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Classical many-particle systems with unique disordered ground states
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Classical ground states (global energy-minimizing configurations) of many-particle systems are typically
unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry
operations). By contrast, the few previously known disordered classical ground states of many-particle systems are
all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed “perfect-
glass” many-particle model [Sci. Rep. 6, 36963 (2016)] possesses disordered classical ground states with a zero
entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we
have numerically investigated, the disordered ground states are unique such that they can always be superposed
onto each other or their mirror image. At low energies, the density of states obtained from simulations matches
those calculated from the harmonic approximation near a single ground state, further confirming ground-state
uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one
another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis
in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our
disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography
as pseudorandom functions with tunable computational complexity.
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I. INTRODUCTION

The classical ground states of many-particle systems are
typically crystals consisting of periodically replicated energy-
minimizing local geometries with high symmetry. The ability
for the particles to attain and display long-range order (Bragg
diffraction) becomes the likely procedure for those models
to attain their ground state. A specific system at a fixed
density usually possesses a unique crystal ground state, aside
from trivial symmetry operations. Therefore, the “enumeration
entropy”

SE = kB ln �E (1)

is zero for such ground states. Here �E is the number of distinct
accessible structures and kB is the Boltzmann constant.

The fact that ground states of many-body systems can
be disordered have intrigued condensed-matter physicists.
Although quantum effects are the cause of ground-state
disorder in many systems (for example, helium under normal
pressure [1] and certain spin systems [2–5]), classical systems
can also have disordered ground states [6–13]. A ground state
of a classical many-particle or spin system is simply a global
minimum of the potential energy. For classical many-particle
systems in Euclidean spaces, all known examples of disordered
ground states possess high enumeration entropy, in the sense
that there exists an uncountable collection of geometrically
inequivalent ground-state configurations. Here, “inequivalent”
configurations are those that are not related to each other
by trivial symmetry operations, which includes translations,
rotations, and reflections (illustrated in Fig. 1). Such examples
include equilibrium hard-sphere systems away from jammed
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states [7] and particles interacting with “stealthy” and related
collective-coordinate potentials [10–14]. While the former
situation is trivial in that any nonoverlapping configuration
counts as a ground state, the latter systems are less so because
certain nonlinear constraints are imposed on the configuration.
Depending on the specific constraints, the latter interactions
can create stealthy systems [13], “superideal gases” [11],
“equiluminous materials” [11], as well as other unusual ground
states [10,12].

It natural to expect that the entropy of these disordered
ground states is large and extensive for two reasons. First,
entropy has often been associated with the amount of disorder
in a system. It was not until 1949 that Onsager realized
that entropy and disorder are not always directly related to
one another by showing that the entropy of a fluid of hard
needles can increase when the needles tend to align with
one another, thereby increasing the orientational order of the
system [15]. Hard spheres also undergo an entropically driven
disorder-order phase transition at sufficiently high densities
[16,17]. Second, as the aforementioned examples illustrate,
the tendency for ground states to be disordered is caused by
the nature of the interactions, which allows certain individual
or collective displacements of particles without causing any
change in the energy. A ground-state configuration can thus
move in these unconstrained directions of the configuration
space, and thus become pattern degenerate with large and
extensive entropy. Here we define a set of ground states to
be pattern unique if all of the ground state structures are
equivalent, and pattern degenerate otherwise [18].

