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Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and
epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the
individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a
generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system
is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one
system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover,
the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects
are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the
coupling between the two coupled parts of the experiment. In addition, our results show that the probability of
switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering
the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted
noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.
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I. INTRODUCTION

Understanding the interaction between noise and system
dynamics is key to understanding unexpected system behaviors
[1,2], and hence to robust and efficient operation of au-
tonomous systems deployed in noisy, uncertain environments.
It is often assumed that dynamics with small noise input can
be modeled as small perturbations of the deterministic system
dynamics; however, there are many known cases in which
small noise inputs can drive large-scale transitions in system
behavior. Examples include noise-induced switching between
attractors in continuous systems [3–13], and noise-induced
switching and extinction in finite-size systems [14–21].

In both switching and extinction, a significant change in the
state of the system occurs as the result of a noise-induced large
fluctuation. For systems with small noise, such a large fluctu-
ation is a rare event, and it occurs on average when the noise
signal lies along a so-called “optimal path” [22]. For systems
operating in most common environments, noise is assumed
to be homogeneous, and it is relatively straightforward to
compute the optimal paths that lead to large fluctuations [23].

In contrast to homogeneous noise, finite systems, whether
continuous or discrete, are often subject to asymmetric noise
[24,25]. One excellent example of multiple independent noise
sources occurs in coupled finite communicating systems oper-
ating in noisy environments [26], where the effects of noise on
the collective motions of swarms of self-propelled autonomous
agents result in drastic pattern changes. Such systems are
of tremendous practical importance; coordinated groups of
agents have been deployed for a wide range of applications,
including exploration and mapping of unknown environments
[27–31], search and rescue [32,33], and construction [34].
Extensions to the basic swarming dynamics by using teams of
heterogeneous agents capable of cooperatively executing more
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complex tasks are presented in [35,36]. In addition, network
structure and uncertainties in delay communication have been
shown to give rise to dynamic patterns in collective swarm
motion [37,38].

Usually, sophisticated models are used to predict behavioral
patterns for large groups of interacting individual agents [39–
42]. However, testing these behaviors in real-world environ-
ments often presents significant logistical challenges. In many
cases, it is more practical to rely on mixed-reality experiments
(similar to ideas in [43]), where real agents are deployed along-
side simulated ones, in order to better understand how real-
world noise affects the collective dynamics, as well as validate
the theory against a critical number of agents [37]. This creates
a situation in which we have two coupled systems with asym-
metric noise characteristics: the set of real agents, operating in
a high-noise real-world environment, and the simulated agents,
operating in an (at least partly) idealized simulated world. Our
current paper is inspired by this situation; we consider a generic
pair of coupled dynamical systems, and we study the effects
of interaction on switching in the low-noise system.

As shown, e.g., in [44], even weak coupling between system
dynamics can significantly affect the behavior of the coupled
systems. We show that even weak interaction between a low
noise, or noise-free, simulated system and a noisy “real” sys-
tem can cause catastrophic transitions between states. That is to
say, even if only part of the system operates in noisy real-world
conditions, we can observe large changes in the dynamics of
the idealized, low-noise virtual part, since noise is transmitted
from the real to the virtual world via coupling. Since one of our
main results shows how the probability exponent is enhanced
by the ratio of two noise sources, we refer to the state transitions
induced in the noise-free virtual system by coupling with the
noisy real-world system as extreme rare events.

The rest of the paper is laid out as follows. In Sec. II we de-
fine the general asymmetric noise problem for coupled systems
(which include MR systems). Gaussian noise is considered
here, but the theory can be made more general to include
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FIG. 1. Experimental setup with a virtual swarm of agents. The
real robots operate in a laboratory testbed. The positions of the real
and simulated agents are passed to the virtual swarm simulator, which
models the response of the virtual swarm agents to the current swarm
configuration; and to the controller, which computes the real robot
response and passes target velocities to the real swarm agents. The
agents use internal proportional-integral-derivative (PID) controllers
to achieve the target velocities.

non-Gaussian perturbations [45] and correlations [23,46].
Noise-induced large fluctuations are posed in a variational
setting for the coupled problem. Linear response to the noise
is derived in general. In Sec. III, we consider a model problem
of coupled bistable attractors subjected to asymmetric noise.
For the specific problem, we compare our theory to Monte
Carlo simulations, and we derive scalings as a function of the
heterogeneity of the noise. We derive a general scaling relation
between the noise ratio and the coupling strength that governs
the mean probability to switch. To quantify the extreme
rare event of the low-noise system switching, we derive the
exponent of the probability distribution, and we show that this
exponent varies as the inverse noise ratio squared. Compar-
isons between our general theory and numerical experiments
of such large fluctuation events show excellent agreement. A
discussion of the results and conclusions are given in Sec. IV.

