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We present two applications of emergent local Hamiltonians to speed up quantum adiabatic protocols for
isolated noninteracting and weakly interacting fermionic systems in one-dimensional lattices. We demonstrate
how to extract maximal work from initial band-insulating states, and how to adiabatically transfer systems from
linear and harmonic traps into box traps. Our protocols consist of two stages. The first one involves a free
expansion followed by a quench to an emergent local Hamiltonian. In the second stage, the emergent local
Hamiltonian is “turned off” quasistatically. For the adiabatic transfer from a harmonic trap, we consider both
zero- and nonzero-temperature initial states.
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I. INTRODUCTION

The field of far-from-equilibrium dynamics in isolated
quantum many-body systems has attracted great interest in
recent years, addressing old and opening new fundamental
questions in quantum mechanics, statistical physics, and
quantum information [1–4]. As a result, theoretical concepts
such as entanglement generation after quantum quenches
[5–8], the generalized Gibbs ensemble (GGE) in integrable
systems [9–15], and eigenstate thermalization in quantum
chaotic systems [16–19] have been established and used to
gain an understanding of a wide range of nonequilibrium
phenomena.

Extraordinary advances in experiments with ultracold
quantum gases are an important driving force in this progress
[20–23]. They have created unique setups for the exploration
of strongly correlated many-body quantum systems in and out
of equilibrium. Ultracold quantum gases are usually inhomo-
geneous because of the presence of confining potentials that
are, to a good approximation, harmonic. A quest to prepare
homogeneous systems is currently underway to realize and
study quantum phases of interest and their transitions [24,25].
One of the quantum adiabatic protocols considered in this work
is motivated by this quest.

The past two decades have also witnessed much inter-
est in developing a thermodynamic framework for small
and nonequilibrium quantum systems. Fluctuation theorems
[26–30] and information theory [31,32] have become useful
tools for the exploration of work extraction in the context
of quantum thermodynamics. More recently, there have been
studies that connect developments in the understanding of the
dynamics of isolated quantum systems with those in quantum
thermodynamics [33–36]. In Ref. [34], two of us discussed
how to extract maximal work by means of quantum quenches
and quasistatic processes in isolated noninteracting (described
using a GGE) and weakly interacting [described using the
grand canonical ensemble (GE)] fermionic systems in one-
dimensional (1D) lattices. A quantum adiabatic protocol
considered here is motivated by the goal of extracting maximal
work and reducing the time required to extract it.

A challenge for the current generation of nonequilibrium
studies is to apply existing knowledge of quantum engineering
and controlled manipulation to design adiabatic protocols for
many-body systems. Here we are interested, in particular, in
using nonequilibrium dynamics to speed up such protocols.

This topic is not new. It has been discussed, mostly at the
single-particle level, within the framework of the so-called
shortcuts to adiabaticity [37]. One of the most common ideas
explored in this context is the use of counterdiabatic drivings
[38–42], in which a time-dependent Hamiltonian is used to
achieve adiabatic dynamics.

Here we tackle the challenge of using nonequilibrium dy-
namics to speed up adiabatic transformations by employing the
recently introduced concept of emergent eigenstate solutions
to quantum dynamics [43]. Emergent eigenstate solutions, and
their associated emergent Gibbs ensembles [44], have been
used to explain a dynamical quasicondensation phenomenon
[43,45,46] and effective cooling during expansion dynamics
[47]. In this work, we show that the emergent eigenstate solu-
tion also provides a framework to generate shortcuts to adia-
baticity. The cornerstone of our approach is the construction of
an emergent local Hamiltonian, an explicitly time-dependent
operator, of which time-evolving (under a time-independent
Hamiltonian) pure states are eigenstates. Consequently, no
entropy is generated during the nonequilibrium dynamics in
the eigenbasis of the emergent local Hamiltonian. Being local,
this Hamiltonian can potentially be engineered in a variety of
systems.

We present two applications of the emergent local Hamilto-
nian. In the first one, we discuss how to extract maximal work
for initial (filled and empty) band-insulating states. As a second
application, we discuss how to adiabatically transfer initial
equilibrium states from linear and harmonic traps onto a box
trap (a homogeneous lattice with open boundary conditions).
In both cases, a faster adiabatic protocol is implemented by
allowing the particles to expand freely up to times at which
they almost reach the edge(s) of the empty part(s) of the lattice.
At that point, the appropriate emergent local Hamiltonian is
quenched, so that the expanding state freezes (this occurs
because the expanding state is either the ground state or
a Gibbs state of the emergent local Hamiltonian). We then
“turn off” the emergent local Hamiltonian in a quasistatic
fashion using a sequence of small quenches, and letting the
system equilibrate after each small quench. The equilibration
processes are the ones taking the overwhelming majority
of time in our protocols. The key steps are presented in
Fig. 1.

We study the degree of adiabaticity achieved as a function of
the time at which the emergent local Hamiltonian is quenched
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FIG. 1. Quantum adiabatic protocols discussed in Sec. V B, in which the initial state is a finite-temperature state in a harmonic trap. We
refer to the initial Hamiltonian as Ĥ0. The lower path shows the two-stage protocol, which consists of (i) a free expansion for time tQ followed
by a quench to the emergent local Hamiltonian Ĥ(tQ), and (ii) a quasistatic process in which Ĥ(tQ) is “turned off” in Ns small quenches (in the
sketch, Ns = 15), and the system equilibrates after each small quench. We use tW to denote the average waiting time between two consecutive
small quenches, and we denote the final Hamiltonian as Ĥ . The upper path (in the sketch, Ns = 30) shows the protocol in which the initial
trap is turned off quasistatically. The curves (solid lines) depict the site occupations nl = 〈ĉ†l ĉl〉 in the GGE at different points in each protocol.
Dashed lines show the site occupations in the initial state. Despite the difference in Ns (the total time of both protocols increases approximately
linearly in Ns), we achieve a similar degree of adiabaticity in both protocols (the energy of the final state, relative to the ideal adiabatic transfer,
is 0.85 for the lower path and 0.88 for the upper one).