In this paper, we demonstrate that our recently pro-
posed “perfect-glass” many-particle model [19] surprisingly
possesses classical ground states that are counterintuitively
disordered with zero enumeration entropy. Perfect glasses are
distinguished from normal glasses and other amorphous solids
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FIG. 1. Illustration of the three pattern-preserving symmetry
operations. Two configurations have the same pattern if they are
related to each other through any combination of these three symmetry
operations.

in that they are by construction hyperuniform (anomalously
suppress large-scale density fluctuations), as defined by a static
structure factor that tends to zero in the infinite-wavelength
limit [20]; see Refs. [21–24] for recent developments on disor-
dered hyperuniform systems. Moreover, since perfect glasses
can never crystallize or quasicrystallize at zero or any positive
temperature [19], they circumvent the Kauzmann entropy
crisis in which the extrapolated entropy of a supercooled liquid
drops below that of the crystal [25]. By contrast, traditional
glasses have been venerably understood as liquids kinetically
arrested from cooling that are metastable with respect to
a crystal [26–30]. The unique disordered ground states of
perfect-glass models are to be contrasted with zero-entropy
crystals and quasicrystals that possess high symmetry and
long-range translational and/or rotational order. Thus, these
disordered ground states can be a fertile area for future research
in disciplines beyond physics.

It is noteworthy that unlike spin-glass models [6], perfect-
glass interactions treat all particles equally and thus do not
introduce disorder by the intrinsic random nature of the
interactions; unlike the low-correlation spin model [8,9], the
ground state is pattern-unique for all finite system sizes we
have studied, and is therefore expected to be pattern unique in
the infinite-system-size limit.

The rest of the paper is organized as follows: In Sec. II,
we provide basic definitions. In Sec. III, we numerically
show that perfect-glass ground states are pattern unique by
enumerating the minima of the potential energy surface. In
Sec. IV, we compute the density of states of perfect glasses as a
function of the potential energy with two different approaches:
one assuming ground-state pattern uniqueness, and another
without such an assumption. We show that the results from
these two different approaches are in excellent agreement,
which confirms the ground-state pattern uniqueness. In Sec. V,
we provide conclusions and discuss the broader implications
of our findings.
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FIG. 2. Shaded-area illustration of the two multiplicative contri-
butions of the potential energy, defined in Eq. (3). Notice that even
though the target structure factor S0(k) is monotonic in k, the actual
structure factor S(k) deviates from it and develops peaks, the first of
which is shown here.

II. BASIC DEFINITIONS

For a single-component system with N particles located
at positions r1,r2, . . . ,rN , in a simulation box of volume V

subjected to periodic boundary conditions in d-dimensional
Euclidean space Rd , the static structure factor is defined as

S(k) =
∣∣∑N

j=1 exp(−ik · rj )
∣∣2

N
, (2)

where i is the imaginary unit and k is a d-dimensional wave
vector (which must be a linear combination of integer multiples
of the reciprocal lattice vectors of the simulation box).

The perfect-glass interaction potential [19] has either a
direct-space or Fourier-space representation. In the latter case,
we have

�(r1,r2, . . . ,rN ) =
∑

0<|k|<K

ṽ(k)[S(k) − S0(k)]2. (3)

This interaction is designed to constrain the static structure
factor S(k) to be equal to a target function S0(k) for all wave
vectors k within a certain distance K from the origin; and
assigns energy penalties, adjusted by a weight function ṽ(k),
if such constraints are violated. Following Ref. [19], we use
S0(k) = |k|α and ṽ(k) = (K/|k| − 1)3, where α is a positive
parameter that we can choose freely. The two multiplicative
factors in the summand of Eq. (3) are illustrated in Fig. 2. In
general, other forms of S0(k) and ṽ(k) may also be used, but
these particular forms were chosen to realize hyperuniformity.
The direct-space representation of the perfect-glass potential
(3) involves a sum of two-body, three-body, and four-body
interactions [10].

We define χ to be the ratio of the number of constrained
degrees of freedom to the number of independent degrees
of freedom, d(N − 1) [19]. When χ is larger than unity,
the system runs out of degrees of freedom and becomes
glassy, i.e., develops a complex energy landscape with multiple
energy minima, and a positive shear modulus [19]. This model
completely banishes crystalline structures at any nonnegative
temperature, since the existence of Bragg peaks would make
the potential energy infinite [19].

