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The interactions of multiple solitons show different properties with two-soliton interactions. For the difficulty
of deriving multiple soliton solutions, it is rare to study multiple soliton interactions analytically. In this paper,
three-soliton interactions in inhomogeneous optical fibers, which are described by the variable coefficient Hirota
equation, are investigated. Via the Hirota bilinear method and symbolic computation, analytic three-soliton
solutions are obtained. According to the obtained solutions, properties and features of three-soliton interactions
are discussed by changing the third-order dispersion (TOD) and other relevant coefficients, and some plentiful
structure of three-soliton interactions are presented for the first time. The influences of TOD on the intensity and
propagation distance of solitons are described, which can be used to realize the soliton control. Besides, the method
that can achieve the phase reverse of solitons is suggested, and bound states of three solitons are observed, which
have potential applications in the mode-locked fiber lasers. Furthermore, comparing to two-soliton interactions, a
novel phenomenon of three-soliton interactions with a strong phase shift at x = 0 is revealed, which is potentially
useful for optical logic switches.
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I. INTRODUCTION

Optical solitons, which can maintain their shape and ve-
locity during the long-distance propagation due to the balance
between the group velocity dispersion (GVD) and self-phase
modulation (SPM) effects [1], have become an attractive
research field on account of their potential applications in
the optical communication systems and all-optical ultrafast
switching devices [2–8]. It is well known that the soliton
interaction is a unique phenomenon in the nonlinear fiber trans-
mission. Solitons attract each other in the transmission process
because of the existence of soliton interactions, which result in
a serious reduction in the transmission rate [9]. Therefore, it is
particularly important and urgent to study soliton interactions
and find an effective method to control them.

Actually, the research of soliton interactions mostly focus
on two solitons [10–13]. Mutual interactions of solitons can be
reduced by the inclusion of the third-order dispersion (TOD)
of optical fibers [14]. The bound two solitons can split into
individual solitons traveling with different speeds by reason of
higher-order effects [15]. Two solitons of a dark-soliton pair
can also form a bound state, which can be applied to fabricate
the optical coupler [16]. Besides, non-locality provides an
attractive force between other repelling solitons, and can form
their bound state [17]. More recently, interactions between
bright and dark solitons can generate the dispersive radiation
[18].

However, we notice that interactions among multiple
solitons have not been discussed much. In some practical
problems and applications, multiple solitons often transmit
in a medium at the same time, whereas there are not only
the interactions between two solitons, but also three and four
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soliton interactions. When the multiple solitons co-propagate
and interact, there may be different interaction characteristics
with two-soliton interactions. The propagation properties of
multiple solitons could not be drawn simply from the results of
two-soliton interactions. Besides, interactions of three solitons
are inherently complex, plusing with the influence of the
high-order dispersion effects on it, three soliton interactions
will produce some novel phenomena. So it is inevitable to
consider multiple soliton interactions. In addition, discrete
solitons and soliton arrays that have attracted wide attention in
recent years, which involve the co-propagation and interaction
of a large number of solitons [19–24]. Furthermore, using
multiple soliton interactions can give further impetus in
constructing multistate logic, multi-input logic gates, memory
storage devices, and so on [25]. Therefore, it is of great
theoretical and practical significance to study the interaction
rules of multiple solitons.

The nonlinear Schrödinger (NLS) equation can be used
to study the properties and features of soliton interactions
in nonlinear optics. In the mathematical point of view, the
Hirota equation represents the integrable version of the NLS
equation. The variable-coefficients Hirota equation can be
used to describe soliton interactions in inhomogeneous optical
fibers as follows [26]:

iqx − β2qtt + γ |q|2q + iβ3(x)qttt + iτ (x)|q|2qt + μq = 0.

(1)

Here, q is a complex function with x and t denoting the
normalized propagation distance along the optical fiber and
retarded time. The coefficients β2, γ , β3(x), τ (x), and μ,
respectively, represent the GVD, Kerr nonlinearity, TOD,
time-delay related to the cubic term, and external potential
[27,28].