II. PROBLEM SETUP IN GENERAL

The problem formulation described here is motivated by the
mixed-reality system shown in Fig. 1. In this setup, the physical
agents operate in an uncertain, noise-ridden environment,
which imposes a larger noise source on all of the agents.
In contrast, the virtual agents are isolated from any real
environmental perturbations, and they experience only the
noise modeled in the simulation. We let the time-dependent
vectors x, y denote the state-space configurations of agents
operating in virtual and real environments, respectively.

We wish to examine the situation in which there is a
significant asymmetry in the noise characteristics of the two
coupled systems, particularly where the noise intensity in the
low-noise (“virtual”) system goes to zero.

A. The stochastic equations of motion

To analyze how noise impacts the dynamics from one
environment to another, we consider a general coupled

stochastic differential equation of the form

ẋ(t) = f (x(t)) + h1(x(t), y(t),K) + εG1(x(t))ξx(t), (1a)

ẏ(t) = f ( y(t)) + h2(x(t), y(t),K) + G2( y(t))ξ y(t), (1b)

where x ∈ Rnx and y ∈ Rny represent the state-space con-
figurations of the low- and high-noise systems, respectively,
and the matrices Gi , i = 1,2 [47] are given by Gi(x(t)) =
diag{gi1(x(t)),gi2(x(t)), . . . ,gini

(x(t))}, where the gij ’s are
general nonlinear functions. Coupling strength is denoted
by the parameter K , and we choose h1, h2 so that
h1(x(t), y(t),0) = h2(x(t), y(t),0) = 0, i.e., the systems x, y
are uncoupled when K = 0.

We assume that the noise inputs ξ x ∈ Rnx and ξ y ∈ Rny are
independent Gaussian-distributed stochastic processes with
independent components, and intensity D. They are both
characterized by a probability density functionalPξ = e−Rξ /D ,
where Rξ is defined as

Rξ [ξ (t)] = 1

4

∫
dt dt ′ ξ (t)ξ (t ′). (2)

To capture the asymmetric noise levels between the two
systems, we introduce a parameter, ε � 1, that controls
the noise intensity of the state variable x. The case ε = 0
corresponds to noise-free operation. However, even with ε =
0, noise-induced transitions can still occur as a result of noise
transference through the coupling with the high-noise system.

B. Deterministic dynamics

In the absence of any noise, Eqs. (1) are ordinary differential
equations, and we suppose that there exist steady states that
depend on the coupling strength, K . We therefore assume that
there exists an attracting equilibrium, (xa(K), ya(K)), and at
least one saddle equilibrium point, (xs(K), ys(K)).

The stationary states satisfy

f (xa) + h1(xa, ya,K) = f (xs) + h1(xs , ys ,K) = 0, (3a)

f ( ya) + h2(xa, ya,K) = f ( ys) + h2(xs , ys ,K) = 0. (3b)

The stability of the equilibrium states is given by the linear
variational equations of motion about that state:

Ẋ(t) = M(x̄, ȳ,K)X(t), (4)

where x̄, ȳ denote either xa, ya or xs , ys , and

M(x̄, ȳ,K) =
[

∂f(x̄)
∂x

+ ∂h1(x̄, ȳ,K)
∂x

∂h1(x̄, ȳ,K)
∂y

∂h2(x̄, ȳ,K)
∂x

∂f( ȳ)
∂y

+ ∂h2(x̄, ȳ,K)
∂y

]
.

The matrixM(x̄, ȳ,K) evaluated at the saddle point is assumed
to have only one positive real eigenvalue (associated with an
unstable direction in the space of dynamical variables), while
the rest of the eigenvalue spectrum lies on the left-hand side of
the complex plane. In particular, we assume that for all values
of interest K , the saddle point lies on the basin boundary of the
attractor. The generic switching scenario occurs for arbitrarily
small noise when the dynamics in one basin approaches the
stable manifold of the saddle point, which guides the dynamics
to the saddle. Once in the neighborhood of the saddle point,
noise may cause the switch from one basin to another along the
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direction of the unstable manifold associated with the unstable
eigenvalue.