and of the number of small quenches used. The total time of
the protocol increases approximately linearly with the number
of small quenches. As an extreme case, we compare the results
of the two-stage protocol with the straightforward quasistatic
turnoff of the initial trapping potential. Figure 1 shows the site
occupations at different points in our protocols for an initial
finite-temperature state in a harmonic trap (see Sec. V B).
To achieve a similar degree of adiabaticity, a considerably
smaller number of small quenches is needed in the two-stage
protocol.

The paper is organized as follows. In Sec. II, we introduce
the protocols and statistical ensembles used in the calculations.
The first application involving work extraction is presented in
Sec. III, while Secs. IV and V are devoted to the adiabatic
transfers from linear and harmonic traps, respectively, to a box
trap. We summarize our results in Sec. VI.

II. QUANTUM ADIABATIC PROTOCOLS

We consider initial states that are spatially inhomogeneous
in lattices that contain unoccupied sites. Those states are
taken to be either ground states or finite-temperature states
of a Hamiltonian Ĥ0. (We define Ĥ0 separately for the
applications studied in Secs. III–V.) The dynamics of initially
inhomogeneous states in 1D lattices has recently attracted
much interest both for fermionic models [48–54] and quantum
spin chains (or hard-core bosons) [43–45,47,55–70].

The quantum adiabatic protocols implemented in our work
are split into two stages (see also Fig. 1). The first stage
consists of a sudden expansion and a quench to an emergent
local Hamiltonian (see Sec. II A), and the second stage is a
quasistatic evolution (see Sec. II B).

A. Sudden expansion and the emergent local Hamiltonian

During the sudden expansion, the initial state expands under
the free (1D) Hamiltonian

Ĥ = −J

L−1∑
l=1

(ĉ†l ĉl+1 + H.c.), (1)

where ĉ
†
l (ĉl) is the fermionic creation (annihilation) operator

at site l, and L is the number of lattice sites. In what follows,
we set the hopping amplitude J to unity (J sets our energy
scale).

After an expansion time tQ, we quench Ĥ → Ĥ(tQ), where
Ĥ(tQ) is the emergent local Hamiltonian [43]:

Ĥ(tQ) = e−itQĤ Ĥ0e
itQĤ , (2)

where we have set h̄ = 1. While the definition of the latter
operator appears to be simple, the crucial property that we
require for Ĥ(tQ) is locality, i.e., Ĥ(tQ) must be an extensive
sum of operators with support on O(1) lattice sites. It is not
immediately obvious that Ĥ(tQ) can be a local operator. In
fact, even for solvable models, this is generically not the
case. The locality of Ĥ(tQ) follows from the commutation
relations between Ĥ and Ĥ0 upon expanding Eq. (2) in a power
series of tQ. In general, Ĥ(tQ) is a local operator if the nested
commutators of Ĥ with Ĥ0 vanish at some order, or they close
the sum [43]. The families of quantum quenches for which
local emergent Hamiltonians Ĥ(tQ) have been constructed
include the following: (i) Ĥ0 is a boost operator for Ĥ , relevant
to quadratic models and anisotropic Heisenberg chains [43];
and (ii) Ĥ0 contains Ĥ and a power-law potential that is turned
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off at the quench, relevant to quadratic models [44]. The latter
is the one used in this work.

The existence of an emergent local Hamiltonian results in
some remarkable consequences for the quantum dynamics. If
the initial state is the (nondegenerate) ground state of Ĥ0, then
the state at time tQ is the (nondegenerate) ground state of a
local operator Ĥ(tQ) [43]. If the initial state is a Gibbs state of
Ĥ0 with inverse temperature β, then the state at time tQ is a
Gibbs state of a local operator Ĥ(tQ) with inverse temperature
β [44,47]. As a result of the quench to Ĥ(tQ), the expansion
stops (the system “freezes”) because the time-evolving state is
a stationary state of Ĥ(tQ).

B. Quasistatic evolution

In the second stage, which starts at time tQ, we transform
Ĥ(tQ) into Ĥ by means of a quasistatic process (we also
refer to this transformation as a “turnoff” of the emergent
local Hamiltonian). The quasistatic process is a unitary time
evolution that consists of Ns “small” quantum quenches. We
use the word “small” to emphasize that Ns is typically large
and hence the excess energy induced by a single quench is
small. In the limit Ns → ∞, the ground state of the emergent
local Hamiltonian at time tQ is transformed into the ground
state of Ĥ at the end of the protocol.

While the Ns-step quasistatic transformation of Ĥ(tQ) →
Ĥ can be performed in many different ways, here we focus
on very simple protocols. Generally, we turn off the relevant
parameters linearly. Namely, if a parameter η is to be set
to zero, this is achieved by means of ηns

= η(1 − ns/Ns),
where ns = 1, . . . ,Ns . The only exception is when turning
off a harmonic trap (studied in Sec. V). For that case, we
consider two options: turning off the trap amplitude linearly,
or turning off the characteristic density (which is proportional
to the square root of the trap amplitude) [71] linearly.