III. ENUMERATION OF THE ENERGY MINIMA

We numerically study the classical ground states of
the perfect-glass interactions and demonstrate their pattern
uniqueness by showing that the enumeration entropy, defined
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FIG. 3. The disordered unique ground states of the perfect-glass
potential for (top) d = 1, α = 6, χ = 1.75, and N = 70; (bottom left)
d = 2, α = 6, χ = 1.87, and N = 40; and (bottom right) d = 3, α =
6, χ = 1.75, and N = 30. These figures illustrate a point presented
in Ref. [19], namely, the particles experience a pair repulsion that is
clearly observed when one calculates the pair correlation function.

by relation (1), is zero. We minimize the potential energy, using
the low-storage Broyden-Fletcher-Goldfarb-Shanno algorithm
[31–33], starting from random initial configurations, to find
local minima of the potential energy surface. A random local
minimum of the potential energy surface is deemed to be
reached once the energy minimization routine finishes with
a stringent tolerance of δ� = 10−11. Therefore, by repeating
this process a sufficient number of times, we expect to find the
global minimum of the potential energy surface. After 107 to
109 independent energy minimization trials, a lowest energy
is achieved at least 10 times, but often more than 103 times
(see Appendix A for details). Presumably, this is the ground
state energy. Subsequently, we compare the ground-state
configurations for pattern uniqueness. A particular ground-
state configuration is taken to be a comparator, and then we
compare it to every other ground-state configuration. Using
an algorithm detailed in Appendix B, we attempt to find a
translation, a rotation, and/or a reflection so that after these
symmetry operations the comparator superposes onto the other
ground state. After these symmetry operations are performed,
if each particle in the comparator is within 10−5L distance to
a particle in the other ground state, then the two ground states
are deemed to have the same pattern. Here L denotes the side
length of the simulation box. The ground state is considered
pattern unique if all of the ground-state configurations have
the same pattern as the comparator.

We studied a total of 60 different combinations of parame-
ters (d, α, χ , and N ); see Appendix A for a complete list. These
cases cover wide ranges of N (between 10 and 70, including
both prime N ’s and composite N ’s), α (between 0.5 and 6),
and χ (between 1.7 and 2), in one, two, and three dimensions.
For all cases, the ground state was found to be disordered and
pattern unique. The discovered ground states of the largest N

cases in the first three space dimensions are presented in Fig. 3.
Besides the ground states, we also study other minima of

the potential energy surface. As Fig. 4 shows, as N increases,
the success rate (the probability that one finds the ground state
through an energy minimization trial) decreases exponentially,
and the number of discovered energy minima increases expo-
nentially. This exponential rise of the number of higher minima
is in agreement with what one has topographically for real
glass formers [34]. Compared to the α = 1 case, the α = 6 case
possesses a higher success rate and fewer distinct energy levels.
This is also expected because as we have discovered earlier,
increasing α increases geometrical order in these glasses [19].
Finally, Fig. 4 also shows that the ground state energy is
roughly proportional to N for both α values we presented.

IV. CALCULATION OF THE DENSITY OF STATES

To further confirm ground-state uniqueness, we have also
performed Wang-Landau Monte Carlo (WLMC) simulations
on a perfect-glass system with d = 2, α = 1, χ = 1.89, and
N = 10. The WLMC algorithm allows one to calculate the
density of states g(E) as a function of the potential energy
[35] (or equivalently, the hyperarea of an isoenergy surface
in the configuration space). Alternatively, for energy values
very close to the ground state, one could also calculate g(E)
from the eigenvalues of the Hessian matrix by treating the
system as an harmonic oscillator around the ground state. As
detailed below, after considering the aforementioned trivial
symmetry operations, we find very good agreement between
the calculated g(E)’s from these two approaches, further
verifying ground-state uniqueness.

