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Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes
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We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which
molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple
hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle.
Three different types of the production terms in the system, which are suggested by a generalized BGK-type
collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory
with seven independent fields (ET7) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave
derived from the ET7 theory is confirmed by the experimental data for CO2, Cl2, and Br2 gases.
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I. INTRODUCTION

Nonequilibrium phenomena observed in polyatomic gases,
where energy exchanges among the translational, rotational,
and vibrational modes of a molecule play a key role [1],
have attracted longstanding interest in various fields, such
as physics, chemistry, and engineering. To describe such
phenomena, the thermodynamic theory of relaxation processes
of internal variables [2–4], which can be set within the
framework of thermodynamics of irreversible processes (TIP)
[5], has been adopted. Absorption and dispersion of ultrasonic
waves [6,7] and shock waves [8], in particular, have been
studied by using the theory.

TIP relies essentially on the assumption of local equilibrium
[5]. A theory of viscous heat-conducting fluids based on
TIP is the well-known Navier-Stokes Fourier theory of the
Newtonian fluids. Nowadays, however, there exist increasing
demands for deeper understanding of strong nonequilibrium
phenomena in polyatomic gases, that is, the phenomena out of
local equilibrium in nanotechnology, space science, molecular
biology, and so on [9–15].

Rational extended thermodynamics (hereafter referred to as
ET for simplicity instead of RET) [9–11] has been developed
as a thermodynamic theory being applicable to nonequilibrium
phenomena with steep gradients and rapid changes in space-
time, which are out of local equilibrium. ET of rarefied
monatomic gases is summarized in Refs. [9,10], while ET
of rarefied polyatomic gases with one relaxation process is
presented in Ref. [11]. In ET, two different closure methods of
a system of field equations have been proposed and extensively
applied to various problems:

(1) Phenomenological ET. The closure is obtained by using
the universal principles of continuum thermomechanics—
objectivity, entropy, and causality principles—to select admis-
sible constitutive equations (see Refs. [9,10,16] for monatomic
gases and Refs. [11,17] for polyatomic ones);
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(2) Molecular ET. The fields are moments of a distribution
function and the closure is obtained by using the maximum
entropy principle (MEP) [9,18]. In molecular ET, it was proved
that the closure by the MEP is equivalent to imposition of the
entropy principle on the truncated moment equations both for
monatomic gases [19] and for polyatomic gases [20].

It was verified that the two closure methods are equivalent
to each other and also equivalent to the Grad kinetic closure
based on the perturbation around the Maxwellian via Hermite
polynomials [21] (see Refs. [9,10,18] for monatomic gases
with 13 fields and Refs. [11,22,23] for polyatomic gases with
14 fields).

For later reference, we briefly explain ET of rarefied poly-
atomic gases with one relaxation process [11]. In polyatomic
gases, the molecular internal degrees of freedom, which are not
present in monatomic gases, come into play [24]. In particular,
the internal specific energy is no longer related to the pressure
in a simple way.

After the ET theory of monatomic gases with 13 fields has
been established [16], Kremer [25] tried to construct the ET
theory with 14 fields using a single hierarchy of balance laws
to incorporate the dynamic (nonequilibrium) pressure into the
theory. The same author also presented an ET theory with
17 fields [26,27] to take into account the effect of molecular
internal motion although the dynamic pressure was introduced
indirectly. About two decades later, Arima, Taniguchi, Rug-
geri, and Sugiyama [17] have realized the necessity of the
binary hierarchy of balance laws for the 14 independent fields:
mass density, velocity, specific internal energy, shear stress,
dynamic pressure, and heat flux. This theory is called ET14.
The Navier-Stokes Fourier theory is included in ET14 as a
limiting case, and the ET theory of monatomic gases with 13
fields can be derived from ET14 as a singular limit [28].

Concerning the kinetic counterpart of ET14, a crucial step
toward the development of the theory of rarefied polyatomic
gases was made by an idea of Borgnakke and Larsen [29]. The
distribution function is assumed to depend on an additional
continuous variable representing the energy of the internal
degrees of a molecule to take into account the exchange
of energy (other than translational one) in binary collisions.
This model was initially used for Monte Carlo simulations of
polyatomic gases, and later it was applied to the derivation of
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the generalized Boltzmann equation by Bourgat, Desvillettes,
Le Tallec, and Perthame [30] and was applied also to
chemically reacting mixtures [31].

In this model, a nonnegative energy of the internal degrees
of a molecule, I , is introduced. The velocity distribution
function depends on this additional parameter, i.e., f ≡
f (x,c,t,I ), where f (x,c,t,I ) dx dc is the number density of
molecules with the energy I at time t and in the volume element
dx dc of the phase space (6D position-velocity space) centered
at (x,c) ∈ R3 × R3. The Boltzmann equation is formally the
same as the one of monatomic gases:

∂tf + ci ∂if = Q(f ), (1)

but, for the collision term Q(f ), we take into account the
influence of internal degrees of freedom through the collision
cross-section [29,30]. Here, ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi . Then,
from the Boltzmann Eq. (1), we have a binary hierarchy of the
field equations [11,20,22]:

∂tF + ∂iFi = 0,

∂tFi1 + ∂iFii1 = 0,

∂tFi1i2 + ∂iFii1i2 = Pi1i2 , ∂tGll + ∂iGlli = 0,

∂tFi1i2i3 + ∂iFii1i2i3 = Pi1i2i3 , ∂tGlli1 + ∂iGllii1 = Qlli1 ,

...
..., (2)

involving the momentum-like moments F and the energy-like
moments G:

F =
∫
R3

∫ ∞

0
mf φ(I ) dIdc,

Fi1...ij =
∫
R3

∫ ∞

0
mci1 · · · cij f φ(I ) dIdc,

Gll =
∫
R3

∫ ∞

0
m

(
c2 + 2I

m

)
f φ(I ) dIdc,

Glli1...ik =
∫
R3

∫ ∞

0
m

(
c2 + 2I

m

)
ci1 · · · cikf φ(I ) dIdc,

where m is the mass of a molecule, φ(I ) is the state density of
the internal mode, that is, φ(I )dI represents the number of the
internal states of a molecule having the internal energy between
I and I + dI , and j,k = 1,2, . . .. The first five moments are
conserved quantities: the mass density F (= ρ), the momentum
density Fi(= ρvi), and twice the energy density Gll(= 2ρε +
ρv2 = 2ρ(εK + εI ) + ρv2), where vi is the mean velocity (and
v2 = vivi), and ε is the specific internal energy composed of
the kinetic part εK and the internal part εI . The quantities P ’s
and Q’s in the right-hand side of Eq. (2) are the production
terms derived from the collision term:

Pi1...ij =
∫
R3

∫ ∞

0
mci1 · · · cij Q(f )φ(I ) dIdc,

Qlli1...ik =
∫
R3

∫ ∞

0
m

(
c2 + 2I

m

)
ci1 · · · cikQ(f )φ(I ) dIdc,

where j = 2,3, . . . and k = 1,2, . . ..
Using the molecular approach and the MEP, Pavić, Ruggeri,

and Simić [22] (see also Ref. [11]) deduced the equilibrium

distribution function that maximizes the entropy:

f̄E = ρ

mA(T )

(
m

2πkBT

)3/2

exp

{
− 1

kBT

(
1

2
mC2 + I

)}
, (3)

which is the generalized Maxwellian in the case of polyatomic
gases. A(T ) is the normalization factor:

A(T ) =
∫ ∞

0
φ(I )e−βEI dI,

where βE ≡ 1/(kBT ), kB is the Boltzmann constant, T is
the absolute temperature related with the kinetic energy in
equilibrium:

εK
E = 3

2

kB

m
T,

and C2 = CiCi with Ci ≡ ci − vi being the peculiar velocity.
Then the same authors derived the system of ET14 using
the MEP and obtained the same closure as the one in the
phenomenological approach [17].

The validity of ET14 has been confirmed by comparing
the theoretical predictions to the experimental data of linear
waves [32], shock waves [33,34], and light scattering [35],
in particular, in the region where the Navier-Stokes Fourier
theory fails.

If all the dissipative fluxes except for the dynamic pressure
are negligible, ET14 reduces to a simpler ET theory with
six independent fields (ET6): mass density, velocity, specific
internal energy, and dynamic pressure [36,37]. This theory is
the simplest extension of the Euler theory of perfect fluids and
is compatible with the Meixner theory with one internal vari-
able [3,4]. The correspondence relation between ET6 and the
Meixner theory was shown explicitly in Ref. [36]. The distinct
shock wave structure observed in polyatomic gases such as
CO2 gas is explained satisfactorily also by the ET6 theory [38].

Furthermore, the ET6 theory with a nonlinear constitutive
equation was studied in detail [39–42]. It is noteworthy that the
nonlinear ET6 theory is perfectly consistent with the molecular
approach of the kinetic theory in polytropic gases [43] and
also in nonpolytropic ones [44]. In particular, in Ref. [44],
comparison was also made between the present method via
the continuous energy parameter I in the distribution function
and the mixture-like approach based on a discrete internal
energy given by Groppi and Spiga [45].

