2.6588 0.2180 0.9984
SEL 2.1449 0.4043 0.9998

5 Lorenz y PE 7.1011 0.1895 0.9973
SEG 3.9923 0.2292 0.9973
SEL 3.7774 0.3984 0.9983

6 Lorenz, x PE 4.7532 0.1338 0.9979
SEG 2.8362 0.1826 0.9984
SEL 6.0847 0.2293 0.9941

6 Lorenz y PE 7.0843 0.1518 0.9965
SEG 4.1516 0.1966 0.9965
SEL 5.8294 0.2950 0.9829

induced by setting D to an odd integer. In contrast, there are
two major peaks in Fig. 5(b).
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FIG. 5. Histograms of alphabets for the time series of the variable
x of the Lorenz model for SEG (closed triangles) and SEL (open
circles) at T = 0.01. (a) D = 5 and (b) D = 6.

B. Experimental time series

We next conducted numerical analysis of actually observed
data: a time series of the flame front location of an unstable
swirling premixed flame [20] and a time series of buoyancy-
induced flame oscillations under a swirling flow [21]. In
References [20] and [21], chaotic dynamical behavior was
found to appear in both dynamical systems using other
methods of time series analysis.

Figure 6 shows a time series of the flame front location
of a swirling premixed flame with a bulk flow velocity of
u0 = 1.6 m/s observed with a time resolution of 10−3 s. For
details of the experimental method, see Ref. [20]. The time
series consists of 9900 data points. We estimated α and h(0)
by the linear fitting of h(T ) at T = 0.001, 0.002, 0.003, 0.004,
and 0.005 s for PE, SEG, and SEL with D = 4. The estimates
are summarized in Table IV and Figs. 7(a)–7(c) for PE, SEG,
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FIG. 6. Flame front location of an unstable swirling premixed
flame as a function of time [20].
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TABLE IV. Estimates of α, h(0), and the correlation coefficient
of the linear fitting, calculated from PE, SEG, and SEL for the
experimental time series shown in Fig. 6.

Entropy α s−1 h(0) Correlation coefficient

PE 62.43 0.1578 0.9989
SEG 30.48 0.2750 0.9874
SEL 35.01 0.3371 0.9960

and SEL, respectively, where the approximate curves of h(T )
defined by Eqs. (5) and (8) are depicted using the estimates of
α and h(0). For SEG and SEL, the approximate curves appear
to better reproduce the overall features of h(T ).

We also estimated the largest Lyapunov exponent as a
function of the embedding dimension using the algorithm
of Rosenstein et al. [3]. The results are shown in Fig. 8. In
Ref. [20], the degree of visible determinism was estimated as
a function of the embedding dimension using the algorithm
developed by Wayland et al. [22], from which the minimal
embedding dimension was inferred to be 10. The largest Lya-
punov exponent takes a value of 11.19 s−1 with a correlation
coefficient of 0.9935 when the embedding dimension is 10.
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FIG. 7. Estimates of h as a function of T for the time series of the
flame front location of an unstable swirling premixed flame. D = 4.
(a) PE, (b) SEG, and (c) SEL. Dashed curves indicate the approximate
functions defined by Eqs. (5) and (8).
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FIG. 8. Largest Lyapunov exponent λ as a function of the
embedding dimension for the flame front location of an unstable
swirling premixed flame.

Hence, α/λ = 5.579, 2.724, and 3.129 for PE, SEG, and SEL,
respectively. These values are of the same order as those shown
in Table II, particularly for PE, despite noise contamination of
the observed time series.

Figure 9 shows the flame front location of buoyancy-
induced flame oscillations as a function of time, observed
with a time resolution of 10−3 s, for a swirling flow with a
rotational Reynolds number of Rer = 549 and a swirl number
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FIG. 9. Flame front location of buoyancy-induced flame oscilla-
tions as a function of time [21].
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TABLE V. Estimates of α, h(0), and the correlation coefficient
of the linear fitting, calculated from PE, SEG, and SEL for the
experimental time series shown in Fig. 9.

Entropy α s−1 h(0) Correlation coefficient

PE 57.48 0.1599 0.9965
SEG 33.32 0.2949 0.9581
SEL 28.46 0.3699 0.9738

of S = 2.4. Details of the experimental method were given
in Ref. [21]. The time series consists of 9980 data points.
α and h(0) were estimated by the linear fitting of h(T ) at
T = 0.001, 0.002, 0.003, 0.004, and 0.005 s with D = 4 for
PE, SEG, and SEL. The results are summarized in Table V and
Figs. 10(a)–10(c) for PE, SEG, and SEL, respectively, where
the approximate curves of h(T ) defined by Eqs. (5) and (8) are
also depicted. Similarly to Figs. 6(a)– 6(c), for SEG and SEL,
the approximate curves appear to better reproduce the overall
features of h(T ).