A. Density of states, g(E), from the harmonic approximation

In this subsection, we calculate g(E) using the harmonic
approximation. For a d-dimensional configuration of N parti-
cles, the configuration space is dN dimensional. Of these dN

directions of the configuration space, d directions correspond
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FIG. 4. (Left) The probability of finding the ground states by energy minimization for d = 1, χ = 2.00, α = 1 and 6, and 10 � N � 30.
(Middle) The number of distinct energy local minima found by 107 repeated energy minimizations for the same systems. (Right) The
ground-state energy of the same systems.
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to translations of the whole configuration, which cause no
energy change. The other d(N − 1) directions correspond to
deformations, which generally change the potential energy.
Near the classical ground state, such changes can be quantified
by the eigenvalues of the Hessian matrix, λ1, λ2, . . . , λd(N−1).
Let E denote an energy that is slightly above the ground-state
energy E0; then the portion of the configuration space with
potential energy � � E is given by the equation

E � E0 + λ1

2
x2

1 + λ2

2
x2

2 + · · · + λd(N−1)

2
x2

d(N−1), (4)

where x1, x2, . . . , xd(N−1) are the deformations along each
eigenvector of the Hessian matrix. Equation (4) specifies a
d(N − 1)-dimensional ellipsoid, for which the hypervolume is

Vvibrational = πd(N−1)/2

	[1 + d(N − 1)/2]

d(N−1)∏
j=1

√
2δE

λj

, (5)

where πd(N−1)/2

	[1+d(N−1)/2] is the volume of a d(N − 1)-dimensional
hypersphere of unit radius and δE = E − E0.

To obtain the total volume of the configuration space for
which � � E, one needs to multiply Eq. (5) with a few
additional factors to account for trivial symmetry operations.
First, there are d independent translations, each contributing a
factor of

√
NL, where L is the side length of the simulation

box. The factor
√

N comes from the fact that translations
correspond to diagonal movements in the configuration space.
An additional factor f , that depends on the space dimension
and the simulation box shape, also needs to be included to
account for rotations and reflections. For d = 2 with square
box, f = 8, since such boxes allow rotations of 0◦, 90◦, 180◦,
and 270◦, and a combination of any rotation with a chirality
inversion. Lastly, particle permutations contribute a factor of
N !. Overall, the total volume in the configuration space is

V = Nd/2Vf N !
πd(N−1)/2

	[1 + d(N − 1)/2]

d(N−1)∏
j=1

√
2δE

λj

, (6)

where V = Ld is the volume of the simulation box.
The density of states is the surface area of the total volume

in the configuration space for which � � E, and is therefore
the derivative of V to E:

g(E) = dV
dE

= Nd/2Vf N !
πd(N−1)/2

	[1 + d(N − 1)/2]

×
⎛
⎝d(N−1)∏

j=1

√
2

λj

⎞
⎠d(N − 1)

2
δEd(N−1)/2−1. (7)

B. Density of states, g(E), from Wang-Landau
Monte Carlo simulations

We now use the WLMC algorithm to calculate g(E) for the
perfect-glass system. To do so, we first divide the energy range
E0 � � < 105 into Nbin = 2 × 104 bins that are equidistant in
a logarithmic scale. Let the minimum and maximum energies
of a bin be Emin and Emax, the WLMC algorithm allows one
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FIG. 5. (Top) Natural logarithm of the density of states, g(E),
from two independent runs of WLMC simulations, and from the
harmonic approximation. (Bottom) A zoomed-in view near the
ground-state energy E0 = 0.0512129 . . ..

to calculate gbin = c
∫ Emax

Emin
g(E)dE over every bin, where c is

an unknown constant independent of the bin [35]. We then
determine c by the condition V N = ∫ ∞

E0
g(E)dE = ∑

gbin,
where the upper limit of the integration can be replaced with
105, since g(E) turns out to be negligible for very large E. We
finally divide gbin with (Emax − Emin) to find out g(E) at each
bin.