When noise is added to the system, we wish to compute
the probability of escaping from the basin of attraction of
attractor (xa, ya). The asymmetry of the noise between the
virtual and real agents is controlled by ε, which scales the
noise intensity of x. Computing the probability of escape in
the small noise limit implies that we compute the most likely
paths that cross the basin boundary of the attractor at the saddle
point (xs , ys). In describing the effect of how noise bleeds into
the virtual world from the real world, we want to measure
noise-induced changes that are large in the dynamics of the
state of x while y remains approximately stationary, i.e., y does
not change as much as x. Thus, in the presence of noise, we
are interested in describing how the most likely path develops
when xa(K) changes its position much more than ya(K). To
focus on this case, we assume that, when noise and coupling are
both 0, xa(0) lies in a different part of phase space than ya(0).
Correspondingly, we also assume that ||xa(K) − xs(K)|| �
|| ya(K) − ys(K)||, while || ya(K) − ys(K)|| � 1 given that
the equilibria depend smoothly on the coupling strength K .
We note, however, that these assumptions do not affect the
general theory, and our methods could be equally well applied
if these assumptions were dropped.

C. The variational formulation of noise-induced escape

For a given coupling K , we wish to determine the path
with the maximum probability of noise-induced switching
from the initial attracting state (xa(K), ya(K)) to another

(xb(K), yb(K)), where the initial and final states are equilibria
of the noise-free versions of Eq. (1). Each attractor possesses
its own basin of attraction, and therefore on average, small
noise is expected to induce small fluctuations about the stable
equilibria. However, sometimes the noise will organize itself in
such a way that a large fluctuation occurs, allowing escape over
the effective energy barrier away from the stable equilibrium.
If the fluctuation is sufficiently large to bring the system state
close to the saddle point, there is a possibility of switching.
Near the saddle point, depending on the sign of the projection
of the local trajectory onto the unstable manifold of the positive
eigenvalue, the system will approach one or the other attractor.
Switching occurs once the trajectory enters a different basin
of attraction from the one where it started.

We assume the noise intensity D is much smaller than the
effective barrier height, and that the scaling on the noise input
ε satisfies 0 � ε < 1. Note that the noise terms (ξ x,ξ y) are
formally the time derivative of a Brownian motion, sometimes
referred to as white noise [48].

For D sufficiently small, we make the ansatz that the
probability distribution of observing such a large fluctuation
scales exponentially as the inverse of D [3,23],

Px = e−R/D, (5)

where

R(K) = min
(x, y,ξ x ,ξ y ,λ1,λ2)

R(x, y,ξ x,ξ y,λ1,λ2; K) (6)

and

R(x, y,ξ x,ξ y,λ1,λ2; K) = Rξ x
[ξ x(t)] +Rξ y

[ξ y(t)] +
∫ ∞

−∞
dt λ1(t) · [ẋ(t) − f (x(t)) − h1(x(t), y(t),K) − εG1(x(t))ξ x(t)]

+
∫ ∞

−∞
dt λ2(t) · [ ẏ(t) − f ( y(t)) − h2(x(t), y(t),K) − G2( y(t))ξ y(t)]. (7)

We will see later that the Lagrange multipliers, λ1,λ2, also
correspond to the conjugate momenta of the equivalent
Hamilton-Jacobi formulation of this problem [49]. Similar
to classical mechanics, the exponent R of Eq. (5) is called
the action, and it corresponds to the minimizer of the action in
the Hamilton-Jacobi formulation that occurs along the optimal
path [46]. This path will minimize the integral of Eq. (7), and
it is found by setting the variations along the path δR to zero.
The transition rate exponent is proportional to the action, R.

When computing the action, the boundary conditions
are important, especially since in general they depend on
the parameters of the problem. Therefore, we suppose that
dynamics starts near the attractor (xa, ya). Small fluctuations
will on average remain in the basin of the attractor until at
some point in time the dynamics hits the saddle point, (xs , ys).
Thus, we have the boundary conditions given by

lim
t→−∞ (x(t), y(t)) = (xa(K), ya(K)), (8)

lim
t→∞ (x(t), y(t)) = (xs(K), ys(K)). (9)

To examine the structure of the Hamiltonian governing
the large fluctuations, we take the variational derivative of

R(x, y,ξ x,ξ y,λ1,λ2; K) with respect to the noise sources, ξ i

(where i = x, y). Setting the derivative equal to 0 gives

ξx = 2εG1(x)λ1, (10)

ξ y = 2G2( y)λ2. (11)

The full set of equations of motion is then derived by taking
the variational derivatives with respect to the state variables
and their corresponding momenta:

ẋ = f (x) + h1(x, y,K) + 2ε2G2
1(x)λ1,

λ̇1 = −ε2G1(x)
∂G1(x)

∂x
λ1λ1 − ∂[ f (x) + h1(x, y,K)]

∂x
λ1

− ∂[h2(x, y,K)]

∂x
λ2,

ẏ = f ( y) + h2(x, y,K) + 2G2
2( y)λ2,

λ̇2 = −G2( y)
∂G2( y)

∂ y
λ2λ2 − ∂[ f ( y) + h2(x, y,K)]