The ET theory with any number of independent fields has
also been constructed [20,46], and the convergence to the
singular limit of monatomic gas when the degrees of freedom
of a molecule D → 3 was proved [47].

It is evident, however, that the ET theory of polyatomic
gases with the binary hierarchy has the limitation of its ap-
plicability, although the theory has been successfully utilized
to analyze various nonequilibrium phenomena as explained
above. In fact, we have many experimental data showing
that the relaxation times of the rotational mode and of the
vibrational mode are quite different to each other. In such a
case, more than one molecular relaxation processes should be
taken into account to make the ET theory more precise. Our
aim of the present paper is to establish such an ET theory
with much wider applicability range for rarefied polyatomic
gases and to show its usefulness by studying ultrasonic wave
propagation.
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The present paper is organized as follows: In Sec. II, we
explain the kinetic model for a polyatomic gas with two
internal relaxation processes by using two parameters ex-
pressing the rotational and vibrational energies of a molecule.
The equilibrium distribution function, the expressions of the
thermal and caloric equations of state, and the entropy density
in equilibrium are also shown. In Sec. III, we make a general
discussion on the system of balance equations in ET of
polyatomic gases. Defining three kinds of moments, we derive
a triple hierarchy of moment equations from the Boltzmann
equation. And we study the truncated system of balance
equations and its closure via MEP. In Sec. IV, we introduce
a simple collision term with three relaxation times, which is
a generalization of the BGK model. In Sec. V, we establish
the ET7 theory with seven independent fields: mass density,
momentum density, translational energy density, rotational
energy density, and vibrational energy density. We derive the
nonequilibrium distribution function and the closed system of
field equations. In Sec. VI, we summarize some features of the
ET7 theory. In Sec. VII, we study the dispersion relation of a
plane harmonic wave. Theoretical prediction of the attenuation
is compared with the experimental data for CO2, Cl2, and Br2

gases. Final section is devoted to the concluding remarks and
the discussion on some future problems.

II. DISTRIBUTION FUNCTION WITH TWO ENERGIES
OF INTERNAL MODES

We adopt the closure of molecular ET in this paper;
therefore, we first explain the kinetic model for a polyatomic
gas with two internal relaxation processes and then derive
its equilibrium distribution function. The thermal and caloric
equations of state and the expression of the entropy density in
equilibrium are also shown.

To describe the relaxation processes of rotational and
vibrational modes separately, we decompose the energy of
internal modes I as the sum of the energy of rotational mode
IR and the energy of vibrational mode IV :

I = IR + IV . (4)

Generalizing the Borgnakke-Larsen idea [29], we assume the
same form of the Boltzmann Eq. (1) with a velocity distribution
function that depends on these additional parameters, i.e., f ≡
f (x,c,t,IR,IV ). And we also take into account the effect of
the parameters IR and IV on the collision term Q(f ).

Remark 1. As a state near the dissociation temperature, in
which the molecular vibration is highly anharmonic, is out of
the scope of the present study, the relation Eq. (4) can be safely
assumed.

Remark 2. In a harmonic approximation of the molecular
vibration, we may further divide IV into the energies of several
harmonic modes. However, in this paper, as we focus our study
on the contribution from the rotational or vibrational mode
as a whole, we do not enter into such details although the
generalization in this direction is straightforward.

A. Equilibrium distribution function

We derive the equilibrium distribution function fE by
means of MEP. We remark that the collision invariants of

the present model are m,mci , and mc2 + 2IR + 2IV . These
quantities correspond to the hydrodynamics variables, i.e.,
the mass density F (= ρ), the momentum density Fi(= ρvi)
and twice the energy density Gll(= 2ρε + ρv2) through the
following relations:

F =
∫
R3

∫ ∞

0

∫ ∞

0
mf ϕ(IR)ψ(IV ) dIRdIV dc,

Fi =
∫
R3

∫ ∞

0

∫ ∞

0
mcif ϕ(IR)ψ(IV ) dIRdIV dc,

Gll =
∫
R3

∫ ∞

0

∫ ∞

0
(mc2 + 2IR + 2IV )

× f ϕ(IR)ψ(IV ) dIRdIV dc. (5)

Here ϕ(IR) and ψ(IV ) are the state densities corresponding to
IR and IV . And it is easy to see from Eq. (5)3, that the specific
internal energy ε is composed of the kinetic part εK and the
parts of rotational mode εR and of vibrational mode εV , i.e.,

ε = εK + εR + εV .

The entropy density h is defined by

h = −kB

∫
R3

∫ ∞

0

∫ ∞

0
f log f ϕ(IR)ψ(IV ) dIRdIV dc, (6)

where kB is the Boltzmann constant.
Statement 1. The equilibrium distribution function fE ,

which maximizes the entropy density Eq. (6) under the
constraints Eq. (5), is given by

fE = ρ

mAR(T )AV (T )

(
m

2πkBT

)3/2

× exp

{
− 1

kBT

(
1

2
mC2 + IR + IV

)}
, (7)

where AR(T ) and AV (T ) are normalization factors:

AR(T ) =
∫ ∞

0
ϕ(IR)e−βEIR

dIR,

(8)

AV (T ) =
∫ ∞

0
ψ(IV )e−βEIV

dIV .

The proof is omitted here, for simplicity, because it is essen-
tially the same as the one shown in [11,22,43]. In fact, replacing
I, φ(I ), and A(T ) in Eq. (3) by IR + IV , ϕ(IR)ψ(IV ), and
AR(T )AV (T ), respectively, we can obtain Eq. (7).

The equilibrium distribution function can be expressed by
the product of the equilibrium distribution functions of the
three modes:

fE = f
(K)
E f

(R)
E f

(V )
E ,

where

f
(K)
E = ρ

m

(
m

2πkBT

)3/2

exp

(
− mC2

2kBT

)
,

f
(R)
E = 1

AR(T )
exp

(
− IR

kBT

)
,

f
(V )
E = 1

AV (T )
exp

(
− IV

kBT

)
.
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B. Thermal and caloric equations of state

By using the equilibrium distribution function fE , we obtain
the thermal and caloric equations of state. The pressure p is
expressed by

p = pK (ρ,T ) ≡ kB

m
ρT . (9)

The caloric equation of state is given by

ε = εE(T ) = εK
E (T ) + εR

E(T ) + εV
E (T ), (10)

and, proceeding in similar way as shown in Ref. [44], we have

εK
E (T ) ≡ 3

2

kB

m
T,

εR
E(T ) ≡ kB

m
T 2 d log AR(T )

dT
,

εV
E (T ) ≡ kB

m
T 2 d log AV (T )

dT
.

(11)

Therefore, if we know the normalization factors AR(T )
and AV (T ), similar to the partition function in statistical
mechanics, we can derive the equilibrium energies of rotational
and vibrational modes from Eq. (11). Vice versa if we know,
at the macroscopic phenomenological level, the constitutive
equations εR

E(T ) and εV
E (T ), we can obtain by integration of

Eqs. (11)2,3

AR(T ) = AR
0 exp

(
m

kB

∫ T

T0

εR
E(T ′)
T ′2 dT ′

)
,

AV (T ) = AV
0 exp

(
m

kB

∫ T

T0

εV
E (T ′)
T ′2 dT ′

)
,

where AR
0 , AV

0 , and T0 are inessential constants. As is observed
in Refs. [41,44], the functions AR and AV are, according to
Eq. (8), the Laplace transforms of ϕ and ψ , respectively:

AR(T ) = Lu[ϕ(IR)](s), AV (T ) = Lu[ψ(IV )](s),

s = 1

kBT
,

and then we obtain the state functions ϕ(IR) and ψ(IV ) as the
inverse Laplace transforms of AR(T ) and AV (T ), respectively:

ϕ(IR) = L−1
u [AR(T )](IR), ψ(IV ) = L−1

u [AV (T )](IV ),

T = 1

kBs
.