However, three-soliton interactions in Eq. (1) have not been
studied. In this paper, the plentiful structure of three-soliton
interactions will be presented. We will directly analyze the
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FIG. 1. The intensity and distance of three-soliton interactions
affected by the change of β3(x). Parameters chosen as: ξ11 = 8.4,
ξ21 = 6.1, ξ31 = 9.4, ξ12 = 1, ξ22 = 3, ξ32 = 5, w11 = 1, w21 = 1,
w31 = 1, w12 = −1.4, w22 = 1.9, w32 = −0.77, β2 = −0.15, μ =
0.13, γ = 0.3 with (a) β3(x) = 0.07; (b) β3(x) = 0.08; (c) β3(x) =
0.09; (d) β3(x) = 0.0885.

effect of β3(x) on the intensity and distance of soliton
interactions. Besides, the phase of solitons can be reversed by
choosing suitable parameters. By setting appropriate values
of TOD and corresponding parameters, we will find the
bound state of three solitons, which have potential applications
in the formation of mode-locked fiber lasers, and increase
the transmission line bandwidth of optical communication
systems. In addition, we will find a novel type of soliton
interaction in which a strong phase shift occurs on both sides
of x = 0, which is different from two-soliton interactions [29].

This paper is organized as follow. Section II is devoted
to deriving an analytic three-soliton solution of Eq. (1)
by the Hirota method. Section III is allotted to analyze
the properties and features of three-soliton interactions, and
investigate the effect on soliton interactions using different
choices of TOD. Finally, Sec. IV is reserved for drawing a
conclusion.

II. BILINEAR FORMS AND THREE-SOLITON SOLUTIONS

In order to derive the bilinear forms for Eq. (1), we introduce
the dependent variable transformation q(x,t) = g(x,t)/f (x,t)
[30]. Under the constrains τ (x) = −3γβ3(x)/β2, the bilinear
forms for Eq. (1) can be derived as follows:

D2
t f · f + γ

β2
gg∗ = 0,

[
iDx + μ − β2D

2
t + iβ3(x)D3

t

]
g · f = 0, (2)

where g(x,t) is assumed as a complex differentiable function
while f (x,t) is a real one. Dx and Dt are the bilinear derivative
operators defined as [31]

Dm
x Dn

t G(x,t) · F (x,t)

=
(

∂

∂x
− ∂

∂x
′

)m(
∂

∂t
− ∂

∂t
′

)n

G(x,t)F (x
′
,t

′
)|x ′=x,t

′ =t

(3)

with G(x,t) and F (x
′
,t

′
) are the differentiable functions, while

m and n are both non-negative integers.
To obtain soliton solutions of Eq. (1), we expand g(x,t) and

f (x,t) with a formal expansion parameter ε as

g(x,t) = εg1(x,t) + ε3g3(x,t) + ε5g5(x,t),

f (x,t) = 1 + ε2f2(x,t) + ε4f4(x,t) + ε6f6(x,t),

where gi(x,t)(i = 1,3,5 . . .) are the complex deferential func-
tions while fj (x,t)(j = 0,2,4, . . .) are real ones. Without
losing generality, setting ε = 1 and substituting them into
bilinear form (2), we can construct three-soliton solutions for
Eq. (1) as follows:

q(x,t) = g(x,t)

f (x,t)
= g1(x,t) + g3(x,t) + g5(x,t)

1 + f2(x,t) + f4(x,t) + f6(x,t)
, (4)