∂ y
λ2

− ∂[h1(x, y,K)]

∂ y
λ1. (12)
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The full Hamiltonian is derived by substituting the ansatz
in Eq. (5) into the appropriate Fokker-Planck equation and
dropping terms of order higher than 1/D, which results in a
Hamilton-Jacobi equation with a Hamiltonian,

H = [
ε2G2

1(x)λ1
] · λ1 + [

G2
2( y)λ2

] · λ2

+λ1 · [ f (x) + h1(x, y,K)]

+λ2 · [ f ( y) + h2(x, y,K)]. (13)

One immediate observation from Eq. (12) is that from the
conjugate variables, (λ1,λ2) ≡ (0,0) is an invariant manifold.
Moreover, for the system to remain at the equilibria, in Eq. (12)
the conjugate variables must vanish. (Here, we assume that
multiplicative noise functions do not vanish at the equilibria.)
Although the action is in the exponent of the distribution, the
conjugate momenta act as an effective control force that pushes
the system along the most likely path from the attractor to the
saddle point. From Eqs. (10) and (11), it is therefore clear that
the noise must be related to a large fluctuation governed by
the conjugate variables in the system. Since at the equilibrium
points of the attractor or saddle the noise does not contribute
to the exponent of the distribution, we assume that the other
boundary conditions at equilibrium points for λi are

lim
t→±∞ (λ1(t),λ2(t)) = (0,0). (14)

Locating and computing the most likely, or optimal, path
for basin escape revolves around computing the solution to the
two-point boundary value problem consisting of Eqs. (12) and
the boundary condition Eqs. (14) and (9). However, one must
check the local stability of the equilibria at the boundaries.
It can be shown that if the attractor and saddle points in
the deterministic system are hyperbolic, then the full set of
conservative equations of motion will have saddle points at
the boundaries. That is, both the deterministic attractors and
saddles will appear as saddles in the Hamiltonian formulation
[46]. A fairly general proof in finite dimensions as well as
a useful general method of computing the solutions for the
optimal path can be found in [50].

Finally, we note that once we have the optimal path
satisfying the variational problem above, the switching rate
from one attractor to the other is given to logarithmic accuracy
by

W = C exp

(
− R

D

)
, (15)

where C is a constant and R is given by Eq. (6).

D. Perturbation of variation

Because the optimal-path equations are in general nonlin-
ear, solving them analytically is unrealistic. However, in the
case in which the coupling constant K is small, we can use
perturbation theory, assuming that the variational trajectories
remain close to the corresponding trajectories for K = 0. Even
though the measured perturbation terms will be small, they
affect the exponent of the distribution, and since the action
is divided by a small intensity, D, even a small change in
the action could have a large effect on the density and mean
switching times.

Assuming the terms in the vector field of Eq. (12)
are sufficiently smooth, we suppose the coupling terms
(h1(x, y,K),h2(x, y,K)) may be expanded in terms of K as

h1(x, y,K) = Kĥ1(x, y) + O(K2), (16)

h2(x, y,K) = Kĥ2(x, y) + O(K2). (17)

Using Eq. (17), we can write, to first order in K ,

R(x,ξ , y,ξ ,λ1,λ2; K) = R0(x,ξ , y,ξ ,λ1,λ2)

+KR1(x,ξ , y,ξ ,λ1,λ2), (18)

where

R0(x,ξx, y,ξ y,λ1,λ2) = Rξx
[ξ x(t)] + Rξy

[ξ y(t)] (19)

+
∫ ∞

−∞
dt λ1(t) · [ẋ(t) − f (x(t)) − εG1(x(t))ξx(t)] (20)

+
∫ ∞

−∞
dt λ2(t) · [ ẏ(t) − f ( y(t)) − G2( y(t))ξ y(t)] (21)

and

R1(x,ξx, y,ξx,λ1,λ2) = −
∫ ∞

−∞
dt[λ1(t) · ĥ1(x(t), y(t))

+λ2(t) · ĥ2(x(t), y(t))]. (22)

The first-order correction to the action can be found by first
finding the solution (x0,ξx

0, y0,ξ y
0,λ1

0,λ2
0) that minimizes

R0(x,ξx, y,ξ y,λ1,λ2). We then explicitly evaluate the integral
in Eq. (22) at the zeroth-order minimization. We note that
higher-order terms may be found by applying standard
perturbation theory to the equations of motion and boundary
conditions directly, or we may use the general distribution
theory [51] to get the next order in K , which we do below.

