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We examine in detail the theoretical foundations of striking long-range couplings emerging in arrays of fluid
cells connected by narrow channels by using a lattice gas (Ising model) description of a system. We present a
reexamination of the well known exact determination of the two-point correlation function along the edge of a
channel using the transfer matrix technique and a different interpretation is provided. The explicit form of the
correlation length is found to grow exponentially with the cross section of the channels at the bulk two-phase
coexistence. The aforementioned result is recaptured by a refined version of the Fisher-Privman theory of
first order phase transitions in which the Boltzmann factor for a domain wall is decorated with a contribution
stemming from the point tension originated at its end points. The Boltzmann factor for a domain wall together
with the point tension is then identified exactly thanks to two independent analytical techniques, providing
a critical test of the Fisher-Privman theory. We then illustrate how to build up the network model from its
elementary constituents, the cells and the channels. Moreover, we are able to extract the strength of the coupling
between cells and express them in terms of the length and width and coarse-grained quantities such as surface
and point tensions. We then support our theoretical investigation with a series of corroborating results based on
Monte Carlo simulations. We illustrate how the long-range ordering occurs and how the latter is signaled by the
thermodynamic quantities corresponding to both planar and three-dimensional Ising arrays.
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I. INTRODUCTION

Recent experimental work by Gasparini et al. [1] has
demonstrated striking action-at-a-distance effects in superfluid
4He. The typical system is formed from a two-dimensional
(2D) array of identical microscopic boxes etched in a Si
wafer. These are filled with liquid 4He and then coupled by
pouring a relatively thin supernatant layer of liquid 4He on top.
Another technique for achieving coupling is to use a network
of fluid channels [2]. The signature of action-at-a-distance is
provided by accurate thermodynamic measurements, which
show a quite unexpected “shoulder.” The dimensions used in
these experiments can be appreciated from Fig. 1.

A crucial factor in this phenomenology is the proximity
induced by both the size and connectivity of the boxes, together
with the nearness to the critical point. A precise discussion
on the relevance of proximity effects on the enhancement of
ordering in the context of the Gasparini et al. experiment
can be found in [3]. Perron et al. [4] suggested that this
class of experimental results might be a more widespread
consequence of the critical phenomenon than previously
supposed. Stimulated by these remarks, we have shown [5] that
for Ising systems (an entirely different universality class), there
is a divergent length scale (not the usual critical one) which
is responsible for emergent long-ranged effects. This brings
together ideas of Kac [6] on asymptotic spectral degeneracy in
transfer matrices, the Fisher-Privman [7] theory of finite-size
effects in first order phase transitions (and other systems), and
the appropriate solution for the planar Ising model on a strip
with free boundary conditions [8]. The latter shows first how
effective the Fisher-Privman theory is when accurate input data
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are used. To provide this accurate input data, we give another
exact solution, which gives as a bonus an exact result for the
point tension but in a different context from [9]. Our thinking
is illustrated and extended by some Monte Carlo simulations.

The layout of the paper is as follows: in Sec. II A we
summarize the calculation of the pair correlation function
[Eq. (22)] for spins located in the edges of the strip [8].
The algebra of the original derivation [8] is quite heavy, so
we have focused here on the physical motivation, drawing
analogies with the quantum mechanics of spinless fermions
on a finite line (with ends, rather than the more transparent
case with cyclic boundary conditions). Then, in Sec. II B, the
same problem is treated in a completely different way using
the Fisher-Privman theory [7]. We point out that introducing
a hypothetical point tension in the statistical weight of an
isolated domain wall gives precise agreement with part of the
exact solution in Sec. II A. Normally, such contributions appear
to be ignored but they are mandatory if critical scaling is to
be captured. We also consider how an effective coupling is to
be set up in a “network” lattice of boxes (each characterized
by an up and down magnetization, which will be valid for
large enough boxes). These “boxes” are coupled by strips in
which the internal degrees of freedom have been summed
out, producing an Ising superlattice of nodes which can
display long-range order which, since the effective coupling is
temperature dependent, is far from obvious.

After this, in Sec. III we derive the Fisher-Privman weight
from first principles in an Ising strip and show that it has
exactly the value deduced on phenomenological grounds. The
fact that this can be done shows how good the Fisher-Privman
theory is when an appropriate weight is used.

In Sec. IV we collect the results obtained by means of
numerical simulations. This section contains 12 figures. The
quantities of interest which are determined numerically are
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FIG. 1. The network of boxes from top view (right) and from side
view (left). The typical dimensions considered in the experimental
setup (see text) are M ∼ 1 μm, L ∼ 2 μm, L0 ∼ 2 μm, h ∼ 30 nm.

defined in Sec. IV A. Then, we present our results for one-
dimensional (1D) arrays of squares (Sec. IV B) and 2D arrays
of squares (Sec. IV C) connected by strips. The numerical
determination of the effective coupling between boxes forming
the array is showed in Sec. IV D and compared against the
analytical prediction (30). We conclude the numerical part
by showing the results for 2D arrays of cubes connected by
channels (Sec. IV E).

Our final conclusive remarks are then summarized in
Sec. V. The detailed calculations corresponding to Sec. III
are collected in Appendix A. Then, we further discuss the Kac
theory [6] of asymptotic degeneracy in transfer matrix spectra
in Appendix B.

II. THEORY

A. Correlation function

We consider the correlation function between two spins
in the edge of a planar Ising ferromagnet with zero magnetic
field and strip geometry as shown in Fig. 2. The significance of
having the spins in an edge is that this calculation is particularly

tractable in the transfer matrix language [8] and its correct
interpretation leads to a significant enhancement of the Fisher-
Privman theory of finite-size effects [7]. The transfer matrix
calculation builds up the lattice from column to column (see
Fig. 2) with the operator

V1 = (2 sinh 2K1)M/2 exp

[
−K∗

1

M∑
m=1

σ z
m

]
, (1)

where tanh K1 = e−2K∗
1 . Here, we are using the Schultz,

Mattis, and Lieb [10] convention for spin operators σ i
m, i =

x,y,z, with ordered direction taken as x. The prefactor
(2 sinh 2K1)M/2 will always cancel out with the normalizing
partition function and thus we omit it for simplicity, as it will
not report in the final answer. The transfer matrix V2 which
accounts for the interactions within columns is of the diagonal
form

V2 = exp

[
K2

M−1∑
m=1

σx
mσ x

m+1

]
(2)

for strip boundary conditions as in Fig. 2. The spectrum of
the symmetrized product V = V

1/2
2 V1V

1/2
2 was determined

some time ago [8] by an amalgamation of the techniques of
Kaufman [11] and of Schultz, Mattis, and Lieb (SML) [10].
It was Kaufman who made the essential step of introducing
the Jordan-Wigner transformation [12], which reduces the
rather intractable spin problem to one involving quadratic
forms of spinors. Her method of diagonalization was made
more tractable by SML, who drew an analogy with the pairing
ideas of Anderson [13] and of Nambu [14]. Essentially, if one
has a good working knowledge of the Bardeen, Cooper, and
Schrieffer theory of superconductivity [15], then the Onsager
theory [16] has been brought within the pabulum of any
reasonably well-educated theoretical physicist.

The expression for the edge-spin pair correlation function is

C(n) = 〈σ1,1σ1,n+1〉 = 〈�|σx
1 V nσ x

1 |�〉�−n
0 , (3)

where |�〉 is the maximal eigenvector (unique by the
Perron-Frobenius theorem [17]) with eigenvalue �0. This
result has been obtained by imposing periodic boundary

M

n

K2

K1

σ1,1

transfer

free

free

(0, 1)

(1, 0)

FIG. 2. Ising model on a planar lattice with free boundary conditions and nearest-neighbor interactions Kj > 0, j = 1,2, is shown. The
transfer direction is indicated. In the applications considered here, we impose cyclic boundary conditions in the (1,0) direction.
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conditions in the strip axial direction and then taking the limit
of infinite strip length.