We perform a total of 1500 stages of Monte Carlo
simulations, each consisting of Ntrial = 4 × 107 trial moves.
In each trial move, a random particle is moved by a distance
of xyL in every direction, where x is uniformly distributed
between −1 and 1, y has a 50% probability of being 0.2 and a
50% probability of being 0.002. The WLMC algorithm has a
tuning parameter, called the “modification factor” in [35], that
affects its efficiency and accuracy. Following Ref. [36], we
let this factor be f = exp{max[2Nbin/(Ntriali), exp(−0.1i)]}
at the ith stage, where max(a,b) denotes the maximum value
between a and b.

We have performed two independent runs of the simulations
detailed above. The resulting g(E) is presented in Fig. 5
and compared with the g(E) obtained from the harmonic
approximation. At the lowest energies, g(E) from both runs
agree very well with that from the harmonic approximation,
differing by less than 12%. If the ground state was two-fold
degenerate, there would be a two-fold difference between
the calculated g(E). This verifies the uniqueness of the
perfect-glass ground state.

From the density of states, we have also calculated the
excess isochoric heat capacity CV of the system, which is
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FIG. 6. Isochoric heat capacity CV of the perfect-glass system of
d = 2, α = 1, χ = 1.89, and N = 10. Here, the constant contribution
to the heat capacity from the kinetic energy, CV ,kinetic = dN/2, is
excluded.

given by

CV = d〈�〉
dkBT

, (8)

where

〈�〉 =
∫

Eg(E) exp(−E/kBT )dE∫
g(E) exp(−E/kBT )dE

. (9)

The heat capacity, presented in Fig. 6, starts at the harmonic
value at T = 0, and begins to rise because the shape of the
potential energy landscape is such that the effective harmonic
force constants are reduced in order to produce transition
pathways to neighboring minima. The reduction of the local
effective force constants increases the amount of configuration
spaces associated with that particular level of the potential
energy, and therefore increases the heat capacity. Eventually,
CV levels off and decreases because the energy landscape
becomes irrelevant at very high temperature.

V. CONCLUSIONS AND DISCUSSION

To summarize, all previously known disordered classical
ground states are caused by interactions that allow continuous
configurational deformations without energy change. These
deformations also cause the ground state to possess large and
extensive entropy. In contrast to these previous investigations,
here we create disordered classical ground states by penalizing
crystalline order, causing no ground-state degeneracy. These
zero-entropy ground states are in sharp contrast with zero-
entropy crystalline ground states, since the latter possess very
high symmetry and long-range translational and rotational
order.

Our discovery of unique disordered ground states impinge
on the famous Kauzmann glass paradox [25] and the associated
“ideal glass” [37]. Historically, it was found that at some low
but positive temperature, called the “Kauzmann temperature,”
the extrapolated entropy of a supercooled liquid would be
equal to and then apparently decline below that of the crystal,
resulting in what has been called the “Kauzmann paradox.”
This impossible scenario constitutes an entropy crisis. One
resolution is to postulate that as the Kauzmann temperature

is reached, the supercooled liquid must undergo a phase
transition into an “ideal glass,” which is a glass with zero
configurational entropy. This scenario is in contradistinction
to the perfect-glass model, which does not require that the
presence of a crystal and its thermodynamic properties has
to provide a constraint on the behavior of the amorphous
manifold of the configurations. Indeed, perfect-glass ground
states can never be crystalline nor quasicrystalline. On the
other hand, perfect-glass ground states and “ideal glasses”
share one common feature: both states are disordered while
having zero enumeration entropy.

We would like to stress that while the perfect-glasses
interaction is not yet achievable in practice, it is an idealization
that is nonetheless valuable because it teaches us what types
of many-body molecular interactions are required to attain
“unique” disorder and hence provides guidance to experimen-
talists to approximate such interactions in the laboratory with,
for example, polymers [19].