The Hamiltonian for the variation of the action R0 of the
uncoupled system is given by

H 0 = ε2
[
G2

1(x0)λ0
1

] · λ0
1 + [

G2
2( y0)λ0

2

] · λ0
2

+λ0
1 · f (x0) + λ0

2 · f ( y0). (23)

The structure of Eq. (23) is such that the total action is
just the sum of the action of the x and y variables since
K = 0. In addition, the initial and final states for K = 0 are
given for the attractor (x0

a, y0
a) and saddle (x0

s , y0
s ). Since we

are interested in moving x through a large fluctuation while
holding y approximately constant, when uncoupled the initial
states satisfy x0

a 	= y0
a , while y0

s = y0
a , the latter assuming no

movement in y.
The effect of the noise-reducing parameter on the action

is now evident from the equations of motion derived from
Eq. (23). The total action is just the sum of the x and y
actions, R0[x],R0[ y], respectively. Moreover, since there is
no movement in y, R0[ y] ≡ 0. Assuming the multiplicative
noise term is nonsingular, the resulting uncoupled action is
therefore given by

R0[x] = − 1

ε2

∫ xs

xa

[
G2

1

]−1
f (x)dx. (24)

The expected effect of the parameter ε is evident in that the
action scales as 1

ε2 . The fact that the action is in the exponent of
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the distribution means that the exponent should scale as 1
ε2D

,
which will make the probability of x transitioning through
a large fluctuation conditioned on y staying approximately
constant a very rare event.

Notice that we can also consider how y switches while
keeping x approximately constant by changing the boundary
conditions. In this case, the switching rate is much higher since
the exponent of the switching rate scales as 1

D
.

To see how such a rare event explicitly comes about, we
consider the following generic bistable situation.

III. A MODEL EXAMPLE OF MIXED REALITY
NOISE-INDUCED PERTURBATIONS

For clarity, we now give an example of noise-induced
switching in a generic coupled system where the individual
components are affected by different scales of noise. Consider
two coupled particles interacting in a double-well potential,
U (x). One particle represents a simulated robotic agent,
while the other represents the real-world robot that interacts
with the simulation. The two-particle system is used because
it is sufficiently complex to illustrate our argument while
remaining simple enough to be understood analytically. Our
approach follows the general theory of switching in the
previous section, but for purposes of analysis we consider
the following symmetric double-well potential:

U (x) = x4

4
− x2

2
. (25)

In the absence of coupling, the resulting motion of a single
particle is described by dx

dt
= f (x) = − dU (x)

dx
. Now suppose

that the (x,y) particles are coupled with a spring potential
[37], and a white Gaussian noise ξx,ξy is assumed to act on
each particle independently. Let x and y denote the positions
of particles 1 and 2, respectively. Their equations of motion
are then

ẋ = f (x) − K(x − y) + εξx, (26a)

ẏ = f (y) + K(x − y) + ξy. (26b)

We assume that E[ξx(s)ξy(t)] = 2Dδ(t − s)δ(x − y),
where D � 1 is the noise intensity, and ε satisfies the
hypotheses in the previous section.

A. The deterministic picture

Consider the noise-free system obtained by setting ξx ≡
0,ξy ≡ 0 in (26). The system has an effective potential
V (x,y; K) given by

V (x,y; K) = −1

2
x2 + 1

4
x4 − 1

2
y2 + 1

4
y4

+ 1

2
K(x − y)2. (27)

The topology of the equilibria for K = 0.1 is pictured in Fig. 2.
The system has stable equilibria at (x,y) = (−1, − 1)

and (1,1). The equilibrium solution (x,y) = (0,0) is unstable
for K < 1/2 and a saddle point for K > 1/2. For K �
1/2, the symmetric configuration about 0, with (x,y) =
(±√

1 − 2K, ∓ √
1 − 2K), is stable for K ∈ [0,1/3) and a

x

y
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FIG. 2. A contour plot of the potential function V (x,y; 0.1).

saddle point for K ∈ (1/3,1/2]. As K → 1/2−, this solution
approaches the unstable equilibrium at (0,0). The solutions
collide at K = 1/2, resulting in a saddle point at (0,0).

The system has four additional equilibria, defined by

(x,y) =
(

ζ,
ζ

K
(ζ 2 + K − 1)

)
, (28)

where ζ is a root of

ζ 4 + (K − 1)ζ 2 + K2 = 0. (29)

Solutions exist for K ∈ [0,1/3]; the corresponding equilibria
are saddle points. A plot of the equilibria for this system for
different K is shown in Fig. 3.