The Jordan-Wigner transformation, which is the crucial step
introduced by Kaufman, as we stated above, is given by

f †
m = Pm−1

(
σx

m + iσ y
m

)/
2, 2 � m � M

and f
†
1 = (

σx
1 + iσ

y

1

)/
2 , (4)

with the Jordan-Wigner tail or string being specified by

Pm =
m∏

j=1

(−σ z
j

) = im exp

⎡⎣−i

m∑
j=1

σ z
j

⎤⎦. (5)

The Fermi field obeys the anticommutation relations
[fm,f

†
n ]+ = δmn,[fm,fn]+ = 0. The connection of the opera-

tor PM with spin rotations (inversions) in a column of a lattice
is now obvious, as are the commutation relations

[V1,PM ] = [V2,PM ] = 0. (6)

This implies that we can seek simultaneous eigenvectors of
V and PM . The Vj , j = 1,2, become quadratic forms in
fermions:

V1 = exp

[
−K∗

1

M∑
m=1

(2f †
mfm − 1)

]
,

V2 = exp

[
K2

M−1∑
m=1

(f †
m − fm)(f †

m+1 + fm+1)

]
. (7)

The correlation function in (3) is expressed in terms of the
Fermi fields as

C(n) = 〈�|(f †
1 + f1)V n(f †

1 + f1)|�〉�−n
0 . (8)

A consequence of taking the spins in the edge is the linearity
of the forms representing the quantum mechanical treatment
of spinless fermions on a finite line. We have hopping terms,
which correspond to kinetic energy, and onsite energy terms.
Thus, we anticipate left- and right-going waves characteristic
of the bulk, which may be compared with the SML solution.
The “in” and “out” waves at the left boundary must be matched
to fit the boundary conditions; they become “out” and “in”
waves at the right boundary, which must also be matched and
made compatible with the left boundary. This generates the
discretization condition for the fermion momentum. The only
additional feature is that on the lattice there may be a local
modification of amplitudes at the ends of the column. We find
that

V = exp

{
−
∑

k

γ (k)[X†(k)X(k) − 1/2]

}
, (9)

where X(k) are the Fermi operators, details of which will
follow, and γ (k), the celebrated Onsager function [16], is that
solution of

cosh γ (k) = cosh 2K∗
1 cosh 2K2 − sinh 2K∗

1 sinh 2K2 cos k,

(10)

which is non-negative for real k. This requirement makes
the vacuum for the operators also the maximal eigenvector:
X(k)|�〉 = 0.

The discretization condition mentioned above for k is

eiMk = s eiδ∗(k), s = ±1 (11)

where s encodes reflection behavior [18,19] of the eigenvectors
and the angle δ∗(k), also introduced by Onsager, is defined by

eiδ∗(k) =
(

B

A

)1/2[ (eik − A)(eik − B−1)

(eik − A−1)(eik − B)

]1/2

. (12)

The location of the square-root branch points in the above is
determined by

A = exp(K1 + K∗
2 ) and B = exp(K1 − K∗

2 ). (13)

The choice of the branch for γ (k) determines that in the
discretization equation (12). For subcritical temperatures,
we have K1 > K∗

2 > 0; thus, A > B > 1 and δ∗(0) = 0
(mod 2π ). It is convenient to define, as did Kaufman, the
spinors by

�2m−1 = f †
m + fm, �2m = −i(f †

m − fm), m = 1, . . . ,M.

(14)

These have a simple representation in terms of the X(k) which
is useful for calculating correlation functions; this is

�m =
∑

k

N (k)[y∗
m(k)X†(k) + ym(k)X(k)], (15)

where the normalization factor N (k) is not needed in the
computation and

y2m(k) = iN (k) sin mk, y2m+1(k) = N (k) sin[km − δ∗(k)],

m = 1, . . . ,M − 1, (16)

with the boundary values

y1(k) = −N (k) cosh K2 sin δ∗(k),

y2M = −isN(k) cosh K2 sin δ∗(k). (17)

Here, we see the intuitive ideas above, between (8) and (9), in
action. Taken with the discretization condition, (15), (16) and
(17) guarantee

[X(k1),X(k2)] = 0, [X(k1),X†(k2)] = δk1,k2 . (18)

Notice that k = 0 and π generate trivial solutions and that,
to avoid repetition and triviality, the momenta should satisfy
0 < k < π .

In order to calculate the edge-pair correlation function, the
first step is to determine the allowed momenta. This is an
elementary matter using techniques from elementary calculus.
If we consider zeros of Mk − jπ − δ∗(k) for A > B > 1,
there is one (in fact at least one) for each j = 1, . . . ,M − 1.
With j = 0, there is a nontrivial one if M < dδ∗(ω)/dω|ω=0

the slope of δ∗ at k = 0 and when M > dδ∗(ω)/dω|ω=0, there
is one with a pure imaginary wave number with s = +1. Thus,
k = iv, v real and

e−Mv = s eiδ∗(iv). (19)

It is then a straightforward matter to show there is such a
solution for s = +1, 0 < v < γ̂ (0),γ̂ (0) = 2(K1 − K∗

2 ), but
only if M > dδ∗(ω)/dω|ω=0; note that γ̂ (k) is just γ (k) with
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K1 and K2 interchanged. It is easy to see that

v = γ̂ (0) − 2(sinh 2K1 sinh 2K2)−1 sinh γ̂ (0) e−2Mγ̂ (0)

+O(e−4Mγ̂ (0)), (20)

and that

γ (iv) = 2 sinh 2K∗
1 sinh γ̂ (0) e−Mγ̂ (0) + O(e−2Mγ̂ (0)) . (21)

Thus, we have found an asymptotic degeneracy in the spectrum
(see Appendix B) and this is associated with a surface mode
in which the eigenfunctions decay away from the surface on a
scale of ξb = 1/γ̂ (0); this is the bulk correlation length, up to
the Kadanoff-Wu anomaly [20]. The edge-spin pair correlation
function comes out in the form

C(n) = m2
e exp[−2n sinh 2K∗

1 sinh γ̂ (0) e−Mγ̂ (0)]

+
∑

k

|y1(k)|2 exp[−nγ (k)]. (22)

The first term above decays to zero on a new, emergent, length
scale ∝ [sinh γ̂ (0)]−1eMγ̂ (0) on which long-ranged order is
ultimately lost. It also displays a scaled form in the vicinity of
the bulk correlation length, that is the bulk scaling limit. In the
above,

me =
√

B − B−1

B − A−1
(23)

is the edge spontaneous magnetization, as originally deter-
mined by McCoy and Wu [21]. The second term on the
right-hand side is bounded above by exp[−nγ (0)]; this gives
a clear separation of length scales.

B. Fisher-Privman theory applied to the strip

Any configuration of the spins on the Ising strip with free
boundary conditions can be analyzed to extract arrangements
of domain walls going from side to side of the strip; these walls
separate oppositely magnetized domains which are themselves
reasonable approximations to bulk strip states for M large
enough. We may consider that fluctuation effects with a spatial
extent of about the bulk correlation length or less have been
summed over, a coarse graining producing a mesoscale model
(at least in principle). In this case, the space between domain
walls is essentially featureless, having a spatially averaged
magnetization of bulk spontaneous magnetization, denoted
m∗; see Fig. 3.

