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Entropy of level-cut random Gaussian structures at different volume fractions
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Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or
several-phase structures that have often been used to describe physical systems. The entropy of such structures
depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral
density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which
is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We
evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the
dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple
ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or
ternary fluids and microemulsions.
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I. INTRODUCTION

The random structures encountered in diverse fields ranging
from microemulsions or porous rocks to astrophysics are
often described with random Gaussian fields. The description
can provide a variety of morphological structures, as the
spectral density of the Gaussian field can be selected to match
the particular application. When each spatial position can
only be occupied by one of a two (or a few phases) the
configuration can be described by one (or several) level cut(s)
of the field, separating the different phases. Prominent early
applications were in the description of spinodal decomposition
[1,2] or microemulsion structures [3]. An example of the
structures obtained as a level cut of a random Gaussian field
shown in Fig. 1 was selected to resemble the surfactant-
free microemulsions [4], where the spectral density has the
Lorentzian form.

In earlier work [5–10], the dependence of the system
entropy on the volume fraction of the components was
neglected. The entropy of the structures obtained after the
level cut was approximated by the entropy of the generating
Gaussian field. The justification for the approximation was
the fact that the generating field can be recovered from the
information available from the level-cut state. This topic was
discussed within the information theory [11], where it was
found that the full reconstruction is possible under specific
conditions.

However, as the fraction of the minor phase becomes
smaller, such reconstruction requires ever-higher mathemat-
ical precision. The rationale for the approximation fails due to
the discreteness of the physical space.

The entropy change with the fractional density can be
studied by taking advantage of the correspondence of the
two-state level-cut structures with the Ising models [12]. In
the approximate Ising analogy, the Gaussian field covariance
matrix with the elements rij is related to the interaction
strengths V (rij ) and the cutting level α corresponds to the
external magnetic field H.

The analogy can be exploited to obtain insight from exactly
solvable models. However, it is also useful to consider the
mean-field approximation. Functional form of the dependence

of the entropy on the applied magnetic field H requires solving
the familiar transcendental equation for the magnetization per
site m in order to obtain the mean magnetic field Hmf :

m = tanh(βHmf ) = tanh[β�V (rij )m + H ]. (1)

At the same time, expressing the entropy per site in terms of
magnetization is very simple as it involves only the definition
of entropy in terms of the up- or down-spin probabilities. The
mean-field entropy per site in units where kB = 1 is

S = −1 + m
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In a lattice model of binary fluids, the magnetization is
analogous to the difference between molar fractions x1 and x2

of the components, m = x1 − x2. For the ideal mixture

S = −x1ln x1 − (1 − x1)ln(1 − x1), (3)

which is also the entropy of the ideal monoatomic lattice gas.
The maximal value of the ideal entropy is S = ln2 or one bit
per site, which is obtained when x1 = x2 = 1

2 . Correlations
in the fluid will decrease the entropy, sometimes by orders of
magnitude.

The relation between the cutting level α and the molar
fraction of one constituent [3]

x1(α) = 1

2
erfc

α√
2

(4)

may be used to obtain a more complicated expression for
entropy in terms of α.

In the following sections, we use several methods to show
that even in the highly correlated lattice models obtained from
level cuts of random Gaussian fields the entropy scales with the
molar fraction of constituent phases according to the simple
mean-field law, Eq. (3). In the last section, we relate the lattice
model results to real binary or ternary fluids where constituent
molecules are unequal in size and discuss the origin of the
simple scaling of entropy with molar fractions.
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FIG. 1. A structure obtained by a level cut of a random Gaussian
field with a Lorentzian spectrum. In (a) the fraction of each phase is
1/2; in (b) the fractions are 1/3 and 2/3. We wish to find a change in
the configurational entropy on going from (a) to (b).

II. METHODS

A. Monte Carlo simulation

In an earlier work [12] we used Monte Carlo (MC) simu-
lation in order to study the entropy of one-dimensional lattice
models of disordered systems with long-range interaction. The
accuracy of simulations was established by testing against the
exactly solvable Ising model with long-range interaction [13].
Applying the same simulation method to level-cut Gaussian
fields it is possible to evaluate the entropy as a function of
the strength and the range of correlations. For the purpose of
testing, we selected the Lorentzian spectral distribution with
the exponential covariance function

K(r) = exp(−γ |r|). (5)

This choice is demanding because of the relatively slow
decay of correlations. Its spectral distribution,

f (k) = γ

π (γ 2 + k2)
, (6)

corresponds to many physical structures. We used the same
covariance function in all testing.

Entropy was evaluated as a function of the inverse corre-
lation length γ (Fig. 2). Also shown for comparison is the
approximate evaluation of the entropy with small clusters
(see below). In these one-dimensional examples, and using the
segments of 18 or 19 sites, simulations easily reach four-figure
accuracy. Due to the slow decay of Lorentzian correlations,
simulations in two or three dimensions are difficult and were
used only to verify the two-dimensional result from small
cluster calculations.

