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Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami
lattice model with continuous nucleation
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The Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth model is considered on a one-dimensional (1D)
lattice. Cells can grow with constant speed and continuously nucleate on the empty sites. We offer an alternative
mean-field-like approach for describing theoretically the dynamics and derive an analytical cell-size distribution
function. Our method reproduces the same scaling laws as the KJMA theory and has the advantage that it
leads to a simple closed form for the cell-size distribution function. It is shown that a Weibull distribution is
appropriate for describing the final cell-size distribution. The results are discussed in comparison with Monte
Carlo simulation data.
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I. INTRODUCTION

The Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth
model [1–3] has large applicability for describing several
natural phenomena [4–6] such as domain growth associated
with isothermal phase transformation [7–10], random sequen-
tial adsorption processes [5,11], and thin-film growth [12].
Recently, the model found exotic applications in molecular
biology [13] and cosmology [14], as well. The Voronoi-type
space tessellations [15] that appear as the result of growth
have also diverse scientific applications in physics, biology,
materials science, computer science, astrophysics, medicine,
economics, and sociology (see for example [15–17] and the
references within these works).

Although the KJMA model has been extensively studied
(see for example [18–23]) and in one-dimension (1D) exact
results are known for the cell-size distribution function
[18,23,24], the nonanalytical form of the results limits their
applicability. We propose here an alternative, approximative
theory, different from the one known to the KJMA process.
Due to the involved approximations our results are not exact
and less accurate than the one given by the the KJMA theory
in 1D. However, the advantage of our approach is that it leads
to the same scaling laws as the exact theory in 1D and suggests
a simple analytical form for the cell-size distribution function.
The situation is somewhat similar to the case of the Poissonian
Voronoi cell-size distribution function, where a simple and
reasonably fair fit with a few parameters proves to be more
useful for practical applications than a complicated albeit more
exact form [16].

In the following first we present our lattice model and adapt
its results for the 1D KJMA process. Then, we present our
simple mean-field-like analytical approximation for the stud-
ied quantities. Finally we present Monte-Carlo-type computer
simulation data for this growth process and compare critically
the obtained results with the theoretical ones.

II. THE LATTICE MODEL

The model considered here is the lattice version of the
KJMA model with continuous nucleation in 1D. The term
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“continuous nucleation” as it is used in the literature (see for
example [24]) refers to the fact that new cells can continuously
nucleate on empty sites with a constant rate. We consider
discrete time steps, and therefore fix a constant probability, to
nucleate a new cell on an empty site in each simulation step.
The growth process is sketched in Fig. 1. At the t = 0 time
step all sites are empty. At any t > 0 time step, each empty
site can be activated with a probability p, leading to a new
cell (depicted in the figure with different colors). The existing
cells can grow then (in the same time step) at both of their end
points by occupying the neighboring empty cells. Whenever
two cells get in contact, the growth stops at that boundary. The
growth order for the cells is fully randomized. In such manner
if there is only one empty site between two neighboring cells,
this site will be occupied with the same 1/2 probability by one
of the two involved cells. The nucleation and growth dynamics
continue until all sites are occupied by these Voronoi-like
cells. The model as described above has two parameters: the
size of the one-dimensional lattice, L, and the nucleation
probability, p.

Another variant of the model would be when in each
time step first the growth process is considered and after
that nucleation of new cells on the remaining empty sites.
By performing a Monte Carlo simulation exercise it is easy
to show that for large lattices and small enough p values
the two different updates lead to statistically similar final
configurations and scaling relations.

We are investigating the time tsat, needed to get saturation
and the statistics of the Voronoi-like cells at the end of the
growth process. More specifically, we would like to determine
the mean cell size c and the probability distribution function
for the cell sizes. Our aim is to get a compact analytical
approximation for the distribution function, one that would
be useful in practical applications.

Due to the discrete nature of time and space one has
to be very careful in generalizing the results of the KJMA
theory for describing the results of this model. The KJMA
theory considers continuous space and time, and the discrete
lattice model should reproduce this limit only for infinitely
large lattices and very small nucleation probabilities. A major
conceptual difference is that in the continuous KJMA model
the tsat saturation time is infinite, and if one wants to define such
a quantity to compare model results with some experiments,
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FIG. 1. Sketch of the 1D KJMA lattice model dynamics.

it usually defines the saturation time as the time needed
to transform a fixed percentage of volume (for example
99%) in the new phase. Finite-size effects that are present
in the lattice model are also not applicable for the KJMA
model.