The energy of any domain wall should be replaced by
a coarse-grained fluctuation free energy of Helmholtz type.
Following Fisher and Privman [7], we can go one step further
and regard the domain walls as point particles in a quasi-one-
dimensional system, the equilibrium statistical mechanics of
which can be determined exactly in a suitable approximation.
Let the statistical weight of any domain wall in isolation be

denoted by w̃. Then, the two spins in the strip separated by
n lattice spacings will be parallel (resp. antiparallel) if the
number of domain walls in the interviewing space are even
(resp. odd). The correlation function of these spins, denoted
C(n), is given by

C(n) = {
1
2 [(1 + w̃)n + (1 − w̃)n]

− 1
2 [(1 + w̃)n − (1 − w̃)n]

}/
(1 + w̃)n

= [(1 − w̃)/(1 + w̃)]n. (24)

Here, we assume the domain walls have negligible interactions.
Evidently, we have

C(n) = e−nλ(w̃),
(25)

λ(w̃) = ln[(1 + w̃)/(1 − w̃)] = 2[w̃ + 3−1w̃3 + O(w̃5)].

Thus, for small w̃, where the theory is likely to be particularly
pertinent, we have λ(w̃) � 2w̃. The usual practice is to write

w̃ = e−Mτ (26)

for a strip of width M , where τ is the surface tension, a coarse-
grained entity as we would expect; this is precisely what one
would normally do in Helmholtz fluctuation theory. This does
not agree with (22), which is the exact solution for the edge-
pair function. It would agree, were w̃ to be replaced by w,
where

w = sinh 2K∗
1 sinh γ̂ (0) e−Mγ̂ (0). (27)

Since γ̂ (0) = τ , where τ is the surface tension for an interface
oriented at right angles to the strip axis, we recapture
(22) from (25) above in the linear regime. Another more
phenomenological angle is to note that the Fisher-Privman
result above does not scale, but it would do so, were we to
write

w = a ξ−1
b e−Mτ , (28)

where ξb is the bulk correlation length, related precisely to τ

by the relation τξb = 1
2 , which is valid for all temperatures

and is an application of duality [22,23]. It is also compatible
with Widom scaling [24]. As it stands, if all we demanded was
scaling rather than agreement with (22), then the parameter a

in (28) would be an arbitrary scale factor. In Appendix A, we
will calculate w by another exact solution for the Ising strip
and see that it is precisely of the form of (27). Also, we should
think of the prefactor, which converts (26) to (27), as arising
from point tension contributions of magnitude τp. In other
words, we can write w = e−2τp−Mτ and single out the factor
a/ξb as the one due to the point tension. The incorporation of
the point tension in the Boltzmann weight defines the enhanced
Fisher-Privman theory, but it might just as well be said to be
Fisher-Privman theory properly carried out.

M

FIG. 3. A schematic representation of a typical domain wall configuration on the Ising strip. Typically, the domains are widely separated
along (1,0) and thus infrequent.
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FIG. 4. Side view of an Ising system comprised of two cubic
lattice boxes of a side L0 connected by a L × M strip with L � M .
We assume L0 � M .

With M fixed, w may ultimately be reduced by going
towards the critical point. This is contrary to the usual intuition
about such matters and it enhances the domain of validity of the
Fisher-Privman theory in an interesting way; see in particular,
the discussion above (34). Finally, we discuss scaling. If we
take the scaling limit M → ∞, τ → 0, Mτ → M , nτ → n,
we see that the nonlinear terms in (25) generate corrections to
scaling. For simplicity, take the isotropic lattice with K1 = K2,
so that sinh 2K∗

1 = 1 at τ = 0. Then, we have

C(n) = exp[−2ne−M ] + O(τ 2). (29)

Terms of higher order in e−M have been neglected in this
equation since, for consistency, we would have to consider
higher order terms in (21).

We now consider network models of hypercubic coupled
“boxes.” Each one is a finite Ising lattice in d dimensions,
with d = 2,3 and side L0. The interactions in the box and L0

are chosen to ensure that each such box contains essentially a
single magnetic domain. Multiple domains, associated with
domain walls that intersect the boundary of the box, are
suppressed by a strictly positive surface tension (chosen large
enough) and the extent of such a domain wall ∼Ld−1

0 . Thus,

any such box j has an average magnetization m∗
0Sj where

Sj = ±1 is an indicator variable and m∗
0 approximates the

spontaneous magnetization in d dimensions as L0 → ∞. In
order to investigate coupling within this network, let boxes i

and j be connected by a strip or rod of Ising type (see Fig. 4).
Then, if SiSj = +1 (resp. −1), there is an even (resp.

odd) number of domain walls within the connector; these are
treated by Fisher-Privman theory. The result is to generate a
Boltzmann factor AeKeffSiSj where the parameter A will be of
no further interest, but e2Keff = [(1 + w)L + (1 − w)L]/[(1 +
w)L − (1 − w)L], where L is the strip length and w is the
a priori weight of any domain wall, dependent as we have
seen on the strip width M and the surface tension τ , as in
(28). Introducing the variable t = (1 − w)/(1 + w) this has
the form

e2Keff = (1 + tL)/(1 − tL), (30)

with w given by Eq. (38) for K1 = K2 ≡ K , N → M and
γ (0) → τ , hence,

w = (sinh 2K)−1 sinh τ e−Mτ . (31)

It is crucial to note that Keff is an effective Ising coupling
which depends in a quite subtle way on M , τ , and K (the spin
coupling within the strip).

Let us now consider the planar array of square boxes
connected by one-dimensional Ising rods. Thus, it is an
interesting question whether the network can display long-
range order. This would be so if e2Keff can be chosen to exceed
the critical value of 1 + √

2 of the d = 2 Ising model. Thus,
the equation

1 + tLc = (1 +
√

2)(1 − tLc ) (32)

implies a critical surface Lc(τ,M), shown in Fig. 5(a). For L <

Lc (resp. L > Lc), the network is ordered (resp. disordered).
Introducing scaling variables τLc and e−Mτ the network

FIG. 5. (a) The critical length Lc as a function of the surface tension τ and the strip width M . Given τ and M , a system with a length smaller
than Lc is ordered and corresponds to a point in the phase diagram below the surface of the graph. The iso-Lc contour lines are highlighted in
red. Note the existence, for a given M , of ordered configurations for a pair of values of τ (reentrant phenomenon). (b) The phase diagram in
terms of the scaling variables τL and e−τM . The critical line τLce

−τM = 2−1 ln(1 + √
2) separates ordered and disordered configurations, as

illustrated in the shadowed regions. Notice that e−τM is bounded from above by unity since τ is non-negative.
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critical point satisfies

τLc e−Mτ = 2−1 ln(1 +
√

2). (33)

Thus, if τLc < 2−1 ln(1 + √
2), no such critical point is

possible. This is shown in Fig. 5(b).
The role played by the point tension and the domain of

validity of the refined Fisher-Privman theory can be neatly
appreciated with the following considerations. Comparing the
contribution of the imaginary wave number mode in the exact
Ising strip calculation [Eq. (22)] and the result of the refined
Fisher Privman model [Eq. (25) with w̃ replaced by w given
by (31)], we should require for perfect matching that

1 − w

1 + w
= exp{−γ [iv(M)]}, (34)

or w = tanh {γ [iv(M)]/2}. Now, if we take the exact calcu-
lation of the weight, we get w = γ [iv(M)]/2, which agrees
precisely to first order in γ [iv(M)] → 0. The Fisher-Privman
model neglects interactions between domain walls, other than a
simple exclusion (walls cannot cross). This cannot be precisely
correct. Now, examine γ [iv(M)] given by (21) with γ̂ (0) = τ ,

γ [iv(M)] = 2 sinh 2K∗
1 sinh τ e−Mτ + O(e−2Mτ ), (35)

just considering the first term, the behavior as a function of
τ with M fixed implies investigating the function ϕ(τ ) =
sinh τ e−Mτ . Now, ϕ(0) = 0, which is a consequence of the
line tension (e−τp ∝ sinh τ ). On the other hand, for M � 2,
we have limτ→∞ ϕ(τ ) = 0. Hence, there is a maximum when
coth τm = M or, equivalently, sinh τm = (M2 − 1)−1/2. After
some algebra, we find that the maximum value of ϕ(τ ) is

ϕ(τm) = (M − 1)
M−1

2

(M + 1)
M+1

2

= 1

Me

[
1 + O

(
1

M

)]
. (36)

It is evident that the above can be made as small as one likes by
taking M big enough. Consequently, the corresponding weight
will be small even for τ → 0 thanks to the point tension; notice
that this would not have been the case without the point tension
contribution which would have made w = O(1) in that precise
limit. It follows that the refined Fisher-Privman approach is
considerably more useful than one might have suspected.