The largest Lyapunov exponent was estimated as a function
of the embedding dimension using the algorithm of Rosenstein
et al. The results are shown in Fig. 11 . We also estimated the
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FIG. 10. Estimates of h as a function of T for the time series
of the flame front location of buoyancy-induced flame oscillations.
D = 4. (a) PE, (b) SEG, and (c) SEL. Dashed curves indicate the
approximate functions defined by Eqs. (5) and (8).
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FIG. 11. Largest Lyapunov exponent λ as a function of the
embedding dimension for the flame front location of buoyancy-
induced flame oscillations.

degree of visible determinism as a function of the embedding
dimension in terms of the translation error of neighboring
trajectories in phase space using the diagnostic algorithm of
Wayland et al. in much the same way as in Ref. [20]. The
results (data not shown) indicated that the translation error was
0.0411 at an embedding dimension of 10, which implies that
the determinism underlying the time series is clearly visible
when the embedding dimension is set to 10. At the embedding
dimension of 10, λ = 11.25 s−1 with a correlation coefficient
of 0.9797. Hence, α/λ = 5.107, 2.961, and 2.529 for PE, SEG,
and SEL, respectively, exhibiting a similar tendency to the time
series shown in Fig. 6.

IV. DISCUSSION

The underlying dynamics of the numerical data analyzed
in Sec. III A are well-known systems of nonlinear ordinary
differential equations that represent chaotic flows, each with a
single positive Lyapunov exponent. For these numerical time
series, our results indicate that there is a linear correlation
between α and the largest Lyapunov exponent, especially
for PE and SEL. The estimated histograms for the minimum
sampling time interval, i.e., T = 0.01 (T = 0.0001 only for
the Hénon-Heiles system), are consistent with our assumption
that h(0) corresponds to the limit of continuous measurement
of a time series, as has been shown in Figs. 1(a) and 1(b).
The estimated values of h(0) are also consistent with our
predictions of h(0) = 1/ log2(D!) for PE and 1/D for SEG
and SEL when D is set to an even integer. The results
shown in Table III and Figs. 5(a) and 5(b) indicate that D

should be set to an even integer to avoid the ambiguity in
defining the alphabets appearing in the limit of T → 0 when
using SEL. For PE and SEL, the coarse-graining of the time
series into a sequence of alphabets was performed using local
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rank scores and local thresholds, respectively, while for SEG
the coarse-graining was performed over all segments of the
series using a single global threshold. The difference between
the local methods and the global method for generating
alphabets is considered to result in the different estimates
of α/λ.

In Figs. 3(a)–3(c), the approximate curves reproduce the
overall features of h(T ). This implies that the entropy h as a
function of time is subject to the logistic equation of the form

dh

dt
= cλh(1 − h), (9)

which is a well-known mathematical model of population
dynamics. By integrating Eq. (9) from t = 0 to the sampling
time T , we obtain Eq. (5) with β = cλ.

For the experimental time series shown in Figs. 6 and 9,
PE yields estimated values of α/λ close to that estimated for
the numerical time series shown in Table II, whereas SEG and
SEL provide estimates smaller than those shown in Table II.
For h(0), only SEG approximately reproduces our theoretical
prediction of h(0) = 1/D. These discrepancies in α/λ and h(0)
may be due to noise contamination of the experimental data as
well as the estimation errors of the largest Lyapunov exponent
caused by the algorithm of Rosenstein et al. In fact, SEG is the
least sensitive to noise contamination of a time series owing to
the use of a single global threshold to binarize the time series.
Instead, the coarse-graining of the time series for SEG is of
lower resolution and less sensitive to observational noise than
that for PE and SEL, which may result in estimates of h(0)
close to 1/D.

In existing methods for estimating the largest Lyapunov
exponent from experimental time series such as the Kantz
algorithm and that of Rosenstein et al., wherein the distance
between neighboring trajectories is measured as a function
of time, the embedding dimension must be sufficiently large
to exclude false neighboring trajectories. However, as the
embedding dimension increases, the distance often tends to
oscillate with time and consequently it becomes difficult to
give a reliable estimation of the Lyapunov exponent [23]. In
contrast, our method uses the parameter D as the number of
contiguous data points in each segment of a time series to
determine the total number of alphabets, not as the embedding
dimension used to reconstruct the phase space. Hence, our
method incurs neither the risk of false neighboring trajectories
in choosing D nor unreliability in the estimated distance
between trajectories. However, the total number of alphabets
exponentially increases with D, meaning that a long time series
is necessary to avoid a biased histogram of the alphabets
when D is large. This problem is more serious in the case
of PE since the total number of alphabets is D! and much
larger than 2D . In this sense, SEG and SEL should yield
unbiased estimates of α and λ when handling a short time
series.