III. THE CLASSICAL KJMA THEORY IN 1D

The KJMA model corresponding to our growth model is
the one which is known in the literature as the continuous
nucleation model [1–3], where each cell (grain) is physically
distinguishable from the others (or represent a different phase).
The model is defined in continuous space and time. In our
discrete growth mechanism we define the length unit l as
the distance between two neighboring lattice sites, and the
unit time T is set to one growth step, as described earlier.
The original model in its general form is governed by two
parameters, p the new cell nucleation rate per unit length and
v, the linear velocity at which the cells grow in both directions
until impeded by a neighboring cell. In our lattice approach
an additional parameter is the size L of the 1D lattice. The
growth described in the previous section sets the time unit by
considering v = 1 l/T .

Following the seminal work of Axe and Yamada [18] it
is easy to realize that the model has a dimensional scaling.
Using the nucleation rate p (dimension l−1T −1) and the growth
velocity v (dimension lT −1) we can define a natural length and
time scale for the KJMA growth process in 1D as

ξ = (p/v)−1/2, (1)

θ = (pv)−1/2. (2)

This allows for any G(s,t) function that is related to the space-
time evolution of the system (s is the spacial coordinate and
t the timelike coordinate) to be rescaled in a universal form
by expressing s and t in the ξ and θ units. This observation
immediately implies that for the case in which we use instead
of s the rescaled length x = s/ξ and instead t the rescaled
time τ = t/θ there is a universal cell-size distribution function
independent of p and v.

It is worth mentioning here also that in our lattice model
(see Sec. II) we have fixed v = 1. The results obtained for this
specific case can be however easily generalized for arbitrary v

values by using a dimensional analysis and the natural length
and time scales from (2).

In the continuous growth model Kolmogorov [1] derived
the famous result

w(t) = W (t)

L
= exp[−Vex(t)] (3)

for the fraction of untransformed material at time t . In the
above equation W (t) denotes the amount of material occupied
by the growing cells, L is the total size of the space where
the growth takes place, and Vex(t) denotes the total extended
volume fraction. The total extended volume is defined as the
hypothetical volume of the cells at time moment t if their
growth were unimpeded by the other cells (i.e., in the absence
of collision with other cells), divided by the size of the space
where the growth takes place. The value of Vex(t) in 1D is

Vex(t) = 1

L

∫ t

0
pL 2vt ′ dt ′ = pvt2, (4)

and we get

w(t) = exp(−pvt2). (5)

Following the works of Kolmogorov [1] and Avrami [3] we
can also estimate the number of nucleated cells N (t) at time
moment t as

N (t) = Lp

∫ t

0
w(t ′)dt ′ = L

√
p

v

∫ t
√

pv

0
exp(−u2)du. (6)

For arbitrary t time this leads to a nonanalytical form, which
can be expressed by using the error function. In the limit of
t → ∞ we get the total number of cells as

Nt = N (∞) = L

√
π

2

√
p

v
, (7)

which leads us to the average cell size c in the final
configuration:

c = L

Nt

= 2√
π

√
v

p
. (8)

For our finite 1D lattice with size L we can estimate also the
time needed to get saturation. The time needed to get w(t) = 0
is infinitely long. Usually the saturation time is estimated by
imposing a given percentage of the transformation reached,
for example κ = 0.99. In such case the saturation time can be
estimated by imposing

w
(
tcont
sat

) = 1 − κ, (9)

which leads to an approximation for the saturation time in the
continuous KJMA model:

tcont
sat = 1√

pv

√
− 1

ln(1 − κ)
∝ 1√

pv
. (10)

This result is obviously independent of the system size and
therefore there are no finite-size effects.