III. EXACT BOLTZMANN WEIGHT AND POINT TENSION

As already stressed in Sec. II, the phenomenological Boltz-
mann weight for a domain wall given by (26) is not correct.
Thus, by constructing the edge spin-spin correlation function
in the manner of Fisher-Privman and matching it with the exact
result (22) we deduced the exact Boltzmann weight given by
(27). In this section, we further support the above identification
by means of another exact, and independent, calculation. The
idea is to determine the free energy associated with a domain
wall running perpendicularly to the edges of the strip.

Following earlier definitions, if the strip with free edges
(no magnetic fields) is wrapped onto a cylinder, as required by
cyclic boundary conditions, then a single interface in the (0,1)
direction can be introduced by reversing a contiguous line of
bonds as shown in Fig. 6. This statement is not quite correct:
for sufficiently large M the line of defect bonds admits an
odd number of interfaces, strictly speaking. For temperatures

FIG. 6. Cylindrical lattice with a line of reversed bonds.

below the critical value for the bulk lattice, an incipient ordered
state is expected, so provided the circumference is not too
large, in a way that will be made precise in due course, there
is a single magnetized phase having average magnetization
approximately the bulk spontaneous value. Introducing a line
of reversed bonds as shown in Fig. 6 will then indeed model
an interface. The reader may like to note that this is not unlike
the model of an interface from which Onsager extracted the
first exact result for the surface tension [16].1

The computation of the excess free energy corresponding
to the insertion of a line of reversed bonds boils down to deter-
mination of the ratio Z×/Z, where Z× is the partition function
of the cylindrical lattice with the line of reversed bonds and Z

without such a line. Since the detailed computation of Z×/Z is
rather mathematical, we report here the final result, and refer
to Appendix A for two exhaustive and detailed derivations.
The result is

Z×

Z
= M sinh 2K∗

2 sinh γ (0) e−Nγ (0) + O(e−2Nγ (0)). (37)

This is very satisfactory since with the cyclic boundary
conditions as indicated there are M precisely equivalent
translates of any configuration, hence the factor M which

1The detailed examination of the finite-size effects given here is, to
the best of our knowledge, not yet reported in the literature.
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(a)

(b)

FIG. 7. (a) Geometry of a 1D array of N squares of size L0 connected by strips (channels) of length L and width M . (b) The equivalent
1D system, that consists of N coarse-grained spin variables Sj connected by bonds with effective interaction Keff.

gives a Boltzmann entropy ln M in units of kBT . The correct
Boltzmann weight for a domain wall is thus

w = sinh 2K∗
2 sinh γ (0)e−Nγ (0), (38)

which coincides with (27) under the exchange K1 ↔ K2

and M ↔ N , as it appears evident from the structure of the
lattices of Figs. 2 and 6; note that under the first of the above
replacements γ (ω) ↔ γ̂ (ω). The exact Boltzmann weight (38)
contains a surface tension contribution γ (0), which agrees with
Onsager [16], and a positive point tension2 (the d = 2 analog
of line tension in d = 3) having the value τp, where

τp = −2−1 ln[sinh 2K∗
2 sinh τ ]. (39)

The positiveness of τp follows from the fact that 0 <

sinh 2K∗
2 sinh τ < 1 for any subcritical temperature; see the

end of Appendix A for the proof of this statement. We further
note that while τ is a monotonically decreasing function of the
reduced temperature, which eventually vanishes at the bulk
critical point, the point tension is instead a monotonically
increasing function of the reduced temperature with a loga-
rithmic divergence at the bulk critical point.

IV. NUMERICAL SIMULATIONS

In order to test our predictions based on the extended Fisher-
Privman theory [7] we have performed a series of Monte Carlo
simulations of the Ising model.

A. Numerical method and observables

We consider the Ising model on a square lattice in two
dimensions (2D) and on a simple cubic lattice in three
dimensions (3D) with the lattice spacing � = 1 defined via
the Hamiltonian

H = −J
∑

{(i,j ),(i ′,j ′)}
σi,j σi ′,j ′ , (40)

2The excess free energy (in kBT units) takes the form F =
− ln M + Nγ (0) − ln[sinh 2K∗

2 sinh τ ]. The first term − ln M is
an entropic contribution due to the fact that we can locate the
domain wall in M positions which are equivalent under translation
invariance, Nγ̂ (0) is the energy cost of an unpinned domain wall,
τp = −2−1 ln[sinh 2K∗

2 sinh τ ] is the point tension originated at each
anchoring point.

where σi,j = ±1 denotes the spin variable. The parameter J ,
which we set equal to 1, is the spin-spin coupling constant
and the sum {(i,j ),(i ′,j ′)} is taken over all nearest-neighbor
pairs of sites (i,j ) and (i ′,j ′) on the lattice. The total number
of spins of the lattice is given by Ns . We shall consider
different geometries, which will be specified later. For all
geometries we assume open boundary conditions (OBC) in
which the spins are free at the boundaries. For the square
lattice, the critical value of the coupling constant K = βJ ,
where β = 1/(kBT ), is given by Kc = (1/2) ln(1 + √

2) ≈
0.440 687 [16]. Various estimations are available for D = 3
[25]; Kc(D = 3) ≈ 0.221 654 4(3) ≈ Kc(D = 2)/2.

We perform numerical simulation using a hybrid algorithm.
One Monte Carlo step consists of one update of Wolff
cluster and Ns/4 Metropolis updates of randomly selected
spins. The Wolff cluster algorithm provides simultaneous
flips of the entire squares and cubes and thus the faster
relaxation in the vicinity of the critical point while Metropolis
single spin algorithm provides higher efficiency in the low
temperature region. We use standard definitions [26,27] for
the thermodynamic quantities: the magnetization per spin is

m = 1

Ns

〈∣∣∣∣∣∣
∑
{(i,j )}

σi,j

∣∣∣∣∣∣
〉

= 1

Ns

〈M〉, (41)

where the sum {(i,j )} is taken over all spins of the system, the
energy per spin is given by

e = − 1

Ns

〈 ∑
{(i,j ),(i ′,j ′)}

σi,j σi ′,j ′

〉
= 1

Ns

〈E〉, (42)

the heat capacity is

C = β2(〈E2〉 − 〈E〉2)/Ns, (43)

and the magnetic susceptibility is

χ = β(〈M2〉 − 〈M〉2)/Ns , (44)

where 〈E2〉 = 〈(∑{(i,j ),(i ′,j ′)} σi,j σi ′,j ′ )2〉 and 〈M2〉 =
〈(∑{(i,j )} σi,j )2〉. In the above definitions 〈. . . 〉 denotes the
thermodynamic average over system states.