The system is allowed to equilibrate after each small
quench. We denote the average waiting time between two
consecutive small quenches as tW . The total time of the
protocol is hence

ttotal = tQ + Ns tW . (3)

Typically, both tQ and tW are proportional to the system size
L. Actually, the average equilibration time after the small
quenches is generally longer than or about the same as the
expansion time (see Sec. III A). Therefore, for large Ns , the
quasistatic evolution takes the overwhelming majority of time
in our protocols.

C. Statistical ensembles

After each small quench in the quasistatic evolution,
observables after relaxation can be described by a proper
statistical ensemble (to be defined below). Actually, in the
context of work extraction in Sec. III, we show that nearly
indistinguishable results are obtained when unitarily evolving
states after equilibration following each small quench are
replaced by the density matrix of the appropriate statistical
ensemble. We then only apply the statistical ensemble de-
scription of the quasistatic evolution in Secs. IV and V.

For the strict noninteracting (integrable) evolution, the
appropriate statistical ensemble is the GGE, which takes into
account an extensive number of nontrivial conserved quantities
that prevent thermalization [9,12–15]. The GGE density
matrix, which is obtained maximizing the entropy subject
to the constraints associated with the nontrivial conserved
quantities, can be written as [9]

ρ̂GGE = 1

ZGGE
e− ∑

α λα Îα , (4)

where, for noninteracting spinless fermions, Îα , with α =
1, . . . ,L, are the occupations of the eigenstates of the single-
particle Hamiltonian after the small quench, and ZGGE =
Tr [exp(−∑

α λαÎα)] is the partition function of the GGE.
The Lagrange multipliers λα , which are determined by the
condition Tr [ρ̂GGEÎα] = Iα ≡ Tr [ρ̂ Îα], can be written as [9]

λα = ln

(
1 − Iα

Iα

)
, (5)

where ρ̂ is the density matrix of the state at the time of the
small quench.

The GGE entropy is computed as [72]

SGGE = −
L∑

α=1

[Iα ln Iα + (1 − Iα) ln(1 − Iα)]. (6)

In the presence of very weak integrability-breaking interac-
tions, large systems are expected to thermalize after the small
quench [73–78]. This is the case even if the interactions are not
strong enough to change the expectation value of macroscopic
observables from the thermal ones in the noninteracting limit.
In such systems, the density matrix that characterizes the state
after equilibration can be taken to be the GE one,

ρ̂GE = exp(−β[Ĥ ′ − μN̂ ])/Z, (7)

where Ĥ ′ is the Hamiltonian after the small quench, N̂ is the
particle number operator (we deal with systems in which Ĥ ′
and N̂ commute), β and μ are the inverse temperature and
chemical potential, respectively, and Z = Tr [exp(−β[Ĥ ′ −
μN̂ ])] is the partition function. β and μ are computed such
that the GE energy and number of particles match those in the
system undergoing unitary evolution after the small quench.

For the protocols studied in this work (see also Ref. [34]),
the results obtained using the GGE and GE descriptions are
qualitatively similar. Hence, for the sake of brevity, we focus
on the GGE description after small quenches. Only in Sec. V,
in which we study the adiabatic transfer of equilibrium states
from harmonic traps to box traps, do we present results both
for the GGE and the GE descriptions. This is the protocol that
is most relevant to current experiments with ultracold gases.

III. WORK EXTRACTION

In this section we study work extraction, for which it is
essential that we generate an initial state that is nonpassive
[79,80]. We extract work in the following way: (i) We connect
two chains with L/2 sites by allowing particles to hop between
them (the hopping matrix element between them is taken to
be J = 1). This creates a single chain with L sites. The initial
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state has the form

|ψI 〉 = |ψI 〉1 ⊗ |ψI 〉2, (8)

i.e., it is a direct product of pure states in chains 1 (|ψI 〉1) and
2 (|ψI 〉2). We focus on the case in which

|ψI 〉1 =
L/2∏
l=1

ĉ
†
l |∅〉1 and |ψI 〉2 = |∅〉2, (9)

namely, in chain 1 (2) we have a filled (empty) band insulator.
(ii) We carry out (nearly) adiabatic unitary transformations (in
a system that now has L sites) as prescribed in the two stages
mentioned in Sec. II. (iii) We disconnect the two subsystems
with L/2 sites to have two disconnected chains as in the initial
state. The number of particles (N = L/2) remains constant in
the entire system at all times.

The work extracted in the cycle, W , is defined as

W = Tr [(ρ̂I − ρ̂F ) (Ĥ1 + Ĥ2)], (10)

where Ĥ1 (Ĥ2) is the Hamiltonian of chain 1 (2), and ρ̂I =
|ψI 〉〈ψI | (ρ̂F ) is the density matrix of the initial (final) state.
The Hamiltonians Ĥ1 and Ĥ2 are given by Eq. (1), with sums
between l = 1 and L/2 − 1 for Ĥ1 and between l = L/2 + 1
and L − 1 for Ĥ2. In our definition, W is the difference between
the energy of the initial and final states [1,81]. As a result, W

increases as one lowers the energy of the final state.
In a previous work [34], two of us implemented cyclic

protocols involving a sudden quench and a quasistatic process
that allowed one to extract maximal work in similar setups
(we considered both relaxation to the GGE and the GE after
a quench). Here, using the emergent local Hamiltonian, we
show that not only can one extract maximal work, but also,
by changing the free expansion time tQ, one can speed up the
protocol by reducing the number of small quenches.