Finally, we also expect our results to be useful in
cryptography, where pseudorandom functions with tunable
computational complexity are desired; for example, in deriving
an encryption key from a password [38]. The task of finding a
perfect-glass ground state suits this need, since its complexity
can easily be tuned by changing a set of parameters (d,N, α,
and χ ).
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APPENDIX A: SUMMARY OF RESULTS
OF THE NUMERATION STUDIES

In Table I, we summarize major results obtained from our
enumeration studies for the different parameter combinations
(d, α, χ , and N ) that we used.

APPENDIX B: DETAILS OF THE CONFIGURATION
COMPARISON ALGORITHM

Here provide details of the algorithm that we devised to
compare two configurations to determine whether one of them
can be superposed onto to the other after a translation, a
rotation, and/or a reflection.

We begin with a description for the one-dimensional
(1D) case for simplicity. For each configuration, we find a
“characteristic vector” by the following steps:

(i) Find the closest pair of particles, A and B. Find out
their locations, rA and rB .

(ii) Find the distance from particle A to its second closest
neighbor particle dA; and the same distance for particle B, dB .

(iii) If dA > dB , then swap particles A and B.
(iv) The characteristic vector is v1 = rB − rA.
The characteristic vector is invariant to configuration

translations and particle permutations, and rotates or reflects
if the configuration is rotated or reflected. Thus, if the two
configurations are indeed related to each other through these
trivial symmetry operations, then their characteristic vector
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TABLE I. List of all the parameter combinations (d, α, χ , and N ) that we employed to carry out the enumeration studies and a summary
of results for each combination, which includes the number of inherent structures that we generated, the number of times the ground state
structure was achieved, the ground-state energy, the mean energy of inherent structures, and the number of distinct energy levels of inherent
structures found.

Number of inherent Number of lowest-energy Mean energy Number of distinct
d α χ N structures generated structures generated Lowest energy (of inherent structures) energies found

2 1 2.20 6 106 97510 0.0534 0.094867 37
2 0.5 1.89 10 3 × 107 1769 0.0059314 0.046363 34719
2 1 1.89 10 3 × 107 14442 0.0512129 0.126145 7398
2 2 1.89 10 3 × 107 1508436 0.835746 0.953847 339
2 6 1.89 10 3 × 107 5178002 2.73031 2.86945 34
2 1 1.87 16 108 147 0.0618558 0.178029 2.16 × 107

2 1 1.89 20 109 40 0.0664875 0.204629 7.41 × 108

2 6 1.89 20 108 265084 5.37199 5.74988 147590
2 6 1.90 30 108 1634 8.0647 8.57543 4.08 × 107

2 6 1.87 40 108 11 10.6843 11.3862 9.10 × 107

1 1 1.79 20 2 × 107 60490 0.517475 1.015135 3492
1 1 1.74 40 5 × 107 24 0.991197 1.849102 3.06 × 107