B. 1D array of squares

Our lattice network model of hypercubic Ising boxes
connected by Ising strips (see Appendix A) does not exhibit
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(a)

(b) (c)

FIG. 8. (a) The scheme for the computation of the spin-spin correlation function G(x) along three different lines: line 1 at the middle of
the channel (red solid line), line 2 at the side of the channel (cyan dashed-dotted line), and line 3 at the side of the square (magenta dashed
line). (b) Spin-spin correlation function G(x) for the 1D array of N = 100 squares of a side length L0 = 100 as a function of the distance x

along the three lines: the line passing through center of the channel (red solid line), through the side of the channel (cyan dashed-dotted line)
and through the side of the square (magenta dashed line) for K = 0.6; the channel length is L = 100 and the width is M = 10. (c) The plateau
values of G(x) computed along the middle line of the channel as a function of x/L (symbols) follow the 1D Ising correlation function law
given by Eq. (45) (dashed blue line) with m∗

0 = 0.97.

a phase transition in one dimension. For the 1D network,
however, we can use the exact form for the correlation function
G(x) = 〈SiSj 〉 between the boxes Si and Sj , separated by
x/L sites of the effective lattice with x = i − j ; the latter
reads as

G(x) � (m∗
0)2(tanh Keff)

|x/L|, (45)

where Keff is the effective coupling interaction, which from
(30) admits the neat expression tanh Keff = tL. In order to

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

0  1000  2000  3000  4000  5000

K = 0.50
K = 0.56
K = 0.60
K = 0.64
K = 0.68

x

G
(x

)

FIG. 9. Spin-spin correlation function G(x) along the centers of
the squares (line 1) as a function of the distance x for the same system
as in Fig. 8 and various couplings, K = 0.5,0.56,0.6,0.64,0.68.

test this prediction, we take the system that consists of N
squares of the size L0 × L0 (each square contains L2

0 spins)
connected by strips of the length L and width M (the number
of spins in the strip is equal to L × M) [see Fig. 7(a)]. The
system is periodic in the x direction; the first and the N th
squares are connected forming a ring. The total number of
spins in the system is Ns = N (L2

0 + LM). We have performed
Monte Carlo simulations for the system of N = 100 squares
of size L0 = 100 connected by channels of length L = 100
and various widths M = 4,6,10,20,30,40.

The spin-spin correlation function G(x) = 〈σi,kσi+x,k〉 is
computed in the x direction along three different lines, as
shown in Fig. 8(a). The horizontal coordinate x = 0 of the
first spin σ (0) is always at the center of the square box. For the
vertical coordinate y of both spins we consider three cases:
the centers of the squares, the sides of the channels, and the
sides of the squares, denoted, respectively, with the lines 1,
2, and 3 of Fig. 8(a). Let us note that the correlations along
the edges of the squares exist only if the second spin σ (x) is
located within a square.

In Fig. 8(b) we plot the spin-spin correlation function along
these lines for a channel of width M = 10 and for the coupling
K = 0.6. One can see that G(x) stays constant within the
squares and depends only on the mutual distance between the
latter, which supports the crucial assumption for derivations
in Appendix A that the boxes are ordered. Figure 8(c) shows
the values of plateaux from Fig. 8(b) plotted as function of
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FIG. 10. Thermodynamic quantities for a 1D array of N = 100 squares of size L0 = 100 connected (in a periodic way) by strips of size
100 × M as a function of the coupling K: energy per spin e (upper panel, left), heat capacity C (upper panel, right), magnetization per spin
m (lower panel, left), and magnetic susceptibility χ (lower panel, right). Results for a single OBC square with L0 = 100 are plotted by black
dashed line for comparison (except for the plot of χ ).

x/L together with the theoretical prediction given by Eq. (45).
Perfect agreement is obtained for m∗

0 = 0.97 corresponding to
the spontaneous magnetization at K = 0.6.

In Fig. 9 we plot G(x) for the same system as in Fig. 8
for several values of the coupling constant K . We can see

that already for K = 0.5 the spins within the first square are
correlated. Note that G(x) > 0.8 for x < 50. The spatial extent
of the correlations grows by increasing the coupling K and,
ultimately, the correlations spread across the whole system
by further increasing of K . This feature can be linked to

(a) (b)

FIG. 11. (a) Geometry of a 2D array of a linear size N consisting of N 2 squares of size L0 connected by strips (channels) of the length L

and the width M . The scheme for computation of the spin-spin correlation function G(x) = 〈σ (0)σ (x)〉 for three different lines: line 1 at the
middle of the channel (red solid line), line 2 at the side of the channel (cyan dashed-dotted line), and line 3 at the side of the square (magenta
dashed line). (b) Geometry of the equivalent network model.
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FIG. 12. Thermodynamic quantities for the system shown in Fig. 11 with N = 10 and L0 = 100 connected (in a periodic way) by strips
of size 100 × M as a function of the coupling K: energy per spin (upper panel, left) e, heat capacity C (upper panel, right), magnetization per
spin m (lower panel, left), and magnetic susceptibility χ (lower panel, right). Results for a single OBC square L0 = 100 are plotted with a
black dashed line for comparison.

the behavior of thermodynamic quantities as functions of K ,
which is presented in Fig. 10.

For comparison, we plot in this figure also the results for the
single OBC square of the size L0 = 100 (black dashed line).
One can see that for the studied system sizes, the energy-related
quantities such as the energy per spin e and the heat capacity
for the single square and for the 1D array of coupled squares
are almost identical; see Figs. 10(a) and 10(b). The peak in the
heat capacity of a single PBC square indicates the rounded

2D continuous order-disorder phase transition. In contrast,
the magnetization-related quantities such as the magnetization
per spin m and the magnetic susceptibility exhibit a rounded
transition at a value of Kc(M) > 0.45, which for this coupled
system depends on the width of connecting channel M; see
Figs. 10(c) and 10(d). The dashed-dotted line in Fig. 10(d)
shows that the location of this rounded transition, as indicated
by the maximum of the susceptibility χmax, grows linearly with
K as the width of the channel M is decreased. For the system

FIG. 13. Left panel: the spin-spin correlation function G(x) as a function of the distance x for a system with L0 = 100, L = 100, M = 10
for K = 0.56 along the three different lines: centers of the channels (red solid line), sides of the channels (cyan dashed-dotted line), and along
the sides of the squares (magenta dashed line). Right panel: the correlation function along the centers of the channels for various couplings
K = 0.46,0.53,0.55,0.56,0.58.
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FIG. 14. The effective interaction constant Keff mediated by the
Ising strip (channel) of the size L × M as a function of K for L = 100
and M = 4,6,10,20,30,40. Lines correspond to Eq. (30), symbols
correspond to the MC results (48).

of Fig. 9, i.e., for M = 10, the maximum of the magnetic
susceptibility χ occurs at K ≈ 0.66. Around this maximum
the spins in the whole 1D array become correlated as can be
inferred from the behavior of G(x) shown in this figure. This
is a manifestation of finite-size effects on the order-disorder
transition in 2D systems [28]. The (pseudo)critical coupling is
shifted to the higher values of K with respect to Kc(D = 2) ≈
0.440 687 of the bulk 2D Ising model, this shift depends both
on the geometry and the size of the system.

We have checked how the size of constituents of the
array influences both the heat capacity and the magnetic
susceptibility. We have found that enlarging the connecting
volumes leads to the increase of the maximum of the heat
capacity, while the location of the peak remains practically
unchanged. We observe that making the connecting channel
shorter does not influence the heat capacity C. On contrary,
the peak of the susceptibility becomes only slightly larger for
larger boxes, but shortening the channel length leads to the
shift of the peak of χ to regions of smaller K .