Our initial state [see Eqs. (8) and (9)] is an eigenstate of
any Hamiltonian that is a sum of site occupation operators
with arbitrary coefficients. In particular, it is the ground state
of Ĥ0 = (1/L)

∑L
l=1 l n̂l , where n̂l = ĉ

†
l ĉl is the occupation

operator for site l. The expansion dynamics of this state after
the two chains are connected is studied under the Hamiltonian
Ĥ in Eq. (1). The time-evolving state is the ground state of the
emergent local Hamiltonian,

Ĥ(t) = −
L−1∑
l=1

(eiπ/2ĉ
†
l ĉl+1 + H.c.) + 1

t

L∑
l=1

l n̂l , (11)

where we have rescaled the Hamiltonian in Eq. (2) by Ĥ(t) →
Ĥ(t)L/t . The time-evolving state is the ground state of Ĥ(t)
as long as the propagating front of particles (holes) does not
reach the right (left) boundary of our lattice [43]. This occurs
at a time tmax ≈ L/4, because the propagating front has to
travel L/2 sites and the maximal group velocity in the lattice
is 2aJ/h̄, which is nothing but 2 in our units (we set the
lattice spacing a to unity). We quench to the emergent local
Hamiltonian at different times tQ < tmax to stop the expansion
dynamics.

Next, we transform Ĥ(tQ) [Eq. (11)] into Ĥ [Eq. (1)] by
means of a quasistatic process, i.e., we perform Ns small
quenches. In Eq. (11), we linearly turn off the trap amplitude
t−1
Q → 0 and at the same time we linearly turn off the phase
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FIG. 2. Average work extracted per site W/L at the end of the
protocol as a function of the average waiting time tW after each small
quench, for L = 1000 (N = L/2). The exact waiting time after each
small quench is randomly chosen from the interval [tW − tW /8,tW +
tW /8] with uniform probability. The results are averaged over 500
(100) realizations of the protocol for Ns = 10 (100), and the error
bars denote the standard deviation. Horizontal lines are the GGE
predictions. (a) tQ = 100, (b) tQ = 200. The inset in (b) shows data
collapse for W/L as a function of tW /L for L = 500 and 1000 (same
results and symbols as in the main panel, tQ = 200).

π/2 → 0. Since the initial state of the quasistatic process is
the ground state of Ĥ(tQ), then as Ns → ∞ the system must
be the ground state of Ĥ at the end of the process. To complete
the cycle, and have two independent chains with L/2 sites as in
the initial state, we disconnect the two halves of the lattice by
setting the hopping matrix element between them to zero. This
local quench produces an O(1) change of the energy (which
is negligible for large system sizes [34]). Since our initial
state has 〈ψI |Ĥ1 + Ĥ2|ψI 〉 = 0, the maximal work that can be
extracted in a cycle is the negative of twice the ground-state
energy of each chain with L/2 sites and L/4 particles.

We consider two types of protocol descriptions. In the first
one (see Sec. III A), we calculate the unitary time evolution of
the wave function after each small quench. In the second one
(see Sec. III B), we take the equilibrated state after each small
quench to be described by the GGE density matrix.

A. Exact unitary dynamics

Here we consider the exact unitary dynamics. After each
small quench, the system wave function evolves for a time that
is chosen randomly from an interval [tW − tW /8,tW + tW /8].
This is done to remove coherences that result from the
integrability of the system [1]. In Fig. 2, we plot the average
extracted work per site W/L as a function of the aver-

042155-4



QUANTUM ADIABATIC PROTOCOLS USING EMERGENT . . . PHYSICAL REVIEW E 96, 042155 (2017)

11.0
tw/L

1

10

P
N

s

Ns=10
Ns=100
Ns=200
const/tW

tQ=200

FIG. 3. Rescaled average power PNs [see Eq. (12)] as a function
of the average waiting time tW . Results are shown for tQ = 200,
L = 1000 (N = 500), and different values of Ns . We average over
500, 100, and 50 realizations of the protocol for Ns = 10, 100, and
200, respectively. The standard deviation is not included for clarity.
The dashed line is a function proportional to t−1

W .

age waiting time tW . Remarkably, for sufficiently long
average waiting times (tW � tQ), W/L fluctuates about the
GGE prediction (dashed lines in Fig. 2, to be discussed in
Sec. III B). The inset of Fig. 2(b) shows data collapse for
W/L as a function tW /L for different values of L (we choose
L = 500 and 1000). Hence, both the work and the average
waiting time to achieve a particular work per lattice site
scale with the system size L. This is expected for quenches in
the inhomogeneous systems studied here.

Next, we discuss the power P = W/ttotal = W/(tQ +
NstW ) that can be extracted from our protocol. In the limit
Ns → ∞ (ideal adiabatic evolution), the power vanishes as
expected, while for finite Ns and tW it is nonzero. For large
Ns , one can express P as

P = 1

Ns

1

tW

W(
1 + N−1

s
tQ
tW

) ≈ N−1
s (tW /L)−1 W

L
, (12)

where we assumed tQ/tW � Ns . In Fig. 3, we plot PNs versus
tW /L for tQ = 200 and three different values of Ns (Ns = 10,
100, and 200). The results show that PNs ∝ (tW/L)−1 at large
tW and Ns � 100. This is reasonable considering that, in this
parameter regime, W/L depends only weakly on tW and Ns

[see Figs. 2 and 4(a), respectively]. For the power P to be
large, one should then select the smallest tW required for the
system to equilibrate to the GGE, and vary Ns to reach the
desired compromise between maximizing work and power.

B. Generalized Gibbs ensemble

Here we consider the description in which the equilibrated
state after each small quench in the quasistatic evolution is
replaced by the appropriate GGE density matrix (as justified
in Sec. III A).