where

g1(x,t) = eθ1 + eθ2 + eθ3 ,

g3(x,t) = κ1(x)eθ1+θ2+θ∗
1 + κ2(x)eθ1+θ2+θ∗

2 + κ3(x)eθ1+θ2+θ∗
3 + κ4(x)eθ1+θ3+θ∗

1 + κ5(x)eθ1+θ3+θ∗
2 + κ6(x)eθ1+θ3+θ∗

3

+κ7(x)eθ2+θ3+θ∗
1 + κ8(x)eθ2+θ3+θ∗

2 + κ9(x)eθ2+θ3+θ∗
3 ,

g5(x,t) = ι1(x)eθ1+θ2+θ3+θ∗
1 +θ∗

2 + ι2(x)eθ1+θ2+θ3+θ∗
1 +θ∗

3 ι3(x)eθ1+θ2+θ3+θ∗
2 +θ∗

3 ,

f2(x,t) = φ1(x)eθ1+θ∗
1 + φ2(x)eθ1+θ∗

2 + φ3(x)eθ1+θ∗
3 + φ4(x)eθ2+θ∗

1 + φ5(x)eθ2+θ∗
2 + φ6(x)eθ2+θ∗

3

+φ7(x)eθ3+θ∗
1 + φ8(x)eθ3+θ∗

2 + φ9(x)eθ3+θ∗
3 ,

f4(x,t) = ϕ1(x)eθ1+θ2+θ∗
1 +θ∗

2 + ϕ2(x)eθ1+θ2+θ∗
1 +θ∗

3 + ϕ3(x)eθ1+θ2+θ∗
2 +θ∗

3 + ϕ4(x)eθ1+θ3+θ∗
1 +θ∗

2

+ϕ5(x)eθ1+θ3+θ∗
1 +θ∗

3 + ϕ6(x)eθ1+θ3+θ∗
2 +θ∗

3 + ϕ7(x)eθ2+θ3+θ∗
1 +θ∗

2 + ϕ8(x)eθ2+θ3+θ∗
1 +θ∗

3 + ϕ9(x)eθ2+θ3+θ∗
2 +θ∗

3 ,

f6(x,t) = ψ1(x)eθ1+θ2+θ3+θ∗
1 +θ∗

2 +θ∗
3 (5)
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with

θ1 = [k11(x) + ik12(x)]x + (w11 + iw12)t + ξ11 + iξ12,θ2 = [k21(x) + ik22(x)]x + (w21 + iw22)t + ξ21 + iξ22,

θ3 = [k31(x) + ik32(x)]x + (w31 + iw32)t + ξ31 + iξ32.

k11(x) =
∫ [

2w11w12β2 − w3
11β3(x) + 3w11w

2
12β3(x)

]
dx

x
, k12(x) =

∫ [
μ − w2

11β2 + w2
12β2 − 3w2

11w12β3(x) + w3
12β3(x)

]
dx

x
,

k21(x) =
∫ [

2w21w22β2 − w3
21β3(x) + 3w21w

2
22β3(x)

]
dx

x
, k22(x) =

∫ [
μ − w2

21β2 + w2
22β2 − 3w2

21w22β3(x) + w3
22β3(x)

]
dx

x
,

k31(x) =
∫ [

2w31w32β2 − w3
31β3(x) + 3w31w

2
32β3(x)

]
dx

x
, k32(x) =

∫ [
μ − w2

31β2 + w2
32β2 − 3w2

31w32β3(x) + w3
32β3(x)

]
dx

x
,

κ1(x) = − γA2
11

8w2
11β2A

2
21

, κ2(x) = − γA2
11

8w2
21β2A

2
31

, κ3(x) = − γA2
11

2β2A
2
32A

2
33

, κ4(x) = − γA2
12

8w2
11β2A

2
22

,

κ5(x) = − γA2
12

2β2A
2
23A

2
31

, κ6(x) = − γA2
12

8w2
31β2A

2
32

, κ7(x) = − γA2
13

2β2A
2
21A

2
22

, κ8(x) = − γA2
13

8β2A
2
23

,

κ9(x) = − γA2
13

8β2A
2
33

, ϕ1(x) = γ 2B2
11

64w2
11w

2
21β

2
2B2

12

, ϕ2(x) = γ 2A2
11A

2
42

16w2
11β

2
2A2

32A
2
33A

2
21

, ϕ3(x) = γ 2A2
11A

2
43

16w2
21β

2
2A2

32A
2
33A

2
31

,

ϕ4(x) = γ 2A2
12A

2
41

16w2
11β

2
2A2

23A
2
31A

2
22

,ϕ5(x) = γ 2B2
21

64w2
11w

2
31β

2
2B2

22

, ϕ6(x) = γ 2A2
12A

2
43

16w2
31β

2
2A2

23A
2
31A

2
32

, ϕ7(x) = γ 2A2
13A

2
41

16w2
21β

2
2A2

21A
2
22A

2
23

,

ϕ8(x) = γ 2A2
13A

2
42

16w2
31β

2
2A2

21A
2
22A

2
33

,ϕ9(x) = γ 2B2
31

64w2
21w

2
31β

2
2B2

32

, ι1(x) = γ 2A2
12A

2
13B

2
11

64w2
11w

2
21β

2
2A2

21A
2
22A

2
23A

2
31

, (6)