From Fig. 10 we can conclude that the rounded ordering
transition in the array of coupled volumes occurs in two stages.
At the first stage, spins in every square become ordered, this
process takes place about the (pseudo)critical point Kc,L0 �
0.45 for an isolated OBC square of size L0 and does not depend
on the geometry of the connecting channels. This first stage

is responsible for the peak of the heat capacity. This rounded
phase transition corresponds to a system with the same spatial
dimension (and universality class) as the coupled volumes; for
the case at Hand, the volumes are actually two-dimensional
entities. However, right at this transition point different squares
stay uncorrelated. As we increase the coupling parameter K ,
at a certain value K∗

c (M,L) that depends on the size L,M of
channels, different squares become ordered. In correspondence
of this second (rounded) transition, the magnetization tends to
unity and the magnetic susceptibility of the system reaches its
maximum value.

C. 2D arrays of squares

Now, we consider a 2D array of a linear size N consisting
of N 2 squares of size L0 connected by strips (channels)
of the length L and the width M as shown in Fig. 11,
where we also indicate the lines along which we compute
the spin-spin correlation functions. In Fig. 12 we plot the
thermodynamic quantities for this system as a function of
K for several values of the channel width M . For the 2D
array we observe a qualitatively similar scenario as for the
1D array, i.e., the behavior of both the energy density and the
heat capacity closely follows that for a single square, whereas
the inflection point of the magnetization and the peak in the
magnetic susceptibility are shifted to larger values of K; the
length of this shift is controlled by the channel width M . A
significative difference between 1D and 2D systems is that the
latter exhibit a true ordering transition in the thermodynamic
limit. This means that the maximum in the susceptibility grows
to infinity upon increasing the size of the 2D array, while for
1D arrays this is not the case. A shoulder in the magnetic sus-
ceptibility is a ghost of the rounded phase transition in the 2D
square.

In Fig. 13 we plot the spin-spin correlation function G(x)
for the 2D system. In this case, the correlations along the side
of the square are weaker than in the central part, but they
reach the value of G(x) in the central part at the points of the
channel cross section. We observe that above a certain value
of K (roughly between 0.55 and 0.56) G(x) does not decay
to zero. This is a clear indication of the existence of order
in the network. The transition as signaled by the peak of the
susceptibility which occurs at K ≈ 0.55, in agreement with
the Fisher-Privman theory.

FIG. 15. Thermodynamic quantities for the 2D array of N × N cubes of side L0 = 20 connected (in a periodic way) by channels of size
40 × 4 × 4 as functions of the coupling K: heat capacity C (left panel), magnetic susceptibility χ (right panel).
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FIG. 16. Thermodynamic quantities for the 2D array of 10 × 10 cubes of the side L0 connected (in a periodic way) by channels of size
40 × 4 × 4 as functions of the coupling K: heat capacity C (left panel), magnetic susceptibility χ (right panel).

D. Computation of the effective coupling

We can compute the effective coupling constant between
two spin boxes mediated by the channel numerically. Let us
consider the strip of the length L and the width M . Along
two sides of length L the OBC are applied, whereas two
sides of the length M are subjected to the surface fields
H−

1 (left side, x = 1) and H+
1 (right size, x = L). Further,

we assume that the field at the right side is H+
1 = +1 and

consider two cases for the field at the left side H−
1 = −1, + 1.

We denote the free energy of the system for these cases
F++ and F−+, respectively. The surface magnetization at the
left side of the strip is M−

1 = ∑
j σ1,j , whereas at the right

side of the strip is M+
1 = ∑

j σL,j . Using the temperature
integration method, for H+

1 = |H−
1 | = 1 we can compute free

energies:

βF++(β,L,M) =
∫ β

0
〈E + M−

1 + M+
1 〉β ′,L,Mdβ ′ (46)

and

βF−+(β,L,M) =
∫ β

0
〈E + M−

1 − M+
1 〉β ′,L,Mdβ ′, (47)

where the average 〈. . . 〉 is performed for a given geometry
L × M and inverse temperature β ′. The effective interaction

constant is thus given by

Keff(β,L,M) = 1
2β[F−+(β,L,M) − F++(β,L,M)]. (48)

Our prediction for the effective interaction constant based
on the extended Fisher-Privman theory is given by Eq. (30).
In Fig. 14 we plot MC results [Eq. (48)] for Keff(β,L,M)
for L = 100 and M = 4,6,10,20,30,40 as functions of K in
comparison with the theoretical results predicted by (30). We
observe an excellent agreement between the MC data and the
aforementioned theoretical curve.

E. 2D arrays of cubes

In the same way, we have performed various simulations
of a 2D 10 × 10 array of 3D cubes of edges L0 = 20,
connected by channels of size L × M × M with L = 40 and
M = 2,4,6,10,16. The geometry of the coarse-grained system
is exactly the same, as for the 2D system of Fig. 11, but now
it consists of 3D cubes and is connected by 3D channels. We
have observed that various thermodynamic quantities behave
in the same way as for the 2D system. In Fig. 15 we plot both
the heat capacity and the susceptibility as functions of the
coupling K for L0 = 20 and the channel size 40 × 4 × 4 for
various values of the number of cubesN . As expected, the heat
capacity does not change by increasing the number of cubes of
the network. The magnetic susceptibility exhibits a maximum
whose amplitude increases with N , while its location remains

FIG. 17. Thermodynamic quantities for the 2D array of 10 × 10 cubes of the side L0 = 20 connected (in a periodic way) by channels of
the size L × 4 × 4 as functions of the coupling K: heat capacity C (left panel), magnetic susceptibility χ (right panel).
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FIG. 18. Left panel: the spin-spin correlation function G(x) as a function of the distance x along the center of the channel [line 1 of
Fig. 11(a)], for the 1D array of N = 100 3D cubes of the linear size L0 = 40 (periodically) connected by channels of the size 40 × 4 × 4 for
several values of the coupling K . Right panel: the corresponding values of G(x) at the centers of the cubes.

almost unchanged. We note that contrary to the 2D systems,
the heat capacity C exhibits a small peak at the value of K

which roughly corresponds to the maximum of the magnetic
susceptibility χ .

In Fig. 16 we plot the results for the 2D array of 10 × 10
cubes connected by channels of the size 40 × 4 × 4 for various
cube sizes L0. For small cubes, L0 � 10, the heat capacity
forms a wide graph with two maxima, a sharp one at K � 0.34
(which coincides with the maximum of susceptibility) and
a second, broad one. As we increase L0, the two maxima
merge into a single one which gradually increases and shifts
toward Kc � 0.2216, the critical coupling of the 3D Ising
model. The susceptibility has a single pronounced maximum at
K � 0.34. As we increase L0, the plateau (shoulder) between
this point and Kc is formed. The two-step (or split) transitions
in the specific heat shown in Fig. 16 are analogous to the ones
illustrated in Fig. 2 of [3], corresponding to exact solutions
of the planar Ising model on a strip with a layer of weakened
couplings.

In Fig. 17 we plot the thermodynamic quantities for the 2D
array 10 × 10 of cubes of the side L0 = 20 for various channel
lengths and fixed cross section equal to 4 × 4. We observe that
the small maximum of the heat capacity changes its position
with L in consistence with the behavior of the susceptibility
maxima, the latter move toward smaller values of K as the
channel length L is increased.

Finally, we have computed the spin-spin correlation func-
tion G(x) for the 1D array of 3D cubes as a function of the
distance x along the center of the channel [red solid line in
Fig. 8(a)]. Comparing Figs. 9 and 18 we can conjecture that
the function G(x) in the 1D array of cubes behaves in the same
way as G(x) for the 1D array of squares. The only difference
is the range of couplings K for which the correlations spread
across the whole system: for the 1D array of 3D cubes this
occurs at much smaller values of K (larger temperatures).