However, on our finite lattice there is a a finite saturation
time. The condition for saturation is to get the total number of
nonoccupied sites less than one. This leads to the saturation
condition

W (tsat) = 1. (11)
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The estimate for the tsat time length of the growth is

tsat =
√

ln L

pv
. (12)

In the definition of our discrete lattice model we considered
v = 1. In such case according to the KJMA theory we would
expect the following scaling properties:

c = 2√
π

1√
p

∝ 1√
p

, (13)

tsat =
√

ln L

p
∝ 1√

p
. (14)

An exact theoretical method for getting the grain-size
distribution in the 1D KJMA models has been known for a
quite long time; see for example the works of Axe and Yamada
[18], Ben-Naim and Krapivsky [24], or Farjas and Roura [23].
The problem with these approaches is that they do not lead
to a compact analytic form, only to a numerically computable
density function, which is not practical for fitting experimental
data. We consider thus an alternative, less accurate theory for
the 1D KJMA growth, which yields an analytically compact
form for the density function of the cell-size distribution.

IV. MEAN-FIELD-LIKE APPROACH

Let us consider the 1D growth in a mean-field (MF)
type approach. “Mean field” means here that we assume no
correlation effects between the growing cells, and we treat the
distribution of empty sites as a completely random distribution.

We denote by p the site activation probability and by L the
total number of lattice sites. At each time moment t let N (t)
be the total number of cells and W (t) the number of empty
(nonactivated) lattice sites. The probability that a randomly
chosen site is empty at time moment t is

q(t) = W (t)

L
. (15)

The dynamics of the N (t) and W (t) quantities are described
by the following equations:

dN(t)

dt
= pW (t), (16)

dW

dt
= −2q(t)N (t) − pW (t). (17)

The term 2q results in the following manner. The probability
that a cell grows on both of its sides [leading to a 2-site decrease
in W (t)] in a unit time step is q2. The probability that a cell
grows only in one given direction is q(1 − q). In such case
the newly occupied site can be the left or the right one, both
of them leading in W (t) to a decrease with 1 site. Therefore
the number of sites that are getting occupied by the growth of
the cell is [2q2 + 2q(1 − q)]N (t) = 2qN (t). The second term
in Eq. (17) results from the fact that each empty site can be
activated with a probability p.

In such manner we get a solvable system of coupled first-
order differential equations for N (t) and W (t). Using Eq. (15)

we get

dN(t)

dt
= pW (t), (18)

dW

dt
= −2

W (t)

L
N (t) − pW (t), (19)

which should be solved with the initial conditions

N (0) = 0, (20)

W (0) = L. (21)

The solution of the system is

N (t) = − 1
2pL + 1

2L
√

p(p + 4)F (t), (22)

W (t) = L

[
1 + p

4
− F (t)2 − p

4
F (t)2

]
, (23)

where

F (t) = tanh

[
1

2

(√
p(4 + p)t + 2 tanh−1

√
p

4 + p

)]
. (24)

In the limit of p � 1, which is our case, we can keep only the
leading terms in p and we get the simplified solution of the
system

N (t) ≈ L
√

pF (t), (25)

W (t) ≈ L[1 − F (t)2], (26)

where

F (t) ≈ tanh
[√

p
(
t + 1

2

)]
. (27)

Since one time unit is equivalent to one step in the growth
process, apart from the very beginning of the dynamics we
can assume (t + 1) ≈ t , leading to

F (t) ≈ tanh (
√

pt). (28)

According to these results, the total number of cells, Nt , at
the end of the growth process can be approximated as

Nt = lim
t→∞ N (t) ≈ L

√
p. (29)

The mean cell size c will be given by

c = lim
t→∞

L

N (t)
≈ 1√

p
. (30)

The scaling property as a function of p is the same as the
result of Eq. (13) given by the KJMA theory. The saturation
time necessary to fill up all sites tsat will be estimated now in
the same manner as in the classical KJMA theory,

W (tsat) = 1, (31)

and consequently

F (tsat) =
√

1 − 1

L
. (32)

From here one gets

tsat = 1√
p

tanh−1

√
1 − 1

L
. (33)
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Taking into account that 1/L = ε � 1, we can perform a
Taylor expansion of the tanh−1(

√
1 − ε) term around ε = 0,

and we get

tanh−1(
√

1 − ε) ≈ ln(2) − 1
2 ln(ε) − 1

8ε + O(x)2. (34)

This leads us to

tsat ≈ 1

2
√

p
ln(4L), (35)

suggesting for constant L the same scaling as the KJMA theory
in 1D [Eq. (14)],

tsat ∝ 1√
p

. (36)

The finite-size effect, i.e., variation of tsat as a function of L,
is however different.