We also notice the relation

pK (ρ,T ) = 2
3ρεK

E (T ), (12)

and the specific entropy density s = hE/ρ in equilibrium is
given by

s = sE(ρ,T ) = sK
E (ρ,T ) + sR

E (T ) + sV
E (T ),

where

sK
E (ρ,T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(K)
E ϕ(IR)ψ(IV ) dIRdIV dc,

= kB

m
log

(
T 3/2

ρ

)
+ εK

E (T )

T
− kB

m
log

[
1

m

(
m

2πkB

)3/2]
,

sR
E (T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(R)
E ϕ(IR)ψ(IV ) dIRdIV dc,

= kB

m
log AR(T ) + εR

E(T )

T
,

sV
E (T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(V )
E ϕ(IR)ψ(IV ) dIRdIV dc,

= kB

m
log AV (T ) + εV

E (T )

T
. (13)

The Gibbs relations of the three modes are given by

T dsK
E (ρ,T ) = dεK

E (T ) − p(ρ,T )

ρ2
dρ, T dsR

E (T ) = dεR
E(T ), T dsV

E (T ) = dεV
E (T ). (14)

III. NONEQUILIBRIUM TRIPLE HIERARCHY OF MOMENT EQUATIONS

Before going into a specific ET theory, we briefly make a general discussion on the system of balance equations in ET of
polyatomic gases.
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Let us introduce three kinds of moments F,HR , and HV as follows:

Fi1...ij =
∫
R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij f ϕ(IR)ψ(IV ) dIRdIV dc,

HR
lli1...ik

=
∫
R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cikf ϕ(IR)ψ(IV ) dIRdIV dc,

HV
lli1...il

=
∫
R3

∫ ∞

0

∫ ∞

0
2IV ci1 · · · cil f ϕ(IR)ψ(IV ) dIRdIV dc,

where j,k,l = 1,2, · · · . From the Boltzmann Eq. (1), we obtain three hierarchies (a triple hierarchy) of balance equations, i.e.,
F,HR , and HV hierarchies in the following form:

∂tF + ∂iFi = 0,

∂tFi1 + ∂iFii1 = 0,

∂tFi1i2 + ∂iFii1i2 = P K
i1i2

, ∂tH
R
ll + ∂iH

R
lli = P R

ll , ∂tH
V
ll + ∂iH

V
lli = P V

ll ,

∂tFi1i2i3 + ∂iFii1i2i3 = P K
i1i2i3

, ∂tH
R
lli1

+ ∂iH
R
llii1

= P R
lli1

, ∂tH
V
lli1

+ ∂iH
V
llii1

= P V
lli1

,

...
...

...,

where the production terms are related to the collision term as follows:

P K
i1...ij

=
∫
R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij Q(f ) ϕ(IR)ψ(IV ) dIRdIV dc,

P R
lli1...ik

=
∫
R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cikQ(f ) ϕ(IR)ψ(IV ) dIRdIV dc,

P V
lli1...il

=
∫
R3

∫ ∞

0

∫ ∞

0
2IV ci1 · · · cilQ(f ) ϕ(IR)ψ(IV ) dIRdIV dc.

We notice that the first and second equations of the F -hierarchy
represent the conservation laws of mass and momentum, while
the sum of the balance equations of Fll, H

R
ll , and HR

ll represents
the conservation law of energy with

Qll = P K
ll + P R

ll + P V
ll = 0. (15)

In each of the three hierarchies, the flux in one equation appears
as the density in the next equation.

Remark 3. Equivalently, instead of the one of the three
hierarchies, we may adopt the hierarchy of the total energy
(G-hierarchy):

∂tGll + ∂iGlli = 0,

∂tGlli1···im + ∂iGllii1···im = Qlli1···im , m = 1,2, · · · ,

where Gll is given by Eq. (5)3 and

Glli1···im =
∫
R3

∫ ∞

0

∫ ∞

0
(mc2 + 2IR + 2IV )

× ci1 · · · cimf ϕ(IR)ψ(IV ) dIRdIV dc,

and

Qlli1···im = P K
lli1···im + P R

lli1···im + P V
lli1···im m = 1,2, · · · .

The G hierarchy has been introduced in the theory with the
binary hierarchy of balance equations [see Eq. (2)].

Truncated system of balance equations and its closure

To have a finite system of balance equations, we truncate
the F,HR , and HV hierarchies at the orders of N,M , and L,
respectively. For conciseness, it is convenient to introduce a
multi-index A:

cA =
{

1 for A = 0

ci1 · · · ciA for A � 1
.

The multi-index is also introduced for other quantities in a
similar way (see for more details Ref. [11]). Then, we can
express the densities as follows:

FA =
∫
R3

∫ ∞

0

∫ ∞

0
mcAf ϕ(IR)ψ(IV ) dIRdIV dc,

HR
llA′ =

∫
R3

∫ ∞

0

∫ ∞

0
2IRcA′f ϕ(IR)ψ(IV ) dIRdIV dc,

HV
llA′′ =

∫
R3

∫ ∞

0

∫ ∞

0
2IV cA′′f ϕ(IR)ψ(IV ) dIRdIV dc.

(16)

The fluxes FiA,HR
lliA′ ,H

V
lliA′′ and the productions P K

A , P R
llA′ ,

P V
llA′′ are also expressed in a similar way.

Then a triple hierarchy of moments truncated at the
orders N,M , and L [(N,M,L) system] is compactly
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expressed as

∂tFA + ∂iFiA = P K
A , ∂tH

R
llA′ + ∂iH

R
lliA′ = P R

llA′ , ∂tH
V
llA′′ + ∂iH

V
lliA′′ = P V

llA′′ , (17)

(0 � A � N ) (0 � A′ � M) (0 � A′′ � L)

with P K = 0 and P K
1 = 0 and with the condition Eq. (15)

representing the conservation laws of mass, momentum, and
energy.

1. Galilean invariance

Since the velocity-independent variables are the moments
in terms of the peculiar velocity Ci instead of ci , it is
possible to express the velocity dependence of the densities
F = (FA,HR

llA′ ,H
V
llA′′ )T , the nonconvective fluxes � = (FiA −

FAvi,H
R
lliA′ − HR

llA′vi,H
V
lliA′′ − HV

llA′′vi)T , and the production
terms P = (P K

A ,P R
llA′ ,P

V
llA′′ ) as follows [48]:

F = X(v)F̂, � = X(v)�̂, P = X(v)P̂,

where a hat on a quantity indicates the velocity-independent
part of the quantity.

We assume that the constitutive quantities F̂iN , Ĥ R
lliM,

Ĥ V
lliL, P̂ K

A , P̂ R
A′ , and P̂ V

A′′ , which we express as 
̂ generically,

depend on the densities locally and instantaneously:


̂ = 
̂(F̂A,ĤR
llA′ ,Ĥ

V
llA′′ ). (18)

Remark 4. In principle, the truncated orders N,M , and L

may be chosen independently. However, if we naturally impose
the condition that the (N,M,L) system can make the G-
hierarchy be Galilean invariant, the inequality; min(M,L) �
N − 1 should be satisfied [20] because of the relation

Glla = Xab

(
F̂llb + ĤR

llb + Ĥ V
llb + 2vlF̂lb + v2F̂b

)
[0 � a,b � min(M,L)].

2. MEP and the closure of the system

To obtain the constitutive Eqs. (18) explicitly, we utilize the
MEP. That is, the most suitable distribution function f(N,M,L)

is the one that maximizes the functional defined by (we omit
the symbol of summation for the repeated indices: A from 0
to N,A′ from 0 to M , and A′′ from 0 to L)

L(N,M,L)(f ) = −kB

∫
R3

∫ ∞

0

∫ ∞

0
f log f ϕ(IR)ψ(IV ) dIRdIV dc + λA

(
FA −

∫
R3

∫ ∞

0

∫ ∞

0
mcAf ϕ(IR)ψ(IV ) dIRdIV dc

)

+ μR
A′

(
HR

llA′ −
∫
R3

∫ ∞

0

∫ ∞

0
2IRcA′f ϕ(IR)ψ(IV ) dIRdIV dc

)

+ μV
A′′

(
HV

llA′′ −
∫
R3

∫ ∞

0

∫ ∞

0
2IV cA′′f ϕ(IR)ψ(IV ) dIRdIV dc

)
,

where λA,μR
A′ , and μV

A′′ are the Lagrange multipliers. As a
consequence [49], we have

f(N,M,L) = exp

(
−1 − m

kB

χ(N,M,L)

)
,

χ(N,M,L) = λAcA + 2IR

m
μR

A′cA′ + 2IV

m
μV

A′′cA′′ .

Due to the Galilean invariance, the distribution function can
be expressed in terms of the velocity-independent quantities:

f(N,M,L) = exp

(
−1 − m

kB

χ̂(N,M,L)

)
,

χ̂(N,M,L) = λ̂ACA + 2IR

m
μ̂R

A′CA′ + 2IV

m
μ̂V

A′′CA′′ .

(19)

Therefore, we obtain the velocity dependence of the Lagrange
multipliers λ ≡ (λA,μR

A′ ,μ
V
A′′ ) as follows [10,48]:

λ = λ̂X(−v). (20)

By inserting Eq. (19) into Eq. (16), the Lagrange multipliers
λA,μR

A′ , and μV
A′′ are evaluated in terms of the densities

FA,HR
llA′ , and HV

llA′′ . And, finally, by plugging Eq. (19) into

the last fluxes and production terms, the system is closed. In
this way, we obtain the ET theory for the (N,M,L) system.