0 0.1 0.2 0.3
−1

−0.5

0

0.5

1

K

ζ

FIG. 3. Values of zeros of the deterministic vector field as a
function of the coupling strength K . The solid black lines denote
solutions to the exact expression in Eq. (28), showing the location of a
saddle point (xs,ys) of the system. Dashed lines denote the asymptotic
approximate of the saddle point location for K � 1. Solid colored
lines denote the location of the attractor (xa,ya). Blue and red are
used to denote the positions of x̄ and ȳ, respectively, where x̄ = xa

or xs and ȳ = ya or ys .
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B. Switching

When adding noise into the system, it is possible to
observe noise-induced switching between stable equilibria
of the noise-free system. Here we will derive the most
likely noise-induced switching paths starting from the stable
symmetric configuration where the particles are located in
separate basins; x then experiences a large fluctuation and
transitions to the basin occupied by y. In the small-noise
limit, the most likely path passes through a saddle point of
the noise-free system. In the following analysis, we therefore
compute the optimal switching path from the initial system
configuration to the saddle point; the remaining transition
from the saddle to the final stable configuration occurs much
more rapidly, since it is dominated by the deterministic
dynamics.

For sufficiently small noise intensity D, the switching
dynamics can be described using the Hamiltonian formulation
of Eq. (12), where we extend the system to four dimensions
by adding in conjugate momenta (λ1 and λ2), and we set the
multiplicative noise terms to the identity:

ẋ = f (x) − K(x − y) + 2ε2λ1, (30a)

ẏ = f (y) + K(x − y) + 2λ2, (30b)

λ̇1 = −[f ′(x) − K]λ1 − Kλ2, (30c)

λ̇2 = −[f ′(y) − K]λ2 − Kλ1, (30d)

with the corresponding Hamiltonian

H(x,y,λ1,λ2) = [f (x) − K(x − y)]λ1

+ [f (y) + K(x − y)]λ2 + λ2
2 + ε2λ2

1.

(31)

Note that H(x∗,y∗,0,0) = 0 for all (x∗,y∗) in the set of
equilibria of (26). SinceH is time-invariant, optimal switching
paths between equilibria are required to satisfy a two-point
boundary problem on the zero-level sets of H = 0 in order to
compute the action.

We use the numerical approach described in [50] to compute
the optimal path starting at (xa,ya) = (

√
1 − 2K,−√

1 − 2K)
for t → −∞ and passing through the saddle point
given by (xs,ys) = (ζ,

ζ

K
(ζ 2 + K − 1)) ≈ (K + K2/2, − 1 +

2K + 5K2/8) as t → ∞, where 1/
√

3 < ζ < 1, and K � 1.
An example of such a path is shown in Fig. 4.

In Eqs. (30), consider the limit K → 0. The particle
motions are uncoupled, and the situation is equivalent to a
single-particle switching problem. In this case, it is possible
to find an analytic solution in time explicitly, and to make use
of the general perturbation theory. From Eq. (24), we know
that for nonzero ε, the zeroth-order term of the action scales
inversely with ε2, and in fact it is given by

R0 = 1

4ε2
, (32)

where we have used the fact that from the Hamiltonian,
the optimal path when K = 0 is given explicitly by λ0

1 =
− 1

ε2 f (x0).
To get the first-order corrections, we need the solution to

the two-point value problem along the zeroth-order optimal

0 0.2 0.4 0.6 0.8 1
x

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

y

FIG. 4. The potential function Eq. (27) for K = 0.0209 for the
zero-noise case. Overlaid is the predicted optimal path (red line)
computed when ε = 1

2 . For the boundary conditions chosen, x

starts near 1 and goes through a large fluctuation, while y remains
approximately stationary near −1.

path as a function of time:

x0(t) = 1√
1 + e2t

, (33a)

y0(t) = −1, (33b)

λ0
1(t) = − e2 t

(1 + e2 t )3/2ε2
, (33c)

λ0
2(t) = 0. (33d)

Notice that as t → ±∞, we have the following boundary
conditions satisfied for (x0(t),λ0

1(t)) while holding (y0 ≡
−1,λ0

2 = 0) constant:

lim
t→−∞ lim

t→∞

x0(t) → x0
a = 1 x0(t) → x0

s = 0, (34a)

λ0
1(t) → 0 λ0

1(t) → 0. (34b)

Using the zeroth-order time series in the first-order expres-
sion of the action gives, to linear order in K ,

R = 1

4ε2
− K

3

2ε2
. (35)

C. Second-order effects

We can get the second-order effects of the coupling strength
K on the action by considering the potential function of
Eq. (27), and by using the general results of computing the
probability of escape for Gaussian noise in [51]. However,
the approach here is one that will be problem-specific.
We choose to formally examine the Hamiltonian in Eq. (31),
and notice that y and its conjugate momenta remain approx-
imately near the attractor. Therefore, we use the asymptotic
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0 0.5 1
−0.1