In Fig. 4(a), we plot the work extracted per site WGGE/L

versus Ns for three times tQ at which the local emergent
Hamiltonian is quenched (for L = 1000). The left inset in
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FIG. 4. (a) Work extracted per site W GGE/L vs the total number
of small quenches Ns for three times tQ at which the emergent local
Hamiltonian Ĥ(t), Eq. (11), is quenched. The horizontal solid line
shows the maximal work that can be extracted (see the text). Left
inset: site occupations at the times tQ. The solid line corresponds to
the site occupations in the initial state. Right inset: data collapse for
W GGE/L as a function of NstQ. (b) The GGE entropy per site SGGE/L

at the end of the cycle vs Ns . Inset: data collapse for SGGE/L as a
function of NstQ. (c) Normalized trace distance, Eq. (13), between
the GGE one-body correlation matrix at the end of the cycle and that
of the ground state of Ĥ1 + Ĥ2 vs Ns . Inset: data collapse for the
trace distance as a function of NstQ. The results are for L = 1000
(N = 500) and for times tQ = 50, 100, and 200.

Fig. 4(a) shows the site occupations nl = 〈n̂l〉 at those times
(tQ = 50, 100 and 200). Since tQ < L/4 = 250, the site
occupations at the right (left) boundary remain zero (one).
The results make it apparent that, as tQ increases, the work
extracted for any given number of small quenches Ns increases.
In other words, as tQ increases, one approaches the maximal
work that can be extracted (see the horizontal solid line) more
rapidly with increasing Ns . Similarly, as tQ increases, Fig. 4(b)
shows that the GGE entropy per site SGGE/L at the end of a
cycle [see Eq. (6)] decreases more rapidly with increasing Ns .
Note that, consistent with the fact that the entropy vanishes in
the ground state, SGGE/L can be seen to vanish as Ns → ∞.

To characterize the approach toward the ground state of
Ĥ1 + Ĥ2, we also calculate the normalized trace distance
between the GGE one-body correlation matrix at the end of
a cycle and that of the ground state (GS) of Ĥ1 + Ĥ2. The
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normalized trace distance per lattice site is defined as

d(ρGGE,ρGS) = 1

L
Tr [

√
[ρGGE − ρGS]2], (13)

where the matrix elements of the one-body correlation
matrix after a cycle are ρGGE

j l = 〈ĉ†j ĉl〉GGE and the corre-

sponding ones of the ground state |ψGS〉 of Ĥ1 + Ĥ2 are
ρGS

j l = 〈ψGS|ĉ†j ĉl|ψGS〉. Figure 4(c) shows that, as expected,
d(ρGGE,ρGS) vanishes as Ns → ∞. For any given Ns , the
normalized trace distance decreases with increasing tQ.

The right insets in Figs. 4(a)–4(c) show that, remarkably, if
one rescales Ns in the x axes of the main panels multiplying
by tQ, all the data for different values of tQ collapse onto
single curves. This means that, in order to achieve a given
degree of adiabaticity in our cycles, the number of small
quenches required is inversely proportional to the expansion
time for tQ < tmax. Since most of the time in each cycle is
spent in the quasistatic process, the free expansion and quench
to the emergent local Hamiltonian at tQ � tmax results in a
significant speedup of the cycle. The rescaling obtained can
be intuitively understood from the fact that, in the emergent
local Hamiltonian in Eq. (11), the strength of the linear trap
is proportional to 1/t . This means that the longer the free
expansion time (for tQ < tmax), the weaker is the trap that one
needs to turn off in a quasistatic fashion.

IV. ADIABATIC TRANSFER FROM A LINEAR TRAP TO A
BOX TRAP

In this section, we study the adiabatic transfer of particles
initially confined in a linear trap into a box trap. We focus on
an initial state with N = L/2 particles, which is the ground
state of the Hamiltonian

Ĥ
(1)
0 = −

L−1∑
l=1

(ĉ†l ĉl+1 + H.c.) + γ

L

L∑
l=1

l n̂l , (14)

where γ is the strength of the confinement. While the initial
state is a product state in the limit γ → ∞ [the one in Eqs. (8)
and (9)], here we are interested in states generated by finite
γ > γ ∗ = 4, so that the site occupations at the right (left)
edge of our chain are zero (one) [43]. The left inset of Fig. 5(a)
displays the site occupations nl in an initial state with γ = 25
(L = 1000), which we use in the remainder of this section.

The emergent local Hamiltonian for this setup was
constructed in Ref. [43]. Here, we renormalize Ĥ(1)(t) →
Ĥ(1)(t)/A(t), where A(t) =

√
1 + (γ t/L)2, and we omit an

unimportant offset to obtain

Ĥ(1)(t) = −
L−1∑
l=1

(eiφ(t)ĉ
†
l ĉl+1 + H.c.) + γ

LA(t)

L∑
l=1

l n̂l, (15)

where φ(t) = arctan(γ t/L). The time-evolving state is the
ground state of Ĥ(1)(t) as long as the propagating front of
particles (holes) does not reach the right (left) lattice boundary.
For γ > γ ∗, the time at which that occurs in our setup is
tmax ≈ (L/4)

√
1 − (γ ∗/γ )2 [43].