1 1 1.79 50 109 12 1.68337 2.94643 8.45 × 108

1 6 1.75 60 108 28 77.8601 79.7294 5.46 × 107

1 6 1.75 70 109 27 93.3095 95.7188 5.94 × 108

1 1 2.00 10 107 739724 0.866727 1.31398 20
1 1 2.00 11 107 651397 0.929444 1.42011 24
1 1 2.00 12 107 589273 1.2673 1.69868 48
1 1 2.00 13 107 242182 1.31007 1.87405 78
1 1 2.00 14 107 358037 1.53538 2.06303 109
1 1 2.00 15 107 142763 1.61837 2.29402 201
1 1 2.00 16 107 158544 1.69043 2.50381 351
1 1 2.00 17 107 105541 1.85802 2.74284 557
1 1 2.00 18 107 65853 1.98903 2.96204 959
1 1 2.00 19 107 27438 2.31345 3.17478 1578
1 1 2.00 20 107 22617 2.40054 3.4008 2613
1 1 2.00 21 107 15771 2.55858 3.64033 4527
1 1 2.00 22 107 20318 2.63018 3.85341 7645
1 1 2.00 23 107 9110 2.80526 4.06194 12665
1 1 2.00 24 107 5778 2.93012 4.289 21383
1 1 2.00 25 107 1754 3.1362 4.52102 36116
1 1 2.00 26 107 2095 3.21506 4.7385 60728
1 1 2.00 27 107 1261 3.45142 4.95513 100960
1 1 2.00 28 107 1618 3.60496 5.1805 168599
1 1 2.00 29 107 573 3.84163 5.39782 275767
1 1 2.00 30 107 518 4.01308 5.60469 442279
1 6 2.00 10 107 2715392 14.13106 14.2772 5
1 6 2.00 11 107 2749262 16.47931 16.8239 13
1 6 2.00 12 107 1432882 19.08413 19.325 15
1 6 2.00 13 107 470326 21.22258 21.5804 13
1 6 2.00 14 107 624508 23.95933 24.2088 22
1 6 2.00 15 107 578671 26.13922 26.7836 43
1 6 2.00 16 107 554290 28.93276 29.444 59
1 6 2.00 17 107 196175 31.03469 31.902 75
1 6 2.00 18 107 471502 34.10818 34.6142 102
1 6 2.00 19 107 224480 36.54381 37.2612 154
1 6 2.00 20 107 214371 39.26553 39.9763 204
1 6 2.00 21 107 73660 41.83513 42.6645 301
1 6 2.00 22 107 98901 44.40762 45.3614 422
1 6 2.00 23 107 69845 47.1069 48.1436 677
1 6 2.00 24 107 57822 49.86945 50.8796 887
1 6 2.00 25 107 57726 52.37915 53.5622 1343
1 6 2.00 26 107 26194 55.20688 56.4128 1966
1 6 2.00 27 107 22438 57.52615 59.1253 2853
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TABLE I. (Continued.)

Number of inherent Number of lowest-energy Mean energy Number of distinct
d α χ N structures generated structures generated Lowest energy (of inherent structures) energies found

1 6 2.00 28 107 12874 60.70169 61.9653 4022
1 6 2.00 29 107 2699 62.57372 64.6753 5898
1 6 2.00 30 107 10039 66.15001 67.5981 8796
3 1 1.70 10 3 × 107 1418 0.0020304 0.0196315 1.04 × 106

3 6 1.77 20 3 × 107 553282 1.05579 1.24064 945314
3 6 1.75 30 3 × 107 518 1.69167 1.88439 2.51 × 107

must be related to each other by a constant 1 or −1, i.e.,

v2
1 = Rv1

1, (B1)

where vj

1 is the characteristic vector of the j th configuration,
and R is either 1 or −1. If R = 1, then the two configurations
are not related to each other by any rotation or reflection.
If R = −1, then the two configurations are related to each
other by a 180◦ rotation, or equivalently in one dimension,
a reflection. The translation relating the two configurations
can be found by the difference of the location of particle
A: t = r2

A − Rr1
A, where the superscripts indicate different

configurations. Having found the translation and rotation
relating these configurations, one can verify that for each
particle j in the first configuration, at location Rr1

j + t there
is a particle in the second configuration. If so, and if the

two configurations have the same number of particles, then
these two configurations must be related to each other through
symmetry operations.

To generalize this method to d > 1 dimensions, one must
find d characteristic vectors, derived from d closest particle
pairs. Solving the following matrix equation gives the rotation
and/or reflection matrix between the two configurations, R:(

v2
1v2

2 · · · v2
d

) = R
(
v1

1v1
2 · · · v1

d

)
(B2)

where vj

i is the ith characteristic vector of the j th config-
uration. The translation relating the two configurations can
be found similarly by t = r2

A − Rr1
A, where rj

A denotes the
starting particle in finding the first characteristic vector in
configuration j . Similar to the 1D case, the j th particle
in configuration 1 still corresponds to a particle at Rr1

j + t
in configuration 2.
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