We proceed now to determine the size-distribution function
of the cells in the limit where we neglect q(t)2 and keep only the
leading terms in p, i.e., where the solutions given by Eqs. (25),
(26), and (27) are valid. If we denote the number of cells of
size k at time moment t by N (k,t), the dynamics of the system
can be written by a coupled system of master equations. For
cells of sizes 1 and 2, the equations are a little different, but
for k > 2 the growth equations have the same form:

dN(1,t)

dt
= pLq − N (1,t)(2q − q2),

dN(2,t)

dt
= N (1,t)2q(1 − q) − N (2,t)(2q − q2),

· · · ,

dN(k,t)

dt
= N (k − 2,t)q2 + N (k − 1,t)2q(1 − q)

− N (k,t)(2q − q2),

· · · . (37)

Keeping only the first-order terms in q,

dN(1,t)

dt
= pLq − 2qN (1,t),

· · · ,

dN(k,t)

dt
= 2qN (k − 1,t) − 2qN (k,t),

· · · , (38)

we introduce the

Pi(k,t) = Ni(k,t)

N (t)
(39)

probabilities of finding a cell with size k among all cells in the
system at time moment t . Its first-order time derivative is

dPi(k,t)

dt
= 1

N (t)

dN(k,t)

dt
− 1

N (t)2

dN(t)

dt
N (k,t). (40)

Using Eqs. (15) and (16) we can write

dPi(k,t)

dt
= 1

N (t)

dN(k,t)

dt
− pq(t)P (k,t)

L

N (t)
. (41)

We rewrite now the master equations (38) for the corre-
sponding probabilities:

dP (1,t)

dt
= L

N (t)
pq − 2qP (1,t) − pqP (1,t)

L

N (t)
,

· · · ,

dP (k,t)

dt
= 2qP (k − 1,t)q − 2qP (k,t) − pqP (k,t)

L

N (t)
,

· · · . (42)

The master equation for the cumulative distribution function

S(k,t) =
k∑

i=1

P (k,t) (43)

can be obtained by adding up the equations in (42):

∂S(k,t)

∂t
= −[S(k,t) − S(k − 1,t)]2q + pqL

N (t)
[1 − S(k,t)].

(44)

Let us consider now the continuous limit of this probability
distribution, and instead of P (k,t) let us use the probability
density 	(s,t), where s is a continuous variable. Equation (44)
becomes now a partial differential equation (PDE) of the form

∂	(s,t)

∂t
= −2q

∂	(s,t)

∂s
+ pqL

N (t)
[1 − 	(s,t)]. (45)

Using the result from Eq. (25) for N (t) and Eq. (26) for
W (t), we get the following PDE for the distribution function:

∂	(s,t)

∂t

F (t)

1 − F (t)2
+ 2F (t)

∂	(s,t)

∂s
= √

p[1 − 	(s,t)].

(46)

For F (t) given by Eq. (28) one obtains

∂	(s,t)

∂t

tanh(t
√

p)

1 − tanh2(t
√

p)
+ ∂	(s,t)

∂s
tanh(t

√
p)

= √
p[1 − 	(s,t)]. (47)

This is an equation that is independent of L. We can also
show that the evolution equation for the cumulative distribution
function will be independent of the parameter p if we use
the cell size relative to the mean cell size and rescale the
time properly. More precisely, let us consider the following
scalings: x = s/c = s

√
p (where c denotes the average cell

size) and τ = t
√

p. With these new variables we get

∂	(x,τ )

∂τ

tanh(τ )

1 − tanh2(τ )
+ 2

∂	(x,τ )

∂x
tanh(τ ) = [1 − 	(x,τ )],

(48)

which is obviously independent of p, suggesting a scaling
property for the cell-size distribution function. This result
confirms again the consequences of the scaling relations given
by Eq. (2).