When treating experimental chaotic flows with a single
positive Lyapunov exponent, our method is more robust
and tractable than those for estimating the largest Lyapunov
exponent, as has been demonstrated in the previous section.
However, when handling experimental chaotic flows with
multiple positive Lyapunov exponents, we must reinterpret
what λ in Eq. (8) corresponds to. In this situation, λ should be

interpreted as the sum of positive Lyapunov exponents. Then,
α is a surrogate for the KS entropy: α ∝ ∑

i,λi>0 λi .
Let us consider a time series representing a stochastic

process having many degrees of freedom. In such a case, the
dynamical system appears to have many λi > 0, and hence
λ → ∞. Consequently, h(T ) takes a value of unity regardless
of T and h(0) may not be well defined according to Eq. (8).
Thus, stochastic processes can be discriminated from chaos by
examining h(T ) at a sufficiently small value of T .

In this study, we have focused on the dynamical behavior
of chaotic flows, which are expressed as ordinary differential
equations with respect to time. One might wonder whether
the proposed method is applicable to time series generated by
chaotic maps such as the logistic map and the tent map. We
think that the proposed method is generally inapplicable to
times series generated by chaotic maps (unless one operation
of a chaotic map corresponds to a sufficiently short sampling
time interval of the corresponding chaotic flow) because h(T )
cannot be well defined in the limit of T → 0, i.e., in the limit
of continuous measurement of the time series.

V. CONCLUSIONS

We have proposed a mathematical method for assessing
the degree of dynamical instability on the basis of the
information entropy of symbolic time series. We have shown
three procedures for transforming a time series into the corre-
sponding symbolic sequences and subsequently estimating the
information entropies, i.e., PE, SEG, and SEL, as functions
of the sampling time interval of the time series from the
histograms of the alphabets generated from the symbolic
sequences. By linearizing the information entropy with respect
to the sampling time interval, the gradient α and intersect h(0)
are calculated. We have shown that there is a linear correlation
between α and the largest Lyapunov exponent λ in the case of
a single positive Lyapunov exponent. In the case of multiple
positive Lyapunov exponents, λ may be reinterpreted as the
KS entropy. Thus, α can be a surrogate invariant measure for
the largest Lyapunov exponent or the KS entropy. Since our
method does not consider the distance between neighboring
trajectories in phase space, it is robust to noise contamination
of experimental time series.

Open questions are the existence of a universal constant
between α and λ and the capability of the proposed method for
discriminating stochastic processes from chaos. For the latter
question, it is worth investigating the effect of the present
method on surrogate symbolic dynamics generated under a
variety of null hypotheses concerning the statistical properties
of a given time series.

ACKNOWLEDGMENTS

We thank Dr. K. Cho for technical support. This study was
partly supported by JSPS KAKENHI Grant No. JP15K00353.

042203-9



TAKAYA MIYANO AND HIROSHI GOTODA PHYSICAL REVIEW E 96, 042203 (2017)

[1] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and
strange attractors, Rev. Mod. Phys. 57, 617 (1985).

[2] M. Sano and Y. Sawada, Measurement of the Lyapunov
Spectrum from a Chaotic Time Series, Phys. Rev. Lett. 55, 1082
(1985).

[3] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, A practical
method for calculating largest Lyapunov exponents from small
data sets, Physica D 65, 117 (1993).

[4] H. Kantz, A robust method to estimate the maximal Lyapunov
exponent of a time series, Phys. Lett. A 185, 77 (1994).

[5] C. E. Shannon, Communication theory of secrecy systems, Bell
Syst. Tech. J. 28, 656 (1949).

[6] A. M. Fraser and H. L. Swinney, Independent coordinates for
strange attractors from mutual information, Phys. Rev. A 33,
1134 (1986).

[7] A. M. Fraser, Information and entropy in strange attractors,
IEEE Trans. Inf. Theory 35, 245 (1989).

[8] M. Costa, A. L. Goldberger, and C.-K. Peng, Multiscale Entropy
Analysis of Complex Physiologic Time Series, Phys. Rev. Lett.
89, 068102 (2002).

[9] C. Bandt and B. Pompe, Permutation Entropy: A Natural
Complexity Measure for Time Series, Phys. Rev. Lett. 88,
174102 (2002).