After suddenly turning off the linear confining potential
[setting γ → 0 in Eq. (14)], we follow the two-stage protocol
described in Sec. II. In the first stage, the fermions expand
freely under the Hamiltonian Ĥ [see Eq. (1)] until a time tQ <
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FIG. 5. Adiabatic transfer of the ground state of a linear trap to a
box trap. (a) Ratio between the energy E at the end of the transfer and
the ground-state energy EGS of Ĥ vs the number of small quenches Ns

for three times tQ at which the emergent local Hamiltonian Ĥ(1)(tQ),
Eq. (15), is quenched. Left inset: site occupations at the times tQ.
The solid line corresponds to the site occupations in the initial state.
Right inset: data collapse for E/EGS as a function of NsA(tQ). (b) The
GGE entropy per site SGGE/L at the end of the transfer vs Ns . Inset:
data collapse for SGGE/L as a function of NsA(tQ). (c) Normalized
trace distance d(ρGGE,ρGS) between the GGE one-body correlation
matrix at the end of the transfer and that of the ground state of Ĥ

vs Ns . Inset: data collapse for the trace distance as a function of
NsA(tQ). The results are for L = 1000 (N = 500), γ = 25, and for
times tQ = 0, 100, and 200.

tmax at which we suddenly quench Ĥ → Ĥ(1)(tQ), freezing
the expanding cloud. In the second stage, we apply Ns small
quenches to set the parameters φ(tQ) and γ /[LA(tQ)] of
the emergent local Hamiltonian Ĥ(1)(tQ) to zero (in each
small quench, those parameters are reduced by φ(tQ)/Ns and
γ /[LA(tQ)Ns], respectively), such that the final Hamiltonian
is Ĥ . After each small quench, the system is assumed to
equilibrate to the GGE density matrix. In contrast to the case
for which work extraction was studied in Sec. III, the purely
quasistatic protocol (tQ = 0) is well defined here. The left inset
in Fig. 5(a) shows the site occupations nl for the three times
tQ = 0, 100, and 200 considered in what follows.

Figure 5(a) depicts the ratio between the energy E =
Tr [ρ̂F Ĥ ] at the end of the protocol and the ground-state energy
EGS of Ĥ . We plot results for three times tQ as a function of
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the total number of small quenches Ns . As expected, when
Ns → ∞, E/EGS → 1. Figure 5(b) shows how the GGE
entropy per site SGGE/L [calculated using Eq. (6)] at the
end of the protocol changes with Ns . Increasing Ns reduces
the entropy, and our results are consistent with a vanishing
value for Ns → ∞. Results for the normalized trace distance
between the one-body correlation matrix of the GGE at the
end of the protocol ρGGE and the one-body correlation matrix
ρGS of the ground state of Ĥ , d(ρGGE,ρGS) [see Eq. (13)], are
shown in Fig. 5(c). They make it apparent that as Ns increases,
ρGGE approaches ρGS. The results in Figs. 5(a)–5(c) reveal
that the larger the value of tQ < tmax is, the smaller is the
number of small quenches needed to achieve a desired degree
of adiabaticity in the two-stage protocol.

The right insets in Figs. 5(a)–5(c) show data collapse for the
energy, the entropy per site, and the normalized trace distance
when rescaling the x axes to NsA(tQ). This makes it apparent
that, when the protocol includes the initial free expansion, one
requires A(tQ) fewer small quenches in the quasistatic stage to
reach the ground state of the box trap with a desired accuracy.
The scaling observed can be intuitively understood from the
structure of the emergent local Hamiltonian Ĥ(1)(t) in Eq. (15).
In the latter, the strength of the linear confinement γ /[LA(t)]
weakens as t increases, so, as in Sec. III, one ends up needing
to turn off a weaker trap the longer one waits to stop the free
expansion (as long as tQ < tmax). Note that, when γ tQ/L � 1,
the scaling with tQ obtained here matches that in Sec. III.

V. ADIABATIC TRANSFER FROM A HARMONIC TRAP
TO A BOX TRAP

In this section, we study the adiabatic transfer of the ground
state and a finite-temperature state of a harmonically trapped
system into a box trap. The initial Hamiltonian is

Ĥ
(2)
0 = −

L−1∑
l=1

(ĉ†l ĉl+1 + H.c.) + 1

R2

L∑
l=1

l̃ 2 n̂l , (16)

where l̃ = l − (L + 1)/2 (the center of the trap is in the middle
of two sites). The characteristic density, which needs to be kept
constant in order to define the finite-density thermodynamic
limit in the presence of a harmonic trap [71], can be written as
ρ̃ = N/R. In the ground state of Ĥ

(2)
0 , the site occupations in

the center of the trap exhibit a band-insulating plateau (nl = 1)
when ρ̃ � 2.6 [71]. In what follows, we set the parameters
ρ̃ = 10, L = 1000, and N = L/2. The inset in Fig. 6 (solid
line) shows nl for these parameters.

For the initial finite-temperature state, the density matrix
is chosen to be the GE density matrix ρ̂GE obtained by
substituting Ĥ ′ → Ĥ

(2)
0 , β → βI , and μ → μI in Eq. (7).

We take the initial inverse temperature to be βI = 0.5. The
chemical potential μI is selected so that N = L/2. The
entropy of the initial state SI is calculated using Eq. (6) by
replacing Iα with the occupation of single-particle states in
the GE, I I

α = {exp[βI (ε(2)
α − μI )] + 1}−1, where ε(2)

α are the
single-particle energy eigenvalues of Ĥ

(2)
0 [see Eq. (16)].

It was recently shown in Ref. [44] that an emergent local
Hamiltonian description can be used to characterize time-
evolving states that result from the expansion of initial ground
states and finite-temperature states of Ĥ

(2)
0 . The relevant
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FIG. 6. Adiabatic transfer of the ground state of a harmonic trap
to a box trap. We compare two ways of turning off the confining
potential in the emergent local Hamiltonian Ĥ(2)(tQ) [the first term
in Eq. (17)] during the quasistatic process. The confining potential is
turned off linearly (P1) or quadratically (P2). The main panel shows
the ratio between the energy E at the end of the transfer and the
ground-state energy EGS of Ĥ vs the number of small quenches Ns ,
for two times tQ at which Ĥ(2)(tQ) is quenched. Inset: site occupations
at the times tQ. The results are for L = 1000 (N = 500), ρ̃ = 10, and
for times tQ = 0 and 100.

emergent local Hamiltonian, omitting an unimportant offset,
is

Ĥ(2)(t) = 1

R2

L∑
l=1

l̃ 2 n̂l −
(

t

R

)2 L−2∑
l=1

(ĉ†l ĉl+2 + H.c.)