The general solution of this first-order partial differential
equation obtained with the standard mathematical methods is
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written as

	(x,τ ) = 1 − 1

tanh (τ )
eH [x−2 tanh (τ )], (49)

with H [z] an arbitrary function. Since 	(x,τ ) is the cumu-
lative cell-size distribution function, we search for a general
solution satisfying the criteria 	(∞,τ ) = 1, 	(0,∞) = 0, and
d	(x,τ )/dx > 0 for all x values. Taking into account that
0 � tanh(x) � 1, a general class of function H [z] satisfying
the imposed conditions is H [z] = −γ (z + 2)α , where γ and
α are two positive constants. This leads to the cumulative
cell-size distribution function

	(x,τ ) = 1 − 1

tanh (τ )
e−γ [x−2 tanh (τ )+2]α . (50)

It is easy to verify that such a solution satisfies the partial
differential equation (48). The above solution leads for τ → ∞
to the final cumulative cell-size distribution function:

	(x) = 1 − e−γ xα

. (51)

The corresponding probability density function is

ρ(x) = γαxα−1e−γ xα

, (52)

which is the well-known Weibull distribution. Taking into
account that 〈x〉 = 1, we get

γ =
[


(
1 + 1

α

)]α

, (53)

with (x) the classical Gamma function.

V. COMPUTER SIMULATIONS

In order to check the theoretical predictions Monte-Carlo-
type computer simulations have been performed. We have
considered system sizes up to Lmax = 109 lattice sites and
varied the nucleation probability in the range of 10−2 � p �
10−7. Simulations were done by performing in each time step
the growth of the existing cells first, and after that considering
the nucleation possibilities of new cells. It has been verified
however that the results are unchanged for the case in which
the order of the two process is inverted.

First, we have studied the statistical properties for the time
evolution of the system. Considering lattices with L = 108

sites and various nucleation probability values, we followed
the fraction of transformed phase w(t) = W (t)/L as a function
of time. Simulation results averaged on Q = 100 realizations
are plotted with continuous lines in Fig. 2. The prediction of
the KJMA theory (blue squares) describes well the simulation
results. As expected, our MF theory (dashed red line) gives
a fair description at the beginning of the dynamics, where
the cell’s growth can be considered independent, and a
considerable deviation is observed for later time steps.

The tsat time length of the growth process until saturation
will be our focus now. The results are presented in Figs. 3 and
4. In Fig. 3 symbols represents the computer simulation results
obtained for the scaling of the saturation time as a function of
the nucleation probability. Results for systems with different
sizes L are presented as indicated in the legend. The results are
averaged on many configurations, indicated by the Q values
in the legend. Black lines indicate the prediction obtained

10-1 100 101

t p1/2
0.0

0.2

0.4

0.6

0.8

1.0

w(t) MF
KJMA
p = 10-4

p = 10-5

p = 10-6

p = 10-7

FIG. 2. Fraction of activated sites (transformed phase), w =
W (t)/L, as a function of time. Continuous curves are computer
simulation results obtained for lattices with L = 108 sites and for
various nucleation probabilities p, averaged on Q = 100 realizations.
Blue squares are the prediction of the KJMA theory, while the red
dashed line is the result given by the MF theory.

from the KJMA theory [Eq. (14)] and red lines indicate our
MF prediction given by Eq. (35). The observed trend suggest
that the scaling predicted by both theories, tsat ∝ p−1/2, is
correct. The actual values for tsat given by the KJMA theory
are however much better in this case than the results of the MF
theory.

From the theoretical predictions we expect that the satu-
ration time is a function of the system size L. The computer
simulation results plotted in Fig. 3 confirm this expectation.
This finite-size effect is studied for different nucleation

10-8 10-6 10-4 10-2 100

p
101

102

103

104

105

tsat

L = 106, Q=10 000
L = 107, Q=1000
L = 108, Q=100
L = 109, Q=10
MF L=106

MF L=107

MF L=108

MF L=109

KJMA L=106

KJMA L=107

KJMA L=108

KJMA L=109

FIG. 3. Time needed for saturation, tsat, as a function of the
nucleation probability, p. Computer simulation results (circles) are
obtained on lattice sizes L and averaged on Q realizations as indicated
in the legend. Black lines represent the prediction of the KJMA theory
given by Eq. (14). Red lines indicate our MF prediction given in
Eq. (35).
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104 105 106 107 108 109 1010

L

0

5

10

15

t sa
t  p

1/
2

p = 10-2

p = 10-3

p = 10-4

p = 10-5

p = 10-6

p = 10-7

MF
KJMA

FIG. 4. Saturation time, tsat, as a function of the system size.
Simulation results (symbols) are for different p values indicated in
the legend. The data is averaged on many configurations Q which is
changing with the system size L (the same Q values are used as in
case of Fig. 3). The dashed line indicates the upper bond given by
Eq. (35).