B. Exact entropy of small clusters

The values of Gaussian random fields in space follow
multivariate normal distribution, with the covariance matrix
determined by the spectral density function. By integrating
over the probability distribution we can find the probabilities
for each of the possible states of a small cluster and evaluate the
entropy. Applying the method developed by Aleksandrowicz
and Meirovitch [14,15] one evaluates the entropy per site as
the difference between the clusters of n and n − 1 sites. As
an example, for a four-site cluster, 24 possible states can be

FIG. 2. Entropy per site for one-dimensional level-cut states
evaluated by MC simulation (symbols) and by the small cluster
approximation (dashed line). Relative entropy for the three marked
points (γ = 0.25, 0.0025, and 0.001) as a function of the fractional
density is shown in Fig. 3.

enumerated as, e.g., 1001, where the successive digits mean
that the value of the field at the corresponding site is above
over below the cutting level α. The associated probability for
this state is

p1001 = 1
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where � is the covariance matrix for the cluster configuration.
The first integration can be performed analytically, but beyond
that numerical methods are needed. The probabilities for
some states are identical, reducing the number of integrations
to fewer than 16. Many approximation methods have been
proposed in literature. We found that the numerical integration
within MATHEMATICA provides sufficient accuracy.

The entropy of the cluster is simply the sum over all the
states

S4 = −
16∑
1

pijkl ln pijkl, (8)

and the entropy per site is approximated as S = S4 − S3.

Clusters with four sites can be formed in one, two or
three dimensions, and this will be reflected in the form
of the covariance matrix. For example, using the notation
x = exp(−γ ), the covariance matrix for an elementary three-
dimensional four-site cluster is
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The cluster approximation is particularly accurate for one-
dimensional arrays. The accuracy of simple approximations in
one dimension was already observed in an earlier work where
the entropy was approximated by the correlation function
expansions [16]. In higher dimensions and for long-range
correlations, entropy per site evaluated from small clusters
will be higher than the entropy for infinite lattice. As shown in
the next section, the relative entropy scaling rule remains very
accurate.

C. Binary digit count of compressed configuration files

Algorithmic randomness, defined as the length of the
shortest file containing the full description of a physical state,
is equivalent to the Gibbs-Shannon entropy of this system
[17]. Best commercial file compression engines achieve
similar compression ratios. Testing with relatively disordered
structures we found that most correlations in the compressed
files are removed and the reduced bit count was close to the
theoretical limit.

We created images of level-cut random Gaussian fields at
a specified fractional density of the phases, similar to the
images shown in Fig. 1. Files were then compressed (using
the Stuffit engine by Smith Micro), and the length of the file
header was subtracted from the result. The number of bits
in the compressed files was close to the values obtained by
other methods. The binary digit counting thus provides an
alternative method to determine the dependence of entropy on
the fractional density. In the next section (Fig. 5) it is shown
that the simple law Eq. (3) is closely followed.

More generally, the binary count for common images
reduced to the black and white format at a different fraction
of black or white area also approximately follows the same
scaling. As expected, the approximation is better for images
with fewer high-order correlations.

III. RESULTS

A. Binary systems

The MC entropy of one-dimensional systems at three
coupling strengths marked in Fig. 2 is shown in Fig. 3.
Regardless of the interaction strength, and for very different
absolute entropies, the relative entropy as a function of density
perfectly follows the ideal law, Eq. (3). Figure 3(b) shows
testing with clusters in two dimensions. The cluster method
performs well at moderate correlation. At high correlation, it
fails when one molar fraction is very small.

Absolute values of the entropy are smaller in three dimen-
sions, as the correlation between sites in a cluster is stronger.
The small cluster evaluation becomes inaccurate for higher
correlation and very asymmetrical compositions. Neverthe-
less, as shown in Fig. 4, when the cluster approximation is
accurate the relative entropy closely follows the ideal system
behavior.

Last, we used the binary digit count of files containing two-
dimensional images of level-cut Gaussian fields at different
area fractions (Fig. 5). The agreement for relatively disordered
structures with weak high-order correlations as shown in Fig. 1
is almost perfect. The method can be applied to any image with
a varying degree of accuracy. Even so, the simple law of Eq. (3)

FIG. 3. (a) Relative entropy of one-dimensional systems eval-
uated in MC simulations at very different interaction strengths:
γ = 0.25 (circles), 0.0025 (diamonds), and 0.001 (squares). (b)
Two-dimensional relative entropy evaluated as a difference between
small cluster entropies for the interaction strength γ = 0.25 (closed
symbols) and γ = 0.05 (open symbols). The γ = 0.25 results were
checked with MC simulations, which agreed with the data in the
figure. In both parts, the full line follows Eq. (3).

is a useful first approximation for the information content of
images reduced to two or several tones.

B. Ternary systems

The scaling of the relative entropy with molar fractions
described above is not limited to binary systems. In particular,
the generalization to ternary phases is straightforward. Such
level-cut structures can be used to describe ternary solutions or
microemulsions with three components. Examples of possible
structures are shown in Fig. 6.