Remark 5. An alternative approach to achieve the closure
(phenomenological closure) of the system makes use of the
entropy principle. In this case, it is required that all the
solutions of Eq. (17) satisfy the entropy inequality:

∂th + ∂ihi =  � 0,

where h is given by Eq. (6), and hi and  are the entropy flux
and the entropy production defined by

hi = −kB

∫
R3

∫ ∞

0

∫ ∞

0
cif log f ϕ(IR)ψ(IV ) dIRdIV dc,

 = −kB

∫
R3

∫ ∞

0

∫ ∞

0
Q(f ) log f ϕ(IR)ψ(IV ) dIRdIV dc.

(21)

According with the general results given first in Ref. [19] the
two closure methods give the same closed system of balance
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equations. Moreover, we obtain the following relations:

dh = λAdFA + μR
A′dHR

llA′ + μV
A′′dHV

llA′′ ,

dhi = λAdFiA + μR
A′dHR

lliA′ + μV
A′′dHV

lliA′′ ,

 = λAP K
A + μR

A′P
R
llA′ + μV

A′′P
V
llA′′ � 0.

(22)

IV. GENERALIZED BGK MODEL

Concerning the collision term, Struchtrup [50] and Rahimi
and Struchtrup [51] proposed a variant of the BGK model
[52] to take into account a relaxation of the energy of the
internal mode. In this section, we introduce a simple collision
term with three relaxation times to describe a more refined
model in which rotational and vibrational modes are treated
individually.

A. Three relaxation times

In polyatomic gases, we may introduce three characteristic
times corresponding to three relaxation processes caused by
the molecular collision (see also Refs. [7,53–55]):

(i) Relaxation time τK : This characterizes the relaxation
process within the translational mode (mode K) of molecules.
The process shows the tendency to approach an equilibrium
state of the mode K with the distribution function fK:E having
the temperature θK , explicit expression of which is shown
below. However, the rotational and vibrational modes are, in
general, in nonequilibrium. This process is observable also in
monatomic gases.

(ii) Relaxation time τbc: There are energy exchanges
among the three modes: mode K, rotational mode (mode
R), and vibrational mode (mode V). The relaxation process
occurs in such a way that two of the three modes [say
(bc) = (KR), (KV), (RV)] approach, after the relaxation time
τbc, an equilibrium state characterized by the distribution
function fbc:E with a common temperature θbc, explicit
expression of which is shown below. Because of the lack of
experimental data, we have no reliable magnitude-relationship
between τK and τbc. However, it seems natural to adopt the
relation: O(τbc) � O(τK ), which we assume hereafter (see
also Sec. VII). In Table I, three possible cases are summarized
depending on the choice of b and c.

(iii) Relaxation time τ of the last stage: After the relaxation
process between b and c, all modes, K, R, and V, eventually
approach a local equilibrium state characterized by fE with a
common temperature T among K, R, and V modes, which is
given by Eq. (7). Naturally, we have the relation: τ > τbc.

Diagrams of the possible relaxation processes are shown in
Fig. 1.

TABLE I. Three possible relaxation processes in the second
stage (ii).

(bc) Process (a,b,c) Relaxation time Collision term

(KR) process (V,K,R) τKR QKR(f )
(KV ) process (R,K,V ) τKV QKV (f )
(RV ) process (K,R,V ) τRV QRV (f )

K R

K+R

T

V

V

K+R+V

K

KR

K

KR

K R

K+V

T

V

R

K+R+V

K

KV

K

KV

K R

R+V

T

V

K

K+R+V

K

K RV

K

RV

(a) (b) (c)

t t t

FIG. 1. Diagram of the three possible relaxation processes of the
translational mode (K), rotational mode (R), and vibrational mode
(V) for (a) (KR) process, (b) (KV) process, and (c) (RV) process. The
symbols θK, θbc [(bc) = (KR), (KV), (RV)] are partial equilibrium
temperatures and T is the local equilibrium temperature. A mode
without attaching a symbol of the temperature is not necessarily in
partial equilibrium.

B. Generalized BGK collision term

The generalized BGK collision term for (bc) process
[(bc) = (KR), (KV), (RV)] is proposed as follows:

Qbc(f ) = − 1

τK

(f − fK:E) − 1

τbc

(f − fbc:E) − 1

τ
(f − fE),

(23)

where the distribution functions fK:E and fbc:E are given as
follows:

(a) Distribution function fK:E . This is given by

fK:E = ρRV (IR,IV )

m

(
m

2πkBθK

)3/2

exp

(
− mC2

2kBθK

)
, (24)

where

ρRV (IR,IV ) =
∫
R3

mf dc. (25)

This is the equilibrium function with respect to the K mode
with the temperature θK and with the “frozen” energies, IR and
IV . In other words, fK:E is a Maxwellian with the mass density
ρRV (IR,IV ) and temperature θK . Therefore, fK:E given in
Eq. (24) is obtained by maximizing not the true entropy Eq. (6)
but the entropy with the frozen energies:

hRV (IR,IV ) = −kB

∫
R3

f log f dc,

under the constraints⎛
⎜⎝

ρRV (IR,IV )

ρRV (IR,IV )vi

2ρRV (IR,IV )εK
E (θK )

⎞
⎟⎠ =

∫
R3

⎛
⎜⎝

m

mci

mC2

⎞
⎟⎠f dc.

Then we have the relation Eq. (25), and the relation

εK = εK
E (θK ),

from which we can determine the temperature θK .
(b) Distribution function fKR:E . Let us study the process

in which the K and R modes reach their common equilibrium
with the temperature θKR and the vibrational energy IV can
be considered as frozen. In this case, we have the distribution
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function:

fKR:E = ρV (IV )

mAR(θKR)

(
m

2πkBθKR

)3/2

× exp

{
− 1

kBθKR

(
mC2

2
+ IR

)}
,

where

ρV (IV ) = m

∫
R3

∫ ∞

0
f ϕ(IR) dIRdc. (26)

Since the equilibrium state is described by the mass density
ρV (IV ) with the frozen vibrational energy IV and the internal
energy εK+R

E (θKR) ≡ εK (θKR) + εR(θKR), we obtain fKR:E

by using the MEP and searching the maximum of the entropy,

hV (IV ) = −kB

∫
R3

∫ ∞

0
f log f ϕ(IR)dIR dc,

under the constraints⎛
⎜⎝

ρV (IV )

ρV (IV )vi

2ρV (IV )εK+R
E (θKR)

⎞
⎟⎠

=
∫
R3

∫ ∞

0

⎛
⎜⎝

m

mci

mC2 + 2IR

⎞
⎟⎠f ϕ(IR)dIR dc.

Therefore, we have the relation Eq. (26), and the relation

εK+R ≡ εK + εR = εK
E (θKR) + εR

E(θKR) ≡ εK+R
E (θKR),

(27)

from which we can determine the temperature θKR .
(c) Distribution function fKV :E . In a similar way, we have

f KV = ρR(IR)

mAV (θKV )

(
m

2πkBθKV

)3/2

× exp

{
− 1

kBθKV

(
mC2

2
+ IV

)}
,

where

ρR(IR) =
∫
R3

∫ ∞

0
mf ψ

(
IV

)
dcdIV .

And we have the relation, from which we can determine the
temperature θKV :

εK+V ≡ εK + εV = εK
E (θKV ) + εV

E (θKV ) ≡ εK+V
E (θKV ).

(28)

(d) Distribution function fRV :E . In this case, the K mode is
in equilibrium with the temperature θK , and R and V modes
are also in equilibrium but with the different temperature θRV .

Then we have the expression similar to Eq. (7):

fRV :E = ρ

mAR(θRV )AV (θRV )

(
m

2πkBθK

)3/2

× exp

(
− mC2

2kBθK
− IR + IV

kBθRV

)
,

where the temperature θRV is determined by the relation:

εR+V ≡ εR + εV = εR
E(θRV ) + εV

E (θRV ) ≡ εR+V
E (θRV ).

(29)

(e) Distribution function fE . This is the local equilibrium
distribution function given by Eq. (7), in which the temperature
T is given by the condition

ε = εE(T ). (30)

C. H-theorem

From the definition of the distribution functions fK:E,

fKR:E, fKV :E, fRV :E , and fE , it is easy to verify the following
relations [(bc) = (KR), (KV), (RV)]:∫
R3

∫ ∞

0

∫ ∞

0
(f −fK:E) log fK:Eϕ(IR)ψ(IV ) dIRdIV dc = 0,

∫
R3

∫ ∞

0

∫ ∞

0
(f −fbc:E) log fbc:Eϕ(IR)ψ(IV ) dIRdIV dc = 0,

∫
R3

∫ ∞

0

∫ ∞

0
(f −fE) log fEϕ(IR)ψ(IV ) dIRdIV dc = 0.

Then the entropy production Eq. (21) can easily be shown to
be positive:

 = kB

∫
R3

∫ ∞

0

∫ ∞

0

{
f − fK:E

τK
log

f

fK:E
+ f − fbc:E

τbc

× log
f

fbc:E
+ f − fE

τ
log

f

fE

}

× ϕ(IR)ψ(IV ) dIRdIV dc � 0,

and the H-theorem holds.