−
L−1∑
l=1

A(2)(t,l)(eiφ(2)(t,l)ĉ
†
l ĉl+1 + H.c.), (17)

where A(2)(t,l) =
√

1 + [(2t/R2)(l + 1/2)]2 and φ(2)(t,l) =
arctan [2t(l + 1/2)/R2]. For the initial finite-temperature
state, the time-evolving density matrix is that of the Gibbs
state of Ĥ(2)(t) at the inverse temperature βI , which we call an
emergent Gibbs ensemble [44]. Note that since the temperature
of the emergent Gibbs ensemble is identical to that of the initial
state, and the emergent and the initial Hamiltonians are related
through Eq. (2), no entropy is generated during the dynamics
[S(t) = SI ].

The two-stage protocol that we use is similar to the one
considered for the initial linear trap studied in Sec. IV. In the
first stage, the particles undergo a free expansion [under the
Hamiltonian Ĥ in Eq. (1)] into the empty part of the lattice.
At time tQ, we suddenly quench Ĥ → Ĥ(2)(tQ) to freeze the
expanding cloud. We consider tQ < tmax, where tmax is the time
at which the occupation at the boundaries of the lattice depart
from zero. (The emergent Hamiltonian description is valid up
to that time.) In the second stage, a quasistatic process, we
perform Ns small quenches to change Ĥ(2)(tQ) → Ĥ . Each
small quench is followed by an equilibration to the GGE
density matrix. In Sec. V B, we contrast this protocol to the
one in which after each small quench the system equilibrates
to the GE.
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In the quasistatic stage of the protocol, we modify the
parameters of the Hamiltonian (tQ/R)2 → 0, φ(2)(tQ,l) → 0,
and A(2)(tQ,l) → 1 linearly. We consider two ways of turning
off the harmonic confinement: (P1) turn off 1/R2 linearly,
i.e., as (1 − ns/Ns)/R2, where ns = 1, . . . ,Ns , and (P2) turn
off the characteristic density ρ̃ linearly, i.e., turn off the
confinement amplitude quadratically as [(1 − ns/Ns)/R]2.

A. Initial ground state

First, we consider an initial state that is the ground state of
Ĥ

(2)
0 in Eq. (16), and we compare the two different protocols

(P1 and P2) to turn off the harmonic confinement (mentioned
above). Figure 6 shows the ratio between the energy E =
Tr[ρ̂F Ĥ ] at the end of each protocol and the ground-state
energy EGS of Ĥ as a function of Ns . The results, for free
expansion times tQ = 0 and 100, show that the linear turnoff of
the trap results in a slower approach to the ground-state energy
as Ns increases when compared to the case of the quadratic
turnoff (the linear turnoff of the characteristic density).

In the following, we only consider the second (P2) protocol.
The linear turnoff of the characteristic density (i.e., the quad-
ratic turnoff of the harmonic trap) is analogous to the protocol
studied for the initial linear trap in Sec. IV, as the characteristic
density in such a potential depends linearly on the strength of
the trap.

The reduction in the number of small quenches Ns required
to achieve the same degree of adiabaticity using the sudden
expansion is not as good for the initial harmonic trap when
compared to the linear one for the quadratic turnoff of the trap
(see Fig. 6). This is likely related to the fact that the emergent
local Hamiltonian in Eq. (17) is more complicated than that in
Eq. (15). Still, the reduction with increasing tQ is apparent in
Fig. 6 (note the logarithmic scale of the x axis). Observables
such as the entropy and the normalized trace distance at the
end of the processes exhibit a behavior (not shown) that is
qualitatively similar to that of the energy in Fig. 6, and to
the one discussed in the next section for the initial finite-
temperature state.

B. Initial finite-temperature state

Of closer relevance to current experiments with ultracold
quantum gases in optical lattices, here we consider an initial
finite-temperature state of Ĥ

(2)
0 [see Eq. (16)], and we perform

a two-stage adiabatic transfer of this state to a box trap. In the
second stage of our protocol (the quasistatic process), after the
small quenches, we consider equilibration both to the GGE (as
done in all previous cases) and to the GE.

In the limit Ns → ∞ (ideal adiabatic transfer), our proto-
cols do not increase the entropy. Hence, the final entropy of
the ideal adiabatic transfer is Sadb = SI . When the system
equilibrates to the GE, the density matrix at the end of
the two-stage protocol, ρ̂GE

adb, is uniquely determined by the
entropy SI and the number of particles. When the system
equilibrates to the GGE, we find that at the end of the ideal
adiabatic transfer, the occupation of the final single-particle
energy eigenstates is the same as the occupation of the initial
single-particle energy eigenstates. This is shown in Fig. 7,
where we plot the occupation of the initial single-particle
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FIG. 7. Occupations Iα of the single-particle energy eigenstates
in the initial finite-temperature state (βI = 0.5), and at the end of
the two-stage protocol for tQ = 80 and different values of Ns = 100,
500, and 5000. Inset: relative difference between the occupation of
the single-particle energy eigenstates in the initial and final states (see
the text) vs Ns .

energy eigenstates I I
α , as well as the occupation of the final

single-particle energy eigenstates for different numbers Ns of
small quenches. The final distribution can be seen to approach
the initial one upon increasing Ns . The inset in Fig. 7 makes
that observation more quantitative. There we plot the relative
difference �I = ∑