ι2(x) = γ 2A2
11A

2
13B

2
21

64w2
11w

2
31β

2
2A2

21A
2
22A

2
32A

2
33

, ι3(x) = γ 2A2
11A

2
12B

2
31

64w2
21w

2
31β

2
2A2

23A
2
31A

2
32A

2
33

,

ψ1(x) = − γ 3B2
11B

2
21B

2
31

512μ3w2
11w

2
21w

2
31A

2
21A

2
22A

2
23A

2
31A

2
32A

2
33

, A11 = w11 + iw12 − w21 − iw22, A12 = w11 + iw12 − w31 − iw32,

A13 = w21 + iw22 − w31 − iw32, A21 = w11 − iw12 + w21 + iw22, A22 = w11 − iw12 + w31 + iw32,

A23 = w21 − iw22 + w31 + iw32, A31 = w11 + iw12 + w21 − iw22, A32 = w11 + iw12 + w31 − iw32,

A33 = w21 + iw22 + w31 − iw32, A41 = w11 − iw12 − w21 + iw22, A42 = w11 − iw12 − w31 + iw32,

A43 = w21 − iw22 − w31 + iw32, B11 = (w11 − w21)2 + (w12 − w22)2, B12 = (w11 + w21)2 + (w12 − w22)2,

B21 = (w11 − w31)2 + (w12 − w32)2, B22 = (w11 + w31)2 + (w12 − w32)2, B31 = (w21 − w31)2 + (w22 − w32)2,

B32 = (w21 + w31)2 + (w22 − w32)2. (7)

III. DISCUSSION

In order to better study the effect of high-order dispersion
on three-soliton interactions, we take the following exam-
ples of relevant coefficients, especially the TOD parameter
β3(x). Consequently, we analyze the dispersion management
or various types of soliton control by choosing different
parameters.

As shown in Figs. 1 and 2, interactions among solitons
are the typical soliton elastic interactions when we choose
the constant as the parameter of TOD. We can observe in
Fig. 1 that the intensity and distance of soliton interaction can
be controlled by changing the value of β3(x). In Fig. 1(a),
when we set β3(x) = 0.07, interactions among solitons are
weakened after interacting a limited distance, and they separate
in accordance with the original velocities and phases. With
the decreasing of the value of β3(x), the interaction distance
between solitons become longer in Figs. 1(b) and 1(c). As

shown in Fig. 1(c), when β3(x) = 0.09, before three-soliton
interactions, each of them is transmitted in the original
direction without affecting each other. After three-soliton
interactions, two solitons attract each other and transmit for
a long distance with a strong interaction intensity, but they
will separate after interacting a certain distance. Especially,
when choosing β3(x) = 0.0885, two solitons merge together
and transmit a longer distance after three-soliton interactions.
This means that the transmitted distance of solitons in the fused
state can be controlled by changing the value of TOD. Thus,
we can control the distance and intensity of soliton interactions
in a certain range by choosing the suitable value of β3(x). As
expressions (6) show, β3(x) mainly affects the coefficient of
the propagation distance x. So the reason the β3(x) effect the
distance and intensity of soliton interactions can be explained
by the kij (x),(i = 1,2,3; j = 1,2) in expressions (6).

On the other hand, as we can see in the expressions
(5)–(7), the relevant coefficients of the three-soliton solution
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FIG. 2. Phase shift and propagation direction change of three
solitons affected by the arbitrary parameters w12, w22, w32. Parameters
are the same as Fig. 1 but β3(x) = 0.085 with (a) w12 = −1.2, w22 =
1.7, w32 = −0.61; (b) w12 = 2, w22 = −0.44, w32 = 1.9; (c) w12 =
−0.47, w22 = 1.8, w32 = −0.2; (d) w12 = −0.34, w22 = 1.6, w32 =
−0.19.

are affected by the parameters wij (i,j = 1,2,3). Therefore,
we fix the value of β3(x) = 0.085, and change the values
of w12,w22, and w32 to observe their influence on three-
soliton interactions in Fig. 2. We can observe clearly that
the propagation direction of three solitons are different with
each other through choosing different values of w12,w22,
and w32. Besides, it exhibits the phase shift after three-
soliton interactions in Figs. 2(c) and 2(d). Particularly, the
periodic oscillation has occurred between two relatively
close solitons under appropriate parameter conditions in
Fig. 2(d).