V. ET THEORY WITH SEVEN INDEPENDENT
FIELDS: ET7

The simplest system of Eq. (17) next to the Euler system
in the present approach is the system with seven independent
fields (ET7):

Mass density: F = ρ,

Momentum density: Fi = ρvi,

Translational energy density: Fll = 2ρεK + ρv2, (31)

Rotational energy density: HR
ll = 2ρεR,

Vibrational energy density: HV
ll = 2ρεV .

By neglecting the dissipation due to the shear stress and heat
flux, the ET7 theory focuses on the description of the internal
relaxation processes in a molecule.
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In this section, by means of the kinetic closure, we derive
the nonequilibrium distribution function and the closed system
of field equations following the general procedure adopted in
Refs. [36,43,44]. We assume the generalized BGK model of
the collision term introduced above.

A. System of balance equations

From Eq. (17), the system of balance equations is expressed
as follows:

∂F

∂t
+ ∂Fi

∂xi

= 0,

∂Fj

∂t
+ ∂Fij

∂xi

= 0,

∂Fll

∂t
+ ∂Flli

∂xi

= P K
ll ,

∂HR
ll

∂t
+ ∂HR

lli

∂xi

= P R
ll ,

∂HV
ll

∂t
+ ∂HV

lli

∂xi

= P V
ll ,

(32)

where (Flli , H
R
lli , H

V
lli) and (P K

ll , P R
ll , P V

ll ) are the fluxes and
productions of the densities (Fll, H

R
ll , H

V
ll ). It is easily verified

that the production terms are velocity independent.

B. Nonequilibrium distribution function

First of all, we start with the following statement:
Statement 2. The nonequilibrium distribution function for

the truncated system Eq. (32) obtained by using the MEP is
expressed as

f (7) = ρ

mAR(θR)AV (θV )

(
m

2πkBθK

)3/2

× exp

(
− mC2

2kBθK
− IR

kBθR
− IV

kBθV

)
, (33)

where AR(θR) and AV (θV ) are normalization factors given by
Eq. (8). Nonequilibrium temperatures θR and θV of R and V
modes are determined through the relations

εR = εR
E(θR), εV = εV

E (θV ).

The proof of this statement is given in the Appendix. A
similar result was obtained in Ref. [44] in the case of ET6. In
the present case, as shown also in the Appendix, the Lagrange
multipliers are given as the functions of (ρ,vi,θ

K,θR,θV ):

λ = −gK
E (ρ,θK )

θK
− gR

E (θR)

θR
− gV

E (θV )

θV
+ v2

2θK
,

λi = − vi

θK
, μK = 1

2θK
, μR = 1

2θR
, μV = 1

2θV
,

(34)

where gK
E (ρ,θK ),gR

E (θR), and gV
E (θV ) are the nonequilibrium

chemical potentials of the modes:

gK
E (ρ,θK ) = εK

E (θK ) + pK (ρ,θK )

ρ
− θKsK

E (ρ,θK ),

gR
E (θR) = εR

E(θR) − θRsR
E (θR), (35)

gV
E (θV ) = εV

E (θV ) − θV sV
E (θV ).

Remark 6. From Eq. (33), we notice that, within ET7,
any nonequilibrium state can be identified by assigning the
nonequilibrium temperatures θK, θR , and θV together with ρ

and vi . In other words, ET7 adopts the approximation that K,
R, and V modes are always in equilibrium but, in general, with
different temperatures from each other. Therefore, ET7 does
not take into account the relaxation (i) with the relaxation time
τK . See also Fig. 1.

Remark 7. The nonequilibrium temperatures have been
introduced in many studies although there still remain subtle
conceptual problems [56]. In the context of ET, the nonequilib-
rium temperature is defined through the Lagrange multiplier
corresponding to the conservation law of energy [11,57].
Indeed, the expression of the Lagrange multiplies of ET7,
Eq. (34), ensures the present definition of the nonequilibrium
temperatures θK, θR , and θV .

C. Closed system of field equations

By using the distribution function Eq. (33), we obtain the
constitutive equations for the fluxes as follows:

Fij =
∫
R3

∫ ∞

0

∫ ∞

0
mcicjf

(7) ϕ(IR)ψ(IV ) dIRdIV dc

= pK (ρ,θK )δij + ρvivj ,

Flli =
∫
R3

∫ ∞

0

∫ ∞

0
mc2cif

(7) ϕ(IR)ψ(IV ) dIRdIV dc

= {
2ρεK

E (θK ) + 2pK (ρ,θK ) + ρv2
}
vi,

HR
lli =

∫
R3

∫ ∞

0

∫ ∞

0
2ciI

Rf (7) ϕ(IR)ψ(IV ) dIRdIV dc

= 2ρεR
E(θR)vi,

HV
lli =

∫
R3

∫ ∞

0

∫ ∞

0
2ciI

V f (7) ϕ(IR)ψ(IV ) dIRdIV dc

= 2ρεV
E (θV )vi. (36)

We notice that the velocity-independent parts of Flli , H
R
lli , and

HV
lli vanish.
The trace part of the momentum flux Fll is related to

the pressure p and the dynamic pressure � in continuum
mechanics as follows:

Fll = 3(p + �) + ρv2.

Comparing this relation with Eq. (36)2, we notice that � is
given by

� = pK (ρ,θK ) − pK (ρ,T ), (37)
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or, from Eq. (12), it is given by

� = 2
3ρ

[
εK
E (θK ) − εK

E (T )
]
.

Therefore, as was shown in Refs. [44,58], the dynamic pressure is related to the energy exchange.
Using the constitutive equations above, we obtain the closed system of field equations for the independent seven fields,

ρ,vi,θ
K,θR,θV [the equations of state are given by Eqs. (9) and (10)]:

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,
∂ρvj

∂t
+ ∂

∂xi

{pK (ρ,θK )δij + ρvivj } = 0,

∂

∂t

{
2ρεK

E (θK ) + ρv2
} + ∂

∂xi

{(
2ρεK

E (θK ) + ρv2 + 2pK (ρ,θK )
)
vi

} = P K
ll ,

∂

∂t

{
2ρεR

E(θR)
} + ∂

∂xi

{
2ρεR

E(θR)vi

} = P R
ll ,

∂

∂t

{
2ρεV

E (θV )
} + ∂

∂xi

{
2ρεV

E (θV )vi

} = P V
ll , (38)

where expressions of the production terms are given in Sec. V E.
By using the material derivative, the system Eq. (38) is rewritten as follows:

ρ̇ + ρ
∂vi

∂xi

= 0, ρv̇i + ∂pK (ρ,θK )

∂xi

= 0, ε̇K
E (θK ) + pK (ρ,θK )

ρ

∂vk

∂xk

= P K
ll

2ρ
, ε̇R

E(θR) = P R
ll

2ρ
, ε̇V

E (θV ) = P V
ll

2ρ
. (39)

D. Entropy density and production

The nonequilibrium specific entropy density η = h/ρ for
the truncated system Eq. (32) is obtained from Eq. (6) as
follows:

η = sK (ρ,θK ) + sR(θR) + sV (θV ), (40)

where sK (ρ,θK ), sR(θR), and sV (θV ) are calculated by
Eq. (13). From Eq. (40) with Eq. (14), we obtain the extension
of the Gibbs relation in nonequilibrium as follows:

dη = 1

θK

(
dεK − pK (ρ,θK )

ρ2θK
dρ

)
+ 1

θR
dεR + 1

θV
dεV .

(41)

In the present case, the nonconvective part of the entropy
flux is zero. Therefore, we have

hi = hvi.

Then the balance law of the entropy density is written as
follows:

ρη̇ = , (42)

where, from Eq. (22) with Eq. (34), we obtain the entropy
production:

 = P K
ll

2θK
+ P R

ll

2θR
+ P V

ll

2θV
� 0.