V. CONCLUSION

In this paper we have presented in details the theory
and the MC simulations which explain how an Ising-type
system forming a 2D array of boxes connected by narrow
channels can support a long-range order on length scales
much larger than the bulk correlation length. We show that

for a given temperature and width of the 2D channel there
exists a critical length of the latter such that the network
of boxes is ordered when the channels do not exceed that
critical length. Such a theoretical analysis follows from an
effective temperature-dependent coupling constant between
the boxes that we determined analytically and tested against
numerical simulations. Eventually, we have extracted the
phase diagram of the planar network of 2D systems. The
observed cooperative effect follows from the existence of
an emerging length scale that develops inside the connecting
channels and dominates over length scales much larger than
the ones of bulk fluctuations. The Fisher-Privman theory plays
a crucial role in our thinking; for 2D systems we show
how important point tension (the analog of the line tension
in two dimensions) is in considerations of the validity of
this theory, which we subject to a test using the exactly
solvable theory of Ising strips. For the planar network of
3D boxes connected by rods, we have provided only the MC
simulation results. The extension of the Fisher-Privman theory
to this case is a subject of our future work. The cooperative
phenomenon that we have found in our system is analogous to
the one observed experimentally in superfluid 4He [1] and is
a consequence of phase transitions and critical phenomena
in confined geometries. The mechanism for the emerging
action-at-a-distance which we have described should work for
classical binary liquid mixtures at two-phase bulk coexistence,
provided that the surfaces of cells and channels have no
preference for any of the two phases.
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APPENDIX A: DOMAIN WALL FREE ENERGY

In this appendix, we carry out the detailed computation of
(37), making reference to the lattice configuration depicted
in Fig. 6. For the sake of completeness we perform the
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desired computation by following two different routes. This
twofold calculation is actually very instructive as it highlights
interesting mathematical features. The transfer matrix from
edge to edge of the strip, i.e., along the cylinder axis will be
used.3 Thus, we have an underlying translational, or cyclic,
symmetry. The inter-row transfer matrix is the same as used in
Sec. II A [see Eq. (1)]. The intrarow matrix is given by

V2 = exp

(
K2

M∑
m=1

σx
mσ x

m+1

)
, (A1)

where σx
M+1 = σx

1 , as required by the cyclic boundary con-
ditions. The disordered state representing the free boundary,
denoted 0, may be taken as the state with all spins down in the
z direction. Then, the partition function for the strip is

Z = 〈0|(V2V1)N−1V2|0〉. (A2)

The analogous quantity for the modified lattice is given by Z×
where

Z× = 〈0|(V ×
2 V1)N−1V ×

2 |0〉, (A3)

the operator V1 is defined by (1) but notice that we omitted the
factor in front of the exponential. The modified V2 is given by

V ×
2 = exp

(
K2

M−1∑
m=1

σx
mσ x

m+1 − K2σ
x
Mσx

1

)
. (A4)

The key to evaluating Z and Z× is to introduce a symmetrized
transfer matrix in each case and then to use the Jordan-Wigner
transformation to lattice fermions. Define

V ′ = V
1/2

1 V2V
1/2

1 (A5)

and

(V ′)× = V
1/2

1 V ×
2 V

1/2
1 . (A6)

Then, noting that V1|0〉 = eMK∗
1 |0〉, it follows that

Z×

Z
= 〈0|[(V ′)×]N |0〉

〈0|[V ′]N |0〉 . (A7)

The Jordan-Wigner transformation is given by (4) and the
corresponding commutation relations for the lattice Fermi
operators are described in Sec. II A. In terms of lattice
fermions, we then show that

V1 = exp

[
−K∗

1

(
M∑

m=1

2f †
mfm − 1

)]
, (A8)

V2 = exp

[
K2

M−1∑
m=1

(f †
m − fm)(f †

m+1 + fm+1)

− K2PM (f †
M − fM )(f †

1 + f1)

]
, (A9)

3In this appendix M denotes the length of the horizontal edge and
N the strip width; this notation is due to historical reasons. The final
results are obviously covariant under the mutual exchange of K1 with
K2.

but for the term PM in V2 above, both V1 and V2 are expo-
nentials of quadratic forms in fermion operators. Moreover,
[V1,PM ] = 0 and [V2,PM ] = 0. Thus, we can project onto the
invariant subspaces of PM and consider

V2(±) = exp

[
K2

M−1∑
m=1

(f †
m − fm)(f †

m+1 + fm+1)

∓ K2(f †
M − fM )(f †

1 + f1)

]
, (A10)

and V ′(±) = V
1/2

1 V2(±)V 1/2
1 . Then, using PM |0〉 = |0〉 the

required ratio of partition functions becomes

Z×

Z
= 〈0|[V ′(−)]N |0〉

〈0|[V ′(+)]N |0〉 . (A11)

The evaluation of (A11) can be carried out with the technique
of [10], where one uses lattice Fourier transformation

F (k) = M−1/2
M∑

m=1

e−ikmfm, (A12)

with momenta k restricted in two different sets depending on
eikM = ∓1. Consideration of the translational symmetry of the
original lattice Pauli spin operators makes the occurrence of
these curious periodic and antiperiodic momenta reasonable.
Then, by bringing in the pairing ideas of Nambu [14] and of
Anderson [13], the above quotient can be evaluated as a ratio
of products

Z×

Z
=

M∏
j=1

{
gN [(2j − 1)π/M]

gN [2(j − 1)π/M]

}1/2

, (A13)

with the 2π -periodic function gN (k) defined by

gN (k) = cosh Nγ (k) + sinh Nγ (k) cos δ′(k). (A14)

The detailed derivation of (A13) from (A11) is not reported
here but it can be carried out using the formalism developed
in Ref. [29]. The functions γ , δ′, and δ∗ were introduced by
Onsager as elements of a hyperbolic triangle in the Beltrami-
Poincaré unit disk version of non-Euclidean geometry:

cosh γ (k) = cosh 2K∗
1 cosh 2K2 − sinh 2K∗

1 sinh 2K2 cos k,

cosh 2K∗
1 = cosh 2K2 cosh γ (k)

− sinh 2K2 sinh γ (k) cos δ∗(k), (A15)

cosh 2K2 = cosh 2K∗
1 cosh γ (k)

− sinh 2K∗
1 sinh γ (k) cos δ′(k).

These are the hyperbolic cosine formulas for the Onsager
hyperbolic triangle [16], which should be supplemented by
the hyperbolic sine formulas

sin δ∗(k)

sin 2K∗
1

= sin δ′(k)

sin 2K2
= sin k

sinh γ (k)
. (A16)

These formulas are extremely useful for simplifying expres-
sions, as should become apparent. The evaluation of the ratio
of products may be made by first exponentiating (A13): then
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π−π

−

FIG. 19. The integration contour C in the complex k plane. The
vertical lines have Re(k) = π [1 + 1/(4M)] and Re(k) = −π [1 −
1/(4M)], so that they pass between zeros of eikM = ±1, and π is
inside the contour, but not −π . Note that gN (k) is even in k and there
is 2π periodicity. Thus, the side line contributions cancel.

we have

Z×

Z
= exp

⎡⎣1

2

M∑
j=1

{ln gN [(2j − 1)π/M]

− ln gN [2(j − 1)π/M]}
⎤⎦. (A17)

In order to use summation kernels to evaluate this difference as
a contour integral, we need the analytic properties of gN (k) and,
of course, its zeros and poles. The branch cuts from sinh γ (k)
in (A14) do not contribute. Evidently, for k ∈ R, gN (k) > 0
and, moreover, this property extends to an interval |Im(k)| < ε,
ε < γ̂ (0) where γ̂ is defined by analogy with γ but with K1

and K2 interchanged. Then, we can write

Z×

Z
= exp

[
1

2

1

2πi

∮
C

dk iM

×
(

1

eikM − 1
+ 1

eikM + 1

)
ln gN (k)

]
, (A18)

where the contour C is shown in Fig. 19.
Simplifying this gives

Z×

Z
= exp

[
M

4πi

∮
C

dk
1

sin Mk
ln gN (k)

]
. (A19)

Using the even character of ln gN (k), this may be written as

Z×

Z
= exp

[
M

π

∫ π+iε

−π+iε

dk
eiMk

1 − e2iMk
ln gN (k)

]
; (A20)

we now expand the integrand using the geometric series,
reorder summation, and integration by standard theorems to
get

Z×

Z
= exp

⎡⎣ ∞∑
j=0

M

π

∫ π+iε

−π+iε

dk ei(2j+1)Mk ln gN (k)

⎤⎦.