If we choose the TOD coefficient as periodic functions, such
as β3(x) = cos(0.1x), three solitons will interact periodically
as shown in Fig. 3. Comparing Fig. 3(a) to Fig. 3(b), we
can find that the phase of solitons is completely opposite if
we replace the values of w12,w22, w32, and β3(x) with the
values that are opposite to their sign, which also can be seen
in Figs. 4 and 5. In addition, their periods are almost the same.
The amplitude of solitons and soliton separations in bound
states can be adjusted by changing the values of w12,w22, and
w32, as shown in Figs. 3(c) and 3(d).

When β3(x) is a Gauss function, such as β3(x) =
0.07e−0.005x2

, three solitons attract and repel in a short distance,
and a trigonometric structure appears in Fig. 4. In the process
of transmission, the pulse trajectory of one soliton is no longer
a straight line, but the appearance of an S-type. The phase of
solitons in Figs. 4(a) and 4(b) are exactly opposite. Besides,
we consider the TOD parameter as β3(x) = e−2.7x2

. As Fig. 5
shows, three solitons occur a strong phase shift on both sides
of x = 0 and form a lattice structure. Through adjusting the

FIG. 3. Three-soliton interactions affected by the change of
β3(x). Parameters are the same as Fig. 1 but w11 = −1.5,
w21 = −1.2, w31 = −1 with (a) w12 = 0.78, w22 = 0.8, w32 =
0.7, β3(x) = cos(0.1x); (b) w12 = −0.78, w22 = −0.8, w32 =
−0.7, β3(x) = − cos(0.1x); (c) w12 = 0.58, w22 = 0.95, w32 = 0.9,
β3(x) = cos(0.1x); (d) w12 = 0.82, w22 = 0.76, w32 = 0.65, β3(x) =
cos(0.1x).

values of w12, w22, and w32, the phase shift intensity can
be controlled as shown in Figs. 5(a) and 5(c). Similarly, the
phase of three solitons reverses in Fig. 5 by changing the sign
of w12,w22, w32, and β3(x). Therefore, the parameters play
an important role in determining the properties of solitons.
By analyzing the influences of β3(x) and relevant parameters,
not only can we avoid the disordered propagation of solitons,
but also utilize the soliton interaction properties to realize
mode-locked fiber lasers, optical logic switches, and path
control.

FIG. 4. Three-soliton interactions affected by the change of
β3(x). Parameters are the same as Fig. 1 but (a) w12 = 0.98,
w22 = −3.3, w32 = 1.5, β3(x) = −0.07e−0.005x2

; (b) w12 = −0.98,
w22 = 3.3, w32 = −1.5, β3(x) = 0.07e−0.005x2

.
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FIG. 5. Three-soliton interactions affected by the change of
β3(x). Parameters are the same as Fig. 1 but (a) w12 = −3.8,
w22 = 0.5, w32 = −2, β3(x) = −e−2.7x2

; (b) w12 = 3.8, w22 = −0.5,
w32 = 2, β3(x) = e−2.7x2

; (c) w12 = −3.1, w22 = 1.7, w32 = −0.063,
β3(x) = −e−2.7x2

; (d) w12 = 3.1, w22 = −1.7, w32 = 0.063, β3(x) =
e−2.7x2

.

IV. CONCLUSIONS

Analytic three soliton solution (4) for Eq. (1) has been
obtained with the bilinear method in this paper. The influences
of different types of TOD and other corresponding parameters
on the interactions of three solitons have been analyzed. By
choosing different parameters, various three-soliton interac-
tion properties and features have been presented. Through
selecting the suitable value of TOD, we have found that the
TOD can effect the soliton interaction intensity and distance.
Furthermore, the phase of solitons can be reversed if the values
of w12,w22, w32, and β3(x) are replaced with the values that
are opposite to their sign. Besides, the bound states of three
solitons have been observed, and the amplitude of solitons
has been adjusted by changing the values of w12, w22, and
w32. In addition, a new soliton interaction phenomenon, that
the three-soliton interaction generates a strong phase shift at
the both side of x = 0 by setting appropriate parameters, has
been demonstrated. We hope that these results are helpful for
soliton applications in such fields as mode-locked fiber lasers
and optical logic switches.
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