E. Production terms in the generalized BGK model

As we can prove that f (7) = f
(7)
K:E , the relaxation time τK

plays no role in the production term. This is natural from the
Remark 6 above. By using the collision term for the processes,
Eq. (23), the production terms are given explicitly as follows:

Process (KR):

P K
ll = − 2ρ

τKR

[
εK
E (θK ) − εK

E (θKR)
]

− 2ρ

τ

[
εK
E (θK ) − εK

E (T )
]
,

P R
ll = − 2ρ

τKR

[
εR
E(θR) − εR

E(θKR)
] − 2ρ

τ

[
εR
E(θR) − εR

E(T )
]
,

P V
ll = −2ρ

τ

[
εV
E (θV ) − εV

E (T )
]
, (43)

where, from Eq. (27), θKR is determined by

εK+R
E (θKR) = εK

E (θK ) + εR
E(θR),

and, from Eq. (30), T is determined by

εE(T ) = εK
E (θK ) + εR

E(θR) + εV
E (θV ). (44)

Process (KV):

P K
ll = − 2ρ

τKV

[
εK
E (θK ) − εK

E (θKV )
] − 2ρ

τ

[
εK
E (θK ) − εK

E (T )
]
,

P R
ll = −2ρ

τ

[
εR
E(θR) − εR

E(T )
]
,

P V
ll = − 2ρ

τKV

[
εV
E (θV ) − εV

E (θKV )
] − 2ρ

τ

[
εV
E (θV ) − εV

E (T )
]
,

where, from Eq. (28), θKV is determined by

εK+V
E (θKV ) = εK

E (θK ) + εV
E (θV ),

and T is determined by Eq. (44).
Process (RV):

P K
ll = −2ρ

τ

[
εK
E (θK ) − εK

E (T )
]
,

P R
ll = − 2ρ

τRV

[
εR
E(θR) − εR

E(θRV )
] − 2ρ

τ

[
εR
E(θR) − εR

E(T )
]
,

P V
ll = − 2ρ

τRV

[
εV
E (θV ) − εV

E (θRV )
] − 2ρ

τ

[
εV
E (θV ) − εV

E (T )
]
,

where, from Eq. (29), θRV is determined by

εR+V
E (θRV ) = εR

E(θR) + εV
E (θV ),

and T is determined by Eq. (44).
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VI. CHARACTERISTIC FEATURES OF ET7

We summarize some features of the ET7 theory.

A. Comparison with the Meixner theory

Thermodynamic theories with internal variables have been
developed [5,59–62], the prototype of which is the Meixner
theory [3–5]. The system of field equations of the Meixner
theory with two internal variables, ξ (1) and ξ (2), is expressed
as follows:

ρ̇ + ρ
∂vi

∂xi

= 0, ρv̇i + ∂P
∂xi

= 0,

ρĖ+ P∂vk

∂xk

= 0, ξ̇ (1) = −β(1)A(1),

ξ̇ (2) = −β(2)A(2),

(45)

where P,E, andA(a)(a = 1,2) are, respectively, the pressure,
the specific internal energy, and the affinities of the relaxation
processes, and β(a) are positive phenomenological coefficients.
The generalized Gibbs relation in the Meixner theory is
assumed to be

TdS = dE− P
ρ2

dρ −
2∑

a=1

A(a)dξ (a), (46)

where T is the temperature and S is the specific entropy. Note
that the quantities T,S,P, andA depend not only on the mass
density ρ and the specific internal energy E but also on the
internal variables ξ (a). From Eq. (46), with the use of Eq. (45),
we obtain

Ṡ = 1

T

2∑
a=1

β(a)A(a)2
. (47)

Comparing the system of the ET7 theory Eqs. (39), (41),
and (42) with the system of the Meixner theory Eqs. (45),
(46), and (47), we have the following relationship between the
Meixner theory and the ET7 theory:

ξ (1) = εR
E(θR), ξ (2) = εV

E (θV ), P = pK (ρ,θK ),

E = εE(T ), S = η(ρ,θK,θR,θV ),

T = θK, A(1) = −θK

(
1

θR
− 1

θK

)
,

A(2) = −θK

(
1

θV
− 1

θK

)
,

β(1) = 1

2ρθK

(
1

θR
− 1

θK

)−1

P R
ll ,

β(2) = 1

2ρθK

(
1

θV
− 1

θK

)−1

P V
ll .

To sum up, we have identified the quantities in the Meixner
theory in terms of the more understandable quantities of ET7.
In particular, the nonequilibrium temperature T is recognized
as the temperature of the translational mode θK . This is
reasonable because, from Eq. (46),T(= θK ) is the temperature
of a state in equilibrium under a constraint that the system is
kept at fixed values of ξ (a)[= εR

E(θR),εV
E (θV )].

B. Characteristic velocity, subcharacteristic conditions,
and local exceptionality

It is well known that the characteristic velocity V associated
with a hyperbolic system of equations can be obtained by using
the operator chain rule (see Ref. [11]):

∂

∂t
→ −V δ,

∂

∂xi

→ niδ, f → 0,

where ni denotes the i component of the unit normal to the
wave front, f is the production terms, and δ is a differential
operator [11]. In the present case, if we choose {ρ,vi,η,θR,θV }
as independent variables instead of {ρ,vi,θ

K,θR,θV }, and
adopt the entropy law Eq. (42) instead of the energy equation
of the K mode in Eq. (39)3, we obtain

Contact Waves : V = vn = 0 (48)

(multiplicity 5),

Sound Waves : V = vn±
√(

∂p(ρ,θK (ρ,η,θR,θV ))

∂ρ

)
η,θR,θV

(each of multiplicity 1), (49)

where vn = vjnj . Here and hereafter, pK is denoted by p

for simplicity. We can rewrite the velocity of the sound wave
U = V − vn as follows:

U 2 = pρ(ρ,θK ) + θKp2
θK (ρ,θK )

ρ2cK
v (θK )

,

where a subscript attached to p indicates a partial derivative
and cK

v is the specific heat of the translational mode defined
by cK

v (T ) = dεK
E (T )/dT . In an equilibrium case, we have

U 2
E = pρ(ρ,T ) + Tp2

T (ρ,T )

ρ2cK
v (T )

.

The sound velocity of the Euler fluid is given by

U 2
Euler = pρ(ρ,T ) + Tp2

T (ρ,T )

ρ2cv(T )
,

where cv is the specific heat defined by cv(T ) = dεE(T )/dT

and

cv = cK
v + cR

v + cV
v ,

with the specific heat of the rotational mode cR
v and the

vibrational mode cV
v : cR

v (T ) = dεR
E(T )/dT and cV

v (T ) =
dεV

E (T )/dT . Since the specific heats of the three modes are
positive, we notice that the subcharacteristic condition [49] is
satisfied:

UE > UEuler.

It is well known that a characteristic velocity associated
with a wave is classified as (see, e.g., Ref. [11]): genuinely
nonlinear if δV = ∇uV · δu ∝ ∇uV · r �= 0, ∀u; linearly
degenerate or exceptional if δV ≡ 0, ∀u; locally linearly
degenerate or locally exceptional if δV = 0, for some u,

where r is the corresponding eigenvector associated to the
system Eq. (32). The contact waves Eq. (48) are exceptional
while the sound waves Eq. (49) can be locally exceptional if
the condition is satisfied. Simple algebra similar to the one in
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Ref. [63] gives that, if the hypersurface of local exceptionality
exists, the following relation is satisfied on it:

δV = 1

2ρ2U

(
∂ρ2U 2

∂ρ

)
η,θR,θV

= 0.

The results obtained here will be useful in the analysis of
nonlinear waves such as shock waves.

C. ET6 theories as the principal subsystems of the ET7 theory

Let us consider the (bc) process [(bc) = (KR), (KV), (RV)]
defined in Eq. (23) again, and assume that the relaxation time τ

is of several orders larger than the relaxation time τbc. In such
a case, the composite system of b mode and c mode quickly
reaches a state with the common temperature θbc. Therefore,
except for the short period of O(τbc) after the initial time, we
have the relation

θb = θc = θbc.

As the balance equation of the density [εb
E(θb) − εc

E(θc)]
is identically satisfied in the present approximation, the
remaining equations are given by

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,

∂ρvj

∂t
+ ∂

∂xi

{(p + �)δij + ρvivj } = 0,

∂

∂t
{2ρε + ρv2} + ∂

∂xi

{(2ρε + 2p + 2� + ρv2)vi} = 0,

∂(2ρE)

∂t
+ ∂(2ρEi)

∂xi

= PE,

where E is the nonequilibrium energy density characterizing
the relaxation process, and Ei and PE are its flux and
production. We may regard this system as the ET theory with
six fields, which we call ETbc

6 . In Table II, three possible ET6

theories corresponding the types of the relaxation process are
summarized.

The above argument can be rigorously formulated by using
the idea of the principal subsystem [10]. In the present case,
ET6 is the principal subsystem of ET7. The crucial point is that
all the universal principles of continuum thermomechanics—
objectivity, entropy, and causality principles—are automati-
cally preserved also in the subsystem.

The characteristic velocity of ETRV
6 is obtained as

URV 2 = pρ(ρ,θK ) + θKp2
θK (ρ,θK )

ρ2cK
v (θK )

,

which is the same as the characteristic velocity of ET7: URV =
U . On the other hand, for ETbc

6 with (b,c) = (K,R) or (K,V ),

TABLE II. Three possible ET6 theories.

Process (a,b,c) p + � E Ei PE

ETKR
6 (KR) (V,K,R) p(ρ,θKR) εV

E (θV ) εV
E (θV )vi P V

ll

ETKV
6 (KV ) (R,K,V ) p(ρ,θKV ) εR

E (θR) εR
E (θR)vi P R

ll

ETRV
6 (RV ) (K,R,V ) p(ρ,θK ) εRV

E (θRV ) εRV
E (θRV )vi P R

ll + P V
ll

we obtain

Ubc2 = pρ(ρ,θbc) + θbcp2
θbc (ρ,θbc)

ρ2cb+c
v (θbc)

,

where cb+c
v = cb

v + cc
v . Since cv > cb+c

v > cK
v , we have the

following relation in equilibrium:

UE > Ubc
E > UEuler.