(A21)

Now, integrate by parts

Z×

Z
= exp

[
−

∞∑
j=0

1

2j + 1

1

πi

∫ π+iε

−π+iε

dk ei(2j+1)Mk g′
N (k)

gN (k)

]
.

(A22)
The remaining part of the evaluation is to find the zeros of
gN (k). Introducing the conformal transformation k = iγ̂ (u)
rather conveniently does this since

gN [iγ̂ (u)] = cos Nu + sin Nu

sin u

cosh 2K∗
1 cos u − cosh 2K2

sinh 2K∗
1

.

(A23)

The problem of evaluating zeros of gM [γ̂ (u)] can then be
reduced to finding the solutions of

e2iNu = e2iδ̂∗(u), (A24)

where the angle δ̂∗ is derived from δ∗ by interchanging K1 and
K2. Of particular interest is the subcritical region. If N < κ ,
with κ ≡ dδ̂∗(ω)/dω|ω=0, there are N real solutions uj , j =
1, . . . ,N , such that for each such j there is a solution in the
open interval (π (j − 1)/N,πj/N ). We now select the zeros
of gN (k) in the upper half plane, and get

Z×

Z
= exp

⎡⎣−
N∑

�=1

∞∑
j=0

2

2j + 1
e−(2j+1)Mγ̂ (u�)

⎤⎦, (A25)

the sum can be identified and carried out explicitly, giving

Z×

Z
=

N∏
�=1

tanh

[
Mγ̂ (u�)

2

]
. (A26)

On the other hand, if N > κ and, of course K∗
1 < K2 there is

a single imaginary solution for u in the upper half plane. What
is happening is that two solutions ±u1 for N > κ (if u is a
solution, then so is −u) coalesce at the origin when N = κ

and then go onto the imaginary axis as ±iv1, for N > κ , a
bifurcation phenomenon, with

γ̂ (iv1) = 2 sinh 2K∗
2 sinh γ (0) e−Nγ (0) + O(e−2Nγ (0)).

(A27)

We then find the asymptotic form (37). The reader who is
acquainted with the classical results of [10] would more than
likely choose the above method to evaluate the domain wall
weight w.

Another derivation follows, one which makes the origin of
the product of hyperbolic tangents, the function γ (u), and the
particular choice of the uj clearer, that is, one which makes the
physical origin of the structure more obvious. If we consider
transfer along the strip as in Fig. 2, that is, exactly what took
us to the formula for the pair correlation function for spins in
the edge of a strip, we have

Z×

Z
= Tr[(V ′)NPM ]

Tr[(V ′)N ]
(A28)

and

Z×

Z
=

∏
k

tanh

[
Nγ (k)

2

]
. (A29)
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Here, we have

V1 = exp

[
−K∗

1

M∑
m=1

(2f †
mfm − 1)

]
, (A30)

V2 = exp

[
K2

M−1∑
m=1

(f †
m − fm)(f †

m+1 + fm+1)

]
. (A31)

Notice the range of summation in V2, as required by the free-
edged strip. Now, it turns out that symmetrized form V can be
diagonalized [8] in the form

V = exp

{
−
∑

k

γ (k)[X†(k)X(k) − 1/2]

}
. (A32)

The {X(k),X†(k)} are Fermi operators with vacuum |�〉 which
therefore satisfies X(k)|�〉 = 0; moreover, PM |�〉 = |�〉.
Since we have

PMX†(k1) . . . X†(kn)|�〉 = (−1)nX†(k1) . . . X†(kn)|�〉,
(A33)

and nk = X†(k)X(k) is the density operator, it follows that

Z×

Z
=

∏
k

∑1
nk=0[e−[Nγ (k)+iπ]nk ]∑1

nk=0[e−Nγ (k)nk ]
, (A34)

and thus (A29) follows, where the k are given by

e2iMk = e2iδ∗(k). (A35)

This is exactly as we have derived in (37), (38), and (39),
provided one remembers to interchange the Kj , j = 1,2, and
also N and M [compare (A29) and (A26)].

Finally, we show how to prove the positiveness of the point
tension. Given that for any subcritical temperature K2 < K∗

1 ,
the surface tension τ of the an interface running along the
axis of Fig. 6 obeys the inequality τ = γ (0) = 2K2 − 2K∗

1 <

2K2. Therefore, it follows that sinh τ < sinh 2K2, but since
sinh 2K2 sinh 2K∗

2 = 1, the argument of the logarithm of (39)
is strictly positive and less than one, and consequently τp > 0.

APPENDIX B: ASYMPTOTIC DEGENERACY

The transfer matrix acting parallel to the strip axis (see
Fig. 2) has a unique maximal eigenvector |�〉 with eigenvalue

�0, which is also the vacuum for Fermi creation operators
X(k): X(k)|�〉 = 0. For T < Tc and a strip width M satisfying
M > dδ∗(ω)/dω|ω=0, we have a mode with a purely imaginary
wave number, excited by the creation operator X†(iv). Its
eigenvalue is �0 eγ (iv). So from (A27), it is asymptotically
degenerate4 with |�〉. Now, |�〉 is strictly nondegenerate
for M < ∞. Since [V,PM ] = 0, |�〉 must be simultaneous
eigenvector of PM , so since P 2

M = 1,

PM |�〉 = ±|�〉. (B1)

In fact, PM |�〉 = |�〉. Because PMσx
1 PM = −σx

1 we find

〈�|σx
1 |�〉 = 0. (B2)

Thus, there is never long-range order in a strip of finite
width. Equally well, we have 〈�|X(iv)σx

1 X†(iv)|�〉 = 0. On
examining (22) in the limit M → ∞, we see that the first term
no longer decays to zero as n → ∞; in fact, it decays to m2

e .
This is because the emergent length scale in (22), namely,
ξ = eMγ̂ (0)/[2 sinh γ̂ (0) sinh 2K∗

1 ], diverges as M → ∞. The
second term becomes an integral and displays a correlation
length 1/γ (0); thus, it vanishes in the “limit” of mesoscale
modeling. It is natural to specify putative ordered states (which
are not eigenstates of V ) as

|±〉 = 2−1/2[1 ± X†(iv)]|�〉, (B3)

which evidently have the property PM |±〉 = |∓〉. The edge
magnetization for |+〉 is

〈+|σx
1 |+〉 = Re〈�|σx

1 X†(iv)|�〉. (B4)

In this connection, there is an analogous formulation for the
spontaneous magnetization of the bulk. The evaluation of
the associated matrix element in that case is a true tour de
force, carried out by Yang [30]. The eigenvectors for k = iv

are obtained by noting this substitution in (16) and (17). The
resulting mode is indeed a surface state in the Fermi lattice
language.

4We refer the interested reader on the phenomenon of asymptotic
degeneracy to [6].
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