probabilities and the results are plotted in Fig. 4. In order to
collapse the data for different p values we have plotted tsatp

1/2

as a function of the system size. Symbols represent computer
simulation data for different p values. The data are averaged on
many configurations Q that are changing with the system size
L. Here, the same Q values are used as in the case of Fig. 3. The
continuous black line indicates the KJMA prediction, Eq. (14),
while the red dashed line is the result in Eq. (35), obtained by
the MF theory. The result obtained from the KJMA theory
gives a good approximation for the computer simulation data.
The increasing trend of the MF theory is correct; however the
actual results offer a much weaker approximation than the ones
of the KJMA theory. One should also note that the result of
the KJMA theory adapted to the lattice model, Eq. (14), is also
not perfect. The data for different p values suggests that even
the tsat ∝ p−1/2 scaling hypothesis is not rigorously exact for
describing our MC simulations on the lattice. This is suggested
by the slightly different slopes observed for the simulation
results of tsat as a function of p, plotted on log-log scales
for different system sizes, L (different symbols in Fig. 3).
Again, we emphasize that this difference does not mean that
the KJMA theory is not exact; it just shows that applying the
results of the continuous KJMA theory to the MC simulation
results obtained on finite lattices has to be done with much
care and finite-size effects have to be taken into account.

We discuss now the statistical results for the final cell-size
distribution. Results for the mean cell size, c, as a function of
the nucleation probability are given in Fig. 5. Here, the symbols
represent simulation results for different system sizes, L, and
averaged on Q realizations (as indicated in the legend). The
continuous black line indicates the result of the KJMA theory
given by Eq. (13) and with the red dashed line we plot our
MF prediction given in Eq. (30). The computer experiments
confirm nicely the c ∝ p−1/2 scaling. Although the KJMA
theory offers a perfect description for the results, the values

10-8 10-6 10-4 10-2 100

p
100

101

102

103

104

c

L = 106, Q=10 000
L = 107, Q=1000
L = 108, Q=100
L = 109, Q=10
KJMA
MF

FIG. 5. Mean cell size as a function of the p nucleation proba-
bility. Computer simulations were realized on lattices with different
sizes L and averaged on Q realizations as it is indicated in the legend.
The continuous black line represents the prediction of the KJMA
theory [Eq. (13)] and the red dashed line is our MF prediction given
in Eq. (30).

predicted in the MF approach gives also a surprisingly good
approximation.

The final cell-size distribution function was studied for
different system sizes and nucleation probabilities. For the
ρ(x) probability density functions, where the cell size is
normalized by the mean cell size (x = s/c), the collapse of
the distribution functions for different p and L = 108 sites is
shown in Fig. 6. Here, the distribution function is obtained from
Q = 100 different simulations resulting in Ncells individual

0 1 2 3 4x
0.0

0.2

0.4

0.6

0.8

ρ(x)

Weibull   α=1.78 
p = 10-4 (N cells =88 134 392)

p = 10-5 (N cells  =27 975 942)

p = 10-6 (N cells =8 861 315)

p = 10-7 (N cells= 2 804 458)

FIG. 6. Final cell-size distributions, ρ(x), obtained for different
p nucleation probabilities (as indicated in the legend) and L = 108

system size. The continuous curve shows a Weibull fit with α = 1.78
for the collapsed data. Simulation results are generated from Q = 100
different runs, which result in Ncells individual cells (indicated in the
legend).
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power-law with exponent: α=1.78
p = 10-4 (N cells =88 134 392)

p = 10-5 (N cells=27 975 942)

p = 10-6 (N cells=8 861 315)

p = 10-7 (N cells =2 804 458)

FIG. 7. Scaling properties related to the final cumulative cell-size
distribution. The linear trend on the log-log plot for − ln[1 − 	(x)]
suggests that the Weibull distribution function with α = 1.78 de-
scribes well the computer simulation data. Symbols indicate computer
simulation results for different nucleation probabilities, as specified
in the legend. The continuous red line is a power law with exponent
1.78. Simulation results were obtained on lattices with L = 108 sites
and calculated from Q = 100 different runs which result in Ncells

individual cells (indicated in the legend).

cells indicated in the legend. In the same figure we also indicate
that a Weibull fit [see Eq. (52)] with α = 1.78 works well.