Remark 8. The ET6 theory studied in the previous papers
[36–42] directly corresponds to the ETRV

6 theory in the present
notation. However, it should be noted that the previous ET6

theory may also correspond to the ET7 theories with (KR) and
(KV) processes as far as the V mode is kept in the ground state
and has no role in the phenomena under study.

D. Near-equilibrium case

In the (bc) process [(bc) = (KR), (KV), (RV)], energy
exchanges among a, b, and c modes are characterized by the
following quantities:

δ ≡ εb
E(θb) − εb

E(θbc) = −εc
E(θc) + εc

E(θbc),

� ≡ εa
E(θa) − εa

E(T ) = −εb+c
E (θbc) + εb+c

E (T ).

By expanding the nonequilibrium energies of the three modes
with respect to the nonequilibrium temperatures around an
equilibrium temperature T up to the first order, we obtain

δ = cb
v (θb − θbc) = −cc

v(θc − θbc),

� = ca
v (θa − T ) = −cb+c

v (θbc − T ).

Here and hereafter we use the notation ca
v instead of ca

v (T ) and
so on for simplicity. Inversely, the nonequilibrium tempera-
tures are expressed as follows:

θa − T = �

ca
v

, θbc − T = − �

cb+c
v

,

θb − T = δ

cb
v

− �

cb+c
v

, θc − T = − δ

cc
v

− �

cb+c
v

.

The production terms are now given by

P a
ll = −2ρ

�

τ
,

P b
ll = −2ρ

δ

τδ

+ 2ρ
cb
v

cb+c
v

�

τ
,

P c
ll = 2ρ

δ

τδ

+ 2ρ
cc
v

cb+c
v

�

τ
,

where τδ is defined as

1

τδ

≡ 1

τbc

+ 1

τ
.

Then the entropy production is given by

 = ρ

T 2

cb+c
v

cb
v cc

v

1

τδ

δ2 + ρ

T 2

cv

ca
v cb+c

v

1

τ
�2.

Since cK
v > 0, cR

v > 0 and cV
v > 0, and τδ > 0, τ > 0, the

entropy production is nonnegative.
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TABLE III. Explicit expression of A1, A2, and �.

(bc) A1 A2 �

(KR) or (KV ) cc
v

cb+c
v

0 pT

cb
v

δ − pT

cb+c
v

�

(RV ) 0 cv
pT

cK
v

�

The system of field Eqs. (39) is rewritten as follows:

ρ̇ + ρ
∂vi

∂xi

= 0,

ρv̇i + ∂

∂xi

(p + �) = 0,

ρcvṪ + (p + �)
∂vi

∂xi

= 0,

δ̇ + p + �

ρ

{
A1 + 1

cv

d

dT

(
cb
v

cb+c
v

)
�

}
∂vi

∂xi

= − δ

τδ

,

�̇ + p + �

ρ

A2 − ca
v

cv

∂vi

∂xi

= −�

τ
,

(50)

where p = p(ρ,T ), and A1, A2, and � are given in Table III.
In the limit τδ → 0, this system reduces to the system of ETbc

6 .
When we apply the Maxwellian iteration [64] on Eq. (50)4,5

and retain the first-order terms with respect to the relaxation
times τδ and τ , we obtain the following approximations for
small relaxation times:

δ = −τδ

p

ρ
A1

∂vi

∂xi

, � = −τ
p

ρ

A2 − ca
v

cv

∂vi

∂xi

.

For (bc) process [(bc) = (KR) or (KV)], from Eq. (37), we
have

� = �bc + �a, with

�bc = p(ρ,θK ) − p(ρ,θbc) = −τδp
ĉc
v

ĉb
v ĉb+c

v

∂vi

∂xi

,

�a = p(ρ,θbc) − p(ρ,T ) = −τp
ĉa
v

ĉb+c
v ĉv

∂vi

∂xi

,

where ĉv = cv/(kB/m), ĉK
v = cK

v /(kB/m), ĉK+R
v = cK+R

v /

(kB/m), and ĉV
v = cV

v /(kB/m). Recalling the definition of the
bulk viscosity ν,

� = −ν
∂vi

∂xi

,

we have its expression as follows:

ν = τδp
ĉc
v

ĉb
v ĉb+c

v

+ τp
ĉa
v

ĉb+c
v ĉv

.

This expression is a generalization of the previous results
[65,66]. If τ 
 τδ and ĉa

v has a value of O(1), the bulk viscosity
is approximated by

νa = τp
ĉa
v

ĉb+c
v ĉv

= [(
Ũb+c

E

)2 − (ŨEuler)
2
]
τp, (51)

where Ũb+c
E = Ub+c

E /
√

kBT /m and ŨEuler = UEuler/√
kBT /m. This expression can be derived also from ETbc

6 .

For (RV) process, we have

δ = 0, � = −τp
ĉR+V
v

ĉK
v ĉv

∂vi

∂xi

,

and the bulk viscosity is evaluated as

ν = τp
ĉR+V
v

ĉK
v ĉv

,

which is the same as the one derived from ETRV
6 [36,37].

E. Homogeneous solution and relaxation
of nonequilibrium temperatures

To focus our attention on the behavior of the internal
molecular relaxation processes, we study first a simple case:
homogeneous solutions of the system Eq. (39), i.e., solutions
in which the unknowns are independent of space coordinates
and depend only on the time t . The system Eq. (39) reduces
now to an ODE system:

dρ

dt
= 0,

dv
dt

= 0,
dεK

E (θK )

dt
= P K

ll

2ρ
,

dεR
E(θR)

dt
= P R

ll

2ρ
,

dεV
E (θV )

dt
= P V

ll

2ρ
.

(52)

The first two equations give that ρ and v are constant and
for Galilean invariance we can assume without any loss of
generality that v = 0. Moreover, from Eq. (44), summing the
last three equations of Eqs. (52), and taking into account
that the sum of the productions is zero and that εE(T ) is
monotonous function, we conclude that also T is constant.
Therefore there remain only the last three equations of
Eqs. (52) that govern the relaxation of the nonequilibrium
temperatures.

For simplicity, we now assume a process near equilibrium
and then consider a linearized version. Taking into account
Eq. (43), we obtain the following linear ODE system:

dθ̄a

dt
= − 1

τ
θ̄a,

dθ̄b

dt
= − 1

τ
θ̄b − 1

τbc

(θ̄b − θ̄bc),

dθ̄c

dt
= − 1

τ
θ̄c − 1

τbc

(θ̄c − θ̄bc),

(53)

where θ̄a ≡ θa − T , θ̄b ≡ θb − T , θ̄c ≡ θc − T , and

θ̄bc ≡ θbc − T = cb
v θ̄b + cc

vθ̄
c

cb+c
v

. (54)

The solution with the initial data θ̄a
0 = θ̄a|t=0, θ̄

b
0 = θ̄b|t=0 and

θ̄c
0 = θ̄c|t=0 is given by

θ̄a = θ̄a
0 e−t̂ ,

θ̄b = 1

ĉb+c
v

(
ĉb
v θ̄b

0 + ĉc
vθ̄

c
0

)
e−t̂ + ĉc

v

ĉb+c
v

(
θ̄b

0 − θ̄c
0

)
e−t̂/τ̂δ , (55)

θ̄c = 1

ĉb+c
v

(
ĉb
v θ̄b

0 + ĉc
vθ̄

c
0

)
e−t̂ − ĉb

v

ĉb+c
v

(
θ̄b

0 − θ̄c
0

)
e−t̂/τ̂δ ,
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0 t

R

KR

T1

T0

R

V

K

KR

0

0

FIG. 2. Schematic time-evolution of the relaxation of the
nonequilibrium temperatures θK, θR, θV , and θKR in the (KR)
process. The R mode is excited from T0 to θR

0 instantaneously at
the initial time, while K and V modes are initially at the temperature
T0. Final equilibrium temperature is T1. Relaxation times τδ and τ in
this case are also indicated.

where

t̂ = t

τ
, τ̂δ = τδ

τ
= τbc/τ

1 + τbc/τ
.

We have also the following relations:

θ̄b − θ̄bc = ĉc
v

ĉb+c
v

(
θ̄b

0 − θ̄c
0

)
e−t̂/τ̂δ ,

θ̄c − θ̄bc = − ĉb
v

ĉb+c
v

(
θ̄b

0 − θ̄c
0

)
e−t̂/τ̂δ .

(56)

As is expected, we can clearly see, from Eqs. (55), (56), and
(54), that the temperatures θb and θc relax to the temperature
θbc with the relaxation time τδ , while the temperatures θbc and
θa relax to the equilibrium temperature T with the relaxation
time τ .