[10] C. Bandt, G. Keller, and B. Pompe, Entropy of interval maps via
permutations, Nonlinearity 15, 1595 (2002).

[11] J. M. Amigó, M. B. Kennel, and L. Kocarev, The permutation
entropy rate equals the metric entropy rate for ergodic informa-
tion sources and ergodic dynamical systems, Physica D 210, 77
(2005).

[12] L. Zunino, M. C. Soriano, I. Fisher, O. A. Rosso, and C. R.
Mirasso, Permutation-information-theory approach to unveil
delay dynamics from time-series analysis, Phys. Rev. E 82,
046212 (2010).

[13] C. W. Kulp and S. Smith, Characterization of noisy symbolic
time series, Phys. Rev. E 83, 026201 (2011).

[14] L. Zunino, M. C. Soriano, and O. A. Rosso, Distinguishing
chaotic and stochastic dynamics from time series by using
a multiscale symbolic approach, Phys. Rev. E 86, 046210
(2012).

[15] C. W. Kulp and L. Zunino, Discriminating chaotic and stochastic
dynamics through the permutation spectrum test, Chaos 24,
033116 (2014).

[16] A. Politi, Quantifying the Dynamical Complexity of Chaotic
Time Series, Phys. Rev. Lett. 118, 144101 (2017).

[17] M. Weilenmann, L. Kraemer, P. Faist, and R.
Renner, Axiomatic Relation Between Thermodynamic and
Information-Theoretic Entropies, Phys. Rev. Lett. 117, 260601
(2016).

[18] C. Bian, C. Qin, Q. D. Y. Ma, and Q. Shen, Modified
permutation-entropy analysis of heartbeat dynamics, Phys. Rev.
E 85, 021906 (2012).

[19] J. C. Sprott, Chaos and Time-Series Analysis (Oxford University
Press, Oxford, 2003), pp. 428–440.

[20] H. Gotoda, T. Miyano, and I. G. Shepherd, Dynamic properties
of unstable motion of swirling premixed flames generated by
a change in gravitational orientation, Phys. Rev. E 81, 026211
(2010).

[21] H. Gotoda, Y. Asano, K. H. Chuah, and G. Kushida, Nonlinear
analysis on dynamic behavior of buoyancy-induced flame
oscillation under swirling flow, Int. J. Heat Mass Transf. 52,
5423 (2009).

[22] R. Wayland, D. Bromley, D. Pickett, and A. Passamante,
Recognizing Determinism in a Time Series, Phys. Rev. Lett.
70, 580 (1993).

[23] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis
(Cambridge University Press, Cambridge, 1997), pp. 66–67.

042203-10

https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1109/18.32121
https://doi.org/10.1109/18.32121
https://doi.org/10.1109/18.32121
https://doi.org/10.1109/18.32121
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1088/0951-7715/15/5/312
https://doi.org/10.1088/0951-7715/15/5/312
https://doi.org/10.1088/0951-7715/15/5/312
https://doi.org/10.1088/0951-7715/15/5/312
https://doi.org/10.1016/j.physd.2005.07.006
https://doi.org/10.1016/j.physd.2005.07.006
https://doi.org/10.1016/j.physd.2005.07.006
https://doi.org/10.1016/j.physd.2005.07.006
https://doi.org/10.1103/PhysRevE.82.046212
https://doi.org/10.1103/PhysRevE.82.046212
https://doi.org/10.1103/PhysRevE.82.046212
https://doi.org/10.1103/PhysRevE.82.046212
https://doi.org/10.1103/PhysRevE.83.026201
https://doi.org/10.1103/PhysRevE.83.026201
https://doi.org/10.1103/PhysRevE.83.026201
https://doi.org/10.1103/PhysRevE.83.026201
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1063/1.4891179
https://doi.org/10.1063/1.4891179
https://doi.org/10.1063/1.4891179
https://doi.org/10.1063/1.4891179
https://doi.org/10.1103/PhysRevLett.118.144101
https://doi.org/10.1103/PhysRevLett.118.144101
https://doi.org/10.1103/PhysRevLett.118.144101
https://doi.org/10.1103/PhysRevLett.118.144101
https://doi.org/10.1103/PhysRevLett.117.260601
https://doi.org/10.1103/PhysRevLett.117.260601
https://doi.org/10.1103/PhysRevLett.117.260601
https://doi.org/10.1103/PhysRevLett.117.260601
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.035
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.035
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.035
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.035
https://doi.org/10.1103/PhysRevLett.70.580
https://doi.org/10.1103/PhysRevLett.70.580
https://doi.org/10.1103/PhysRevLett.70.580
https://doi.org/10.1103/PhysRevLett.70.580