To further argue the Weibull form of the final cell-size
distribution function, we have plotted − ln[1 − 	(x)] as a
function of x in Fig. 7 [we recall that 	(x) is the cumulative
distribution function]. If one accepts for 	(x) the Weibull
distribution given by Eq. (51), than a power-law trend
is expected for − ln[1 − 	(x)]. The straight trend of the
simulation results in a log-log plot indicates a fair scaling
with an exponent of α = 1.78. This gives us further evidence
that the Weibull distribution is appropriate for describing the
final cell-size distribution for the 1D KJMA lattice model with
continuous nucleation.

VI. DISCUSSION AND CONCLUSIONS

We have considered a KJMA growth process with con-
tinuous nucleation on one-dimensional lattices. In order to
investigate the growth dynamics, the total time of the growth
process, and the statistics of the final cell-size distribution,
we used both the classical KJMA theory and a mean-field
(MF) type approximation. Computer simulation results were
compared with the predictions of these theories. We found
that the KJMA theory can be adapted to this discrete model
and offers an excellent description for the statistical properties
of the growth process. The lack of a compact form for the
cell-size distribution function is however a great impediment.
The MF-type approximation gives a good description for the
initial part of the dynamics, where the growth of the cells
can be considered as independent and coalescence is not
important. The MF theory leads to the same scaling properties

0 1 2 3 4
x = s/c 

0

0.2

0.4

0.6

0.8

1

(x
) ;

 
(x

) ;
 R
(x
)

AY(x)

AY(x)
RAY(x)

MC(x)

MC(x)
RMC(x)

FIG. 8. Results in comparison with the ones numerically com-
puted and plotted by Axe and Yamada [18]. Black dots are our
simulation results for the ρ(x) density function, and the circles
are the corresponding numerical results of Axe and Yamada. Filled
black squares are MC simulation results for the cumulative cell-size
distribution function, 	(x), and the empty squares are the results
calculated form the work of Axe and Yamada. Filled triangles are the
R(x) values computed for our simulation results from Eq. (54) and
the empty triangles are the R(x) values calculated from the numerical
results of Axe and Yamada.

for the saturation time and mean cell size as a function of
the nucleation probability as the KJMA theory. However,
the advantage of the MF-type approach is that it leads to
a compact analytical approximation for the final cell-size
distribution function. According to this, we expect a Weibull
distribution. The importance of such a compact formula can be
immediately exemplified by discussing the ρ(x) distribution
function plotted in Fig. 2 in the seminal work of Axe and
Yamada [18]. In this figure, the authors numerically compute
and plot the ρ(x) normalized distribution function (x = s/c

with c the mean cell size). This plot should be thus identical
with the one given in our Fig. 6. In Fig. 8 we have replotted
the digitized results of Axe and Yamada together with our
MC simulation data which are almost perfectly fitted by
the one-parameter Weibull distribution. One can immediately
observe however that the two curves do not mach. Although
both of the density functions are properly normalized (see
the trend in the cumulative distribution function, plotted in
Fig. 8) one of them should be wrong. We can immediately
recognize that there is a mistake in the density function plotted
in Ref. [18], by computing the

R(x) =
∫ x

0
ρ(y) y dy (54)

integral. According to the definition of x one should have
limx→∞ R(x) = 1. In Fig. 8 we observe that while the MC
simulation results indicate the right trend for R(x), the curve
plotted by Axe and Yamada fails. This is a clear sign that due to
the extremely complicated manner in which the ρ(x) density
function was numerically computed in Ref. [18], mistakes
were made. The compact form for the ρ(x) distribution
function offered by our mean-field-type approximation is
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appropriate to avoid such mistakes and therefore is more ap-
propriate for any practical applications in fitting experimental
data.

Unfortunately, it is not obvious how one could extend the
MF-type approach for computing the final cell-size distribution
function in higher-dimensional KJMA models with continuous
nucleation. We have also checked by MC simulations that a
Weibull distribution is not appropriate for the density function
of the 2D and 3D KJMA models. One can easily make the
extension of the MF theory for predicting the scaling properties
for the mean cell size and saturation times in 2D and 3D, but

as we have seen already here, the KJMA theory offers already
exact and compact results for these problems. In such sense
the problem of giving a compact analytical approximation for
the cell-size distribution function of the KJMA growth model
with continuous nucleation remains an open problem for the
practically important 2D and 3D cases.
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