0

0.1

 L

λ 2

FIG. 5. Trajectory projections of the optimal path where time is
rescaled to be arc length, L, along the trajectory. Shown are trajectories
for x,y and their conjugate variables λ1,λ2. The parameters used are
ε = 0.5 and K = 0.08.

expression of the attractor and saddle, in the limits of Eq. (22),

R1 =
∫ ∞

−∞
dt[λ1(t) · ĥ1(x(t), y(t))

+λ2(t) · ĥ2(x(t), y(t))]

= −
∫ ∞

−∞
dt

f (x0(t)

ε2
[x0(t) − y0(t)]

= 1

ε2

∫ xs (K)

xa (K)
dx0(x0 + 1). (36)

Using the asymptotic expressions for the attractor and saddle
for x0, expanding for small K , and collecting terms, we have

R ≈ 1

4ε2
− 3K

2ε2
+ 2K2

ε2
. (37)

An example of the optimal path projections is given in Fig. 5
for moderate noise reduction (ε = 0.5) and small coupling K .
Notice that in the figure, (x(t),y(t)) spend most of their time
near the equilibria specified at the boundaries. In addition,
x(t) traverses a distance of order unity when it switches from
the attractor to the saddle point, while deviations of y(t)
from the equilibrium position are only of order K . Therefore,
even though the scaled reduction of the noise parameter is
small, the noise transmitted to x has a very strong effect
through the coupling.

Using the theory for the action, Fig. 6 shows how it scales
as a function of K when ε = 0.5. Along with the numerically
computed action are the results from the asymptotic analysis
for small coupling using Eq. (37). Notice that for K < 0.2, the
agreement is good, and it improves as K gets smaller.

One of the interesting facets of the problem occurs when
there is noise only on the y component. This situation occurs
when ε approaches zero. Although asymptotically the action is
seen to approach ∞ as ε approaches zero, since the system is
coupled it is possible to compute an optimal path conditioned
on the fact that large fluctuations occur only in x. Using the
results for finite ε as an initial guess, we use continuation to

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

K

A
ct

io
n

FIG. 6. The numerically computed action (red circles) plotted as
a function of coupling parameter K for ε = 0.5. The asymptotic result
for small K obtained using Eq. (37) is shown by the blue curve.

decrease ε to 0, and we obtain the optimal path for switching
in the coupled system with noise acting only on particle y (see
Fig. 7), where the coupling constant is relatively small, i.e.,
K ≈ 0.06. The action along the optimal path is on the order
of 105, which indicates that switching would be an extremely
rare event. In this case, we do observe a relatively large change
in y which is on the order of unity rather than K , but y does
spend most of its time near its equilibrium.

The interaction of the coupling and noise-induced forces
is key in determining the switching times for the system.
Increasing the coupling K by an order of magnitude results in
a drastic change in the values of the conjugate variables along
the optimal switching path, as shown in Figs. 7 and 8. Here we
see that in the system with increased K (Fig. 8), both x and y

still undergo a change of order unity; however, the values of the
conjugate variables λ1,λ2 have been reduced by several orders
of magnitude. The action is therefore much smaller (R ≈ 500
compared to R ≈ 5.7 × 105 with weak coupling), implying a
much shorter switching time.
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-400

-200
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200

2

FIG. 7. Optimal switching path for the system in (30), with K =
0.0595 and ε = 0 to machine precision.
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FIG. 8. Trajectory projections of the optimal path where time is
rescaled to be arc length, L, along the trajectory. Shown are trajectories
for x,y and their conjugate variables λ1,λ2. The parameters used are
ε = 0.0 and K = 0.1324.

The effect of coupling strength on action along the optimal
path is shown in Fig. 9 for different values of ε. We observe that
the range of K for which the asymptotic prediction (K � 1)
of the action holds decreases as ε decreases.

D. Monte Carlo simulation

We consider the problem of switching in Eqs. (26) where
the asymmetry in noise intensity between two coupled systems
is governed by the parameter ε. Using the Milstein method for
numerical solution of stochastic differential equations (SDEs),
we implement a Monte Carlo scheme to compute the mean
time for the x variable to switch while the y variable remains
in its basin, given that the particles start in different basins
of attraction. That is, we compute the mean time it takes

0.02 0.04 0.06 0.08 0.1
10

−1

10
0

10
1

10
2

10
3

coupling (K)

ac
tio

n

ε = 0.1

ε = 0.5

ε = 0.02

FIG. 9. The numerically computed log of the action and the
asymptotic approximation [Eq. (37)] as a function of coupling
strength, K . Shown are results for ε = 0.5, 0.1, and 0.02. The
computed action is shown in red, while the asymptotic expression
is depicted by the blue lines.
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FIG. 10. Mean switching time for x to go from the attractor to the
saddle point while y remains in its basin of attraction, as a function
of inverse noise intensity (1/D). Here ε = 0.75. Results are shown
for K = 0.060 and 0.090. The solid lines show theoretical values
computed using Eq. (30), while values obtained from Monte Carlo
simulations are depicted by circles.

for x to transition from x(0) = xa(K) to the saddle point
x(T ) = xs(K).