The entropy of an uncorrelated ternary system where each
molecule occupies one lattice site or an ideal three-component
monoatomic lattice gas in terms of molar fractions x1 and x2 is

S(x1,x2) = −x1lnx1 − x2lnx2

−(1 − x1 − x2)ln(1 − x1 − x2). (10)

FIG. 4. (a) Entropy per site as a function of molar fraction as
evaluated from three-dimensional clusters at interaction strengths
γ = 0.25 (circles), 0.1 (squares), and 0.05 (open diamonds). The top
line is the entropy of noninteracting systems. (b) The four separate
curves in (a) fall together when replotted as a relative entropy.
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FIG. 5. Relative entropy estimated from the length of the com-
pressed files. Filled squares are data points obtained from images of
a level-cut random Gaussian field. Two such images are shown in
Fig. 1. Other symbols are obtained from a standard test image “Lena”
reduced to two tones. As the image contains high-order correlations,
the agreement is very approximate. The compression engine works
linearly and the results for two perpendicular orientations (different
open symbols) are therefore similar but not identical.

The entropy of correlated ternary solutions approximately
scales with molar fractions according to Eq. (10). Figure 7
illustrates this behavior along a particular line in a phase
diagram where the ratio of components B and C is kept
constant.

IV. DISCUSSION

The application of level-cut random Gaussian fields to the
description of different physical structures does not depend on
lattice modeling. When the molecular volumes of constituents

are equal, molar fractions and volume fractions are equal, each
lattice site corresponds to a molecule of the solution, and the
evaluated thermodynamic quantities are independent of the
lattice.

For molecules of unequal size, the choice of a single lattice
is an approximation subject to well-known restrictions [18].
Larger molecules may occupy more than one site, while in
the case of polymers each segment is normally assigned to a
lattice site. The simple and at the same time very successful
result for the ideal mixing entropy in such systems is obtained
by the Flory-Huggins theory [18]. For n1 and n2 molecules of
components 1 and 2 respectively, the entropy of mixing is

S = −kB(n1lnv1 + n2lnv2), (11)

where v1 and v2 are the respective volume fractions of the
components in the mixture. Component 2 is typically a larger
flexible molecule. Molar fractions in the arguments of the ln
functions in the ideal law Eq. (3) are presently replaced by
volume fractions. When the molecular volumes are equal, the
approximate Eq. (11) reduces to Eq. (3). Equation (11) is still
independent of any lattice parameters. The derivation is easily
generalized to ternary systems [18], where Eq. (11) has the
same form with three terms [19].

The structure of condensed matter solutions is normally
constrained by numerous interactions, and the ideal law
Eq. (11) then gives the upper limit for the entropy. The
requirements are particularly prominent when amphiphilic or
hydrotrope components are included, as this may lead to the
formation of well-defined structures or aggregates. Gaussian
random fields are useful here because the spectral density and
the level cut can be adjusted to match the observed structures.
The entropy is evaluated by integration in q-space involving
the spectral density. The molecular size enters through the
upper limit of the integration. When possible, the limit is best
determined from the scattering data, e.g., as the high-q limit
of the observed Ornstein-Zernike behavior. The entropy is
then estimated as the entropy of the field before the cut (as

FIG. 6. Random Gaussian field cut at two levels. In (a), each of the three fractions occupies 1/3 of the volume. In (b), each of the minor
fractions occupies 0.063 of the volume. The generating random field is the same in both (a) and (b).
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FIG. 7. Left: Contour plot of an ideal ternary system entropy,
Eq. (10). Right: The relative entropy evaluated along the line
originating in A. Evaluation is based on small clusters for γ =
0.25 (closed symbols) and γ = 0.1 (open symbols). The ideal law,
Eq. (10), is shown as a full line.

in Refs. [4–10]) or evaluated from simulations. The results of
this study suggest that the ideal law dependence on volume
fractions applies approximately even in the case of correlated
structures, and the estimates should scale with the volume
fractions according to Eq. (11).

The approximate scaling of relative entropy of strongly
coupled systems derived by level cuts of Gaussian fields is a
remarkable property. Unlike the generating Gaussian fields,
level-cut states do have correlations beyond the second order
and would not be expected to follow the ideal gas behavior.

In order to make a plausible argument let us consider for the
moment the correspondence between random Gaussian fields

with a given spectral density and the binary level-cut states.
If there are N molecules in the system of which N1 belong to
the first constituent, the number of possible level-cut states is
N!/[N1!(N−N1)!]. This number of states is the largest when
molar fractions are equal and is reduced when N1 is increased
or decreased from the value of N/2. This is equally true for
ideal and for correlated systems.

In the ideal case, all states are equally likely and the
Boltzmann formula S = kB lnW leads to Eq. (3). For corre-
lated fluids, there are large differences in the probabilities.
Nevertheless, the reduction in the number of possible states
resulting from the departure from equal fractions is the same
for both the ideal and the correlated systems. The level-cutting
maps continuous Gaussian random fields onto a space with a
fixed number of possible states. In this mapping, the entropy
of correlated structures approximately scales with the number
of available states following the law that describes the entropy
of simple noninteracting systems.
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