α |Iα − I I
α |/N between the occupations of

the single-particle energy eigenstates in the initial and final
states versus Ns . �I can be seen to vanish with increasing Ns

(this ensures that, for Ns → ∞, no entropy is produced within
the GGE description). The results shown are for tQ = 80, but
an identical trend (not shown) was observed for all other times
tQ considered. Hence, in the limit Ns → ∞, the single-particle
energy eigenstate occupations are the ones of the initial state,
and they uniquely determine the one-body correlation matrix
of the ideal adiabatic transfer ρGGE

adb .
The left inset of Fig. 8(a) shows the site occupations nl

for different expansion times tQ = 0, 40, and 80 (the site
occupations at tQ = 0 and 80 are the ones shown in Fig. 1).
The main panels of Fig. 8 show three observables at the end
of the transfer, for two or three free expansion times tQ, as
a function of Ns . In Fig. 8(a), we plot the ratio between the
energy E of the final state and the ideal adiabatic transfer
energy EGGE

adb = ∑
α εαI I

α , where εα are the single-particle
energies of Ĥ . In Fig. 8(b), we show the GGE entropy per
site SGGE/L, calculated using Eq. (6). In Fig. 8(c), we show
the normalized trace distance d(ρGGE,ρGGE

adb ) between the final
GGE one-body correlation matrix ρGGE and the one-body
correlation matrix for the ideal adiabatic transfer ρGGE

adb , which
is obtained replacing ρGS by ρGGE

adb in Eq. (13). As a general
trend, one can see that (i) E → EGGE

adb , SGGE → SI , and
d(ρGGE,ρGGE

adb ) → 0 with increasing Ns ; and (ii) increasing
tQ decreases the number Ns of small quenches required to
achieve a desired degree of adiabaticity during the quasistatic
process.

The main panel of Fig. 8(b) also compares SGGE/L to
SGE/L at the end of the transfer when after each small quench
the system is assumed to equilibrate to the GE. Even though the
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FIG. 8. Adiabatic transfer of a finite-temperature state from a
harmonic trap to a box trap. (a) Ratio between the energy E at the
end of the transfer and the ideal adiabatic transfer energy EGGE

adb vs
the number of small quenches Ns . Results are shown for three times
tQ at which the emergent local Hamiltonian Ĥ(2)(tQ) [see Eq. (17)] is
quenched. Left inset: site occupations at the times tQ. The solid line
corresponds to the site occupations in the initial state. Right inset: data
collapse for E/EGGE

adb as a function of NsB(tQ). (b) The GGE entropy
per site SGGE/L at the end of the transfer vs Ns . Open triangles
correspond to the GE entropy per site SGE/L. The dashed-dotted line
corresponds to the entropy SI /L of the initial thermal state. Inset: data
collapse for SGGE/L as a function of NsB(tQ). (c) Normalized trace
distance d(ρGGE,ρGGE

adb ) between the GGE one-body correlation matrix
at the end of the transfer and that of the ideal adiabatic transfer vs Ns .
Inset: data collapse for the trace distance as a function of NsB(tQ).
The results are for L = 1000 (N = 500), ρ̃ = 10, βI = 0.5, and for
times tQ = 0, 40, and 80.

final states are different, the results are very close to each other
already for relatively small values of Ns . This shows that the
outcome of the protocol under investigation does not depend
significantly on the choice of the statistical ensemble used to
describe the system after equilibration during the quasistatic
protocol. This is similar to the results in Ref. [34].

The right insets in Figs. 8(a)–8(c) show data collapse for the
observables plotted in the main panel as a function of NsB(tQ),
where B(tQ) = [1 + (tQ/R)2]1/4. The scaling is different from
the one in the linear trap, Sec. IV. However, the scaling
coefficient is, in both cases, an increasing function of the
expansion time tQ, so a speedup is achieved whenever the
particles are allowed to freely expand into the empty part of
the lattice before starting the quasistatic process.

The protocol discussed in this section could be used
in experiments with ultracold gases in optical lattices. In
such systems, it might be possible to engineer the emergent
local Hamiltonian in Eq. (17), which contains a harmonic
trap, next-nearest-neighbor hoppings with a time-dependent
hopping amplitude, and nearest-neighbor hoppings with a
time-dependent hopping amplitude and a complex phase.

VI. SUMMARY

We have used emergent local Hamiltonians as a tool to
speed up adiabatic protocols for many-body fermionic states
in one-dimensional lattices. We focused on two applications of
the emergent local Hamiltonians. In the first one, we showed
how to extract maximal work from initial band-insulating
states. In the second one, we studied the adiabatic transfer
of initial equilibrium states from linear and harmonic traps to
a box trap. In all the protocols considered, a desired degree
of adiabaticity can be achieved using a shorter quasistatic
process if one first allows particles to expand freely in the
unoccupied part of the lattice and carries out a quench to the
emergent local Hamiltonian. One may wonder why is this so.
While we provide no formal proof, one can see that, by using
the emergent local Hamiltonian, we manage to “freeze” the
expanding cloud at times at which the site occupations are
nonzero on almost the entire lattice. Hence, after the free
expansion the system is much closer to the homogeneous
equilibrated state than in the initial state, and this is achieved
without producing any entropy.

Our results demonstrate that the emergent eigenstate solu-
tion to quantum dynamics [43], and the associated emergent
Gibbs ensemble [44], constitute a promising direction to
achieve shortcuts to adiabaticity. It would be interesting to
explore its potential further to design quantum heat engines
and quantum batteries. We note that the band-insulating states
in Sec. III can be thought of as being quantum batteries.
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