We first check the existence of an exponential distribution
of times by computing the switching time as a function of
the inverse noise intensity for various values of ε and K .
From the ansatz that the mean switching time exponents are

0.05 0.06 0.07 0.08 0.09 0.1 0.11
K
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MC D = 0.050
D = 0.055
D = 0.060
Asymptotic action D = 0.05
Asymptotic action D = 0.055
Asymptotic action D = 0.06
Computed action
Computed action
Computed action

FIG. 11. Mean switching time for x as a function of coupling
strength K . Here ε = 0.75. Results for D = 0.050, 0.055, and 0.060
are shown in blue, green, and red, respectively. Values obtained from
Monte Carlo simulations are plotted as circles, values computed using
the asymptotic theory [Eq. (37)] are plotted as stars, and true values
for the action are plotted as dashed lines. Since the prefactor is not
directly computed in the asymptotic calculations of action, the plotted
values are shifted to coincide with the first data point. Note that the
asymptotic values deviate from the true values for large K .
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proportional to R/D, we plot the log of the mean switching
time as a function of 1/D, where the slope should be the action
evaluated at the parameters of ε,K .

We can see how the asymptotic theory holds as a function of
K by comparing it with the mean switching times in Figs. 10
and 11. For small K , the theory holds up quite well for a range
of noise intensities (where noise intensity is small compared
to the barrier height), and over a sufficiently large range
of K .

IV. DISCUSSION AND CONCLUSION

In this paper, we addressed the problem of how coupling
can enhance noise-induced switching in systems with highly
asymmetric noise characteristics. As a motivating example,
we considered a simple mixed-reality experiment in which a
virtual system with very low or zero noise is coupled with
a noisy real system. We showed that the effect of coupling
was sufficient to cause the virtual dynamics to undergo a
large fluctuation, while the real dynamics, which was driven
by larger noise intensity, remained quiescent. It was very
natural to take a variational approach to describing such a large
fluctuation, and although it was applied to Gaussian noise, the
same approach can be extended to more general noise sources
[52].

Using the variational approach, we generated a Hamiltonian
two-point boundary value problem with asymmetric driving
representing the effect of the heterogeneous noise sources. We
used scaling parameter ε ∈ [0,1] to quantify the asymmetry in
the noise. The solution to the Hamiltonian equations generates
the optimal switching path, which in turn can be used to predict
mean switching rates.

We focused on the case in which a large fluctuation occurs in
the low noise system, while the system with higher intensity
noise remains near its equilibrium point. Note that, because
of the asymmetry in noise levels, the probability of a large
transition in the high noise system occurring before the
fluctuation in the low noise system is very high. Thus having
the low noise system transition first is an extremely rare event.

We illustrated the general theory using a general model
of a pair of coupled particles in a bistable potential. This
example was inspired by bistable behaviors predicted for a

mixed-reality system of swarming agents [37]. We quantified
the action as a function of coupling strength over a range of
scaling values ε, revealing an excellent comparison between
asymptotic theory and numerical solutions of the optimal
paths. However, we note that, for very small values of ε,
the asymptotic theory diverges from the true action for even
moderate values of K . This is a result of two small parameters
in the approximation; higher-order corrections may need to
be included in Eq. (37). We also quantified the mean escape
times in terms of parameters ε and D, again with excellent
agreement between simulation and theory for the log of the
mean switching time.

We computed the paths as the noise scaling parameter ε

approaches zero, so that the probability of extremely rare
events is governed by coupling strength alone. That is, the noise
is only transmitted through the coupling terms. The asymptotic
theory predicts a logarithmic exponent of the probability
of virtual switching given that the real dynamics exhibits
only small fluctuations, where the exponent scales as 1/ε2.
Although extremely rare, the switching is still observed when
ε → 0 and coupling K is sufficiently large [53], as we have
shown in Fig. 8.

The physical interpretation of the transmitted noise induced
large fluctuation is that the coupling also acts as an effective
force along with the effective stochastic momenta to enhance
the observation of an extremely rare event. The coupling used
in the generic example is similar to the couplings found in
many physical systems, including the swarm experiment we
described. Since our theory is generic, it predicts that such
noise-transmitted fluctuations should appear in many coupled
systems, including mixed-reality situations, where the noise
intensities are highly skewed.
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