From experimental data on polyatomic gases such as
CO2, Cl2, Br2 gases, the (KR) process is a suitable process
[54,55] (see also the analysis in Sec. VII). Therefore, as a
typical example, we particularly focus on this process and
study the relaxation evolved from a nonequilibrium initial
state: θK |t=0 = θV |t=0 = T0, θR|t=0 = θR

0 (> T0). This initial
state may be generated experimentally as follows: we first
prepare the equilibrium state with the temperature with T0,

then we excite only the R mode from the temperature T0 to
the temperature θR

0 instantaneously at the initial time. The
relaxation is analyzed by solving Eq. (53) under the initial
condition, in which T should be replaced by T1. From the
condition Eq. (44), T1 is given by

T1 = T0 + cR
v

(
θR

0 − T0
)

cv

.

The time-evolution of the relaxation is shown schematically
in Fig. 2, from which we understand the two-step relaxation,
and the energy redistribution from the R mode to the K and V
modes. We also notice that, after the elapse of a period of time
of O(τδ) from the initial time, the relation θK = θR = θKR

is approximately satisfied. Therefore, the results derived from
ETKR

6 and ET7 with (KR) process are nearly the same with
each other. This means that ET7 can be safely replaced by the
simpler theory, ETKR

6 .

VII. DISPERSION AND ATTENUATION OF ULTRASONIC
WAVE: AN APPLICATION OF ET7

We derive the dispersion relation of a plane harmonic wave
in Sec. VII A, and discuss its general features in Sec. VII B.
Theoretical prediction of the attenuation per wavelength αλ is
compared with the experimental data in the case of CO2 [67],
Cl2, and Br2 [68] gases in Sec. VII C.

A. Dispersion relation

Let us study a plane harmonic wave propagating along the
x axis expressed by

u = u0 + ū,

where u = (ρ,v,T ,δ,�) is a state vector with v being the x

component of the velocity vi , and u0 = (ρ0,0,T0,0,0) is a state
vector at a reference equilibrium state at rest. The deviation
ū = (ρ̄,v̄,T̄ ,δ̄,�̄) from u0 is expressed by

ū = wei(ωt−kx),

where w is the amplitude vector, ω is the angular frequency,
and k is the complex wave number: k = Re(k) + iIm(k) being
Re(k) and Im(k) the real and imaginary parts of k.

From the linearized system of field equations with respect
to ū, we obtain the dispersion relation, derivation method of
which is given in Ref. [69]:

1

(zUEuler)2
=

{
1 + (

Û 2
E − Ûbc2

E

) i�τ̂δ

1+i�τ̂δ
+ (

Ûbc2

E − 1
)

i�
1+i� for (bc) process [(bc) = (KR) or (KV)],

1 + (
Û 2

E − 1
)

i�
1+i� for (RV) process,

where z ≡ k/ω,� ≡ ωτ , and the dimensionless characteristic velocities: ÛE ≡ UE/UEuler and Ûbc
E ≡ Ubc

E /UEuler given by

Û 2
E = ĉv

ĉK
v

1 + ĉK
v

1 + ĉv

, Ûbc2

E = ĉv

ĉb+c
v

1 + ĉb+c
v

1 + ĉv

.

For (RV) process, δ does not play any role in the dispersion relation as seen from the linearized equations of Eqs. (50).
From the dispersion relation, the phase velocity vph, the attenuation factor α, and the attenuation per wavelength αλ are derived

by using the relations:

vph = ω

Re(k)
, α = −Im(k), αλ = 2πvphα

ω
= −2π

Im(k)

Re(k)
.
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In the high-frequency limit � → ∞, we have

vph,∞ ≡ lim
ω→∞ vph = ±UE, α∞ ≡ lim

ω→∞ α =
⎧⎨
⎩

± 1
2UEulerτ

Û 2
E−Ûbc2

E +τ̂δ (Ûbc2
E −1)

Û 3
Eτ̂δ

for (bc) process [(bc) = (KR) or (KV)],

± 1
2UEulerτ

Û 2
E−1
Û 3

E

for (RV) process.

In a similar way, we can also derive the dispersion relations
of the ET6 theories explained in Sec. VI C, explicit expressions
of which are omitted here for simplicity. A remarkable point is
as follows: the dispersion relation of ETRV

6 [70] coincides with
the dispersion relation of ET7 with (RV) process. While the
dispersion relation of ETbc

6 [(bc) = (KR) or (KV )] is obtained
from the dispersion relation of ET7 with (bc) process by taking
the limit τδ → 0.

B. Qualitative description of the dispersion relation

In this subsection, we discuss the general features of the
dispersion relation by studying some typical cases so that we
may address the following two questions: (i) For given experi-
mental data, how can we determine the most suitable relaxation
process among possible (KR), (KV), (RV) processes? (ii) What
is the relationship between the applicability ranges of ET7 and
ET6 theories?

In the above, we have noticed that the dispersion relation
depends on the temperature through the specific heats. There-
fore, before going into the main discussions, we remark here
on the estimation method of the specific heats. As usual in
thermodynamics, we may use the experimental data on the
specific heats. However, for a simple gas like a homonuclear
diatomic molecule gas, which we adopt in this subsection, the
specific heats can be estimated by the statistical-mechanical
considerations. That is, the specific heats cR

v and cV
v are

evaluated by using the rotational and vibrational partition
functions ZR and ZV as follows:

cR
v (T ) = kB

m
β2

E

∂2ZR

∂β2
E

, with ZR = Z
sn

2sn+1
g Z

sn+1
2sn+1
u ,

Zg =
∞∑

l=even

(2l + 1)e−kB�RβEl(l+1),

Zu =
∞∑

l=odd

(2l + 1)e−kB�RβEl(l+1),

cV
v (T ) = kB

m
β2

E

∂2ZV

∂β2
E

, with

ZV =
N∏

i=1

e−kB�Vi
βE/2

1 − e−kB�Vi
βE

, (57)

where sn,�R , and �Vi
are, respectively, the nuclear spin,

the characteristic rotational temperature, and vibrational tem-
perature of the ith harmonic mode. In the case of diatomic
molecules with sn = 1/2 and N = 1, a typical temperature
dependence of the specific heats cv, c

K+R
v , and cK+V

v is shown
in Fig. 3.

Let us study the temperature dependence of the phase
velocity vph(ω) and the attenuation per wavelength αλ(ω) in
the five typical cases listed in Table IV. The temperature of the
reference equilibrium state u0 increases from the case (A) to
the case (E) as seen in Fig. 3.

As many experimental data [7] indicate that the ratio of
the relaxation times τ̂δ is O(10−3) or more (see Sec. VII C
for (KR) process), we assume here that τ̂δ = 10−3 for all
processes. Therefore, we can observe the slow and fast
relaxation processes separately. In fact, we expect that the
dispersion relation has a remarkable change at around � ∼
O(1) [ω ∼ O(τ−1)] and � ∼ O(103) [ω ∼ O(τ−1

δ )]. See also
Remark 9 below.

In Fig. 4, the dimensionless phase velocity v̂ph = vph/UEuler

and the attenuation per wavelength αλ predicted by ET7 with
(KR), (KV), and (RV) processes in the five cases (A)–(E) are
shown.

Noticeable points are summarized as follows:
(1) Among the three relaxation processes, i.e., (KR), (KV),

and (RV) processes, the dependence of the curve vph(ω) on the
temperature is quite different from each other. In other words,
each relaxation process has its own characteristic temperature
dependence of the curve vph(ω). Conversely, experimental data
on such a temperature dependence can afford a suitable method
to identify the relaxation process in a gas under study.

(2) The dependence of the curve αλ(ω) on the temperature
is also quite different from each other among the three
relaxation processes. Experimental data on such a temperature
dependence can afford another suitable method to identify the
relaxation process in a gas under study. To be more precise,
let us focus on the temperature dependence of the value of αλ

at its peak in the low frequency region, i.e., the left peak in
Fig. 4. The peak value α

peak
λ attained at � = �peak is explicitly

cv
cvK+R

cvK+V

1.5

2.0

2.5

3.0

3.5

Log10T[K]
R V

(D)

(E)

(C)

(B)

(A)

FIG. 3. Typical temperature dependence of the dimensionless
specific heats; ĉv, ĉ

K+R
v , and ĉK+V

v . The five cases (A)–(E) listed
in Table IV are also indicted.
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TABLE IV. Five typical cases. Translational mode is fully excited
in all cases.

Specific Rotational Vibrational
Case heats mode mode

(A) ĉK
v = 3/2, ĉR

v = 0, ĉV
v = 0 Ground state Ground state

(B) ĉK
v = 3/2, ĉR

v = 1/2, ĉV
v = 0 Partly excited Ground state

(C) ĉK
v = 3/2, ĉR

v = 1, ĉV
v = 0 Fully excited Ground state

(D) ĉK
v = 3/2, ĉR

v = 1, ĉV
v = 1/2 Fully excited Partly excited

(E) ĉK
v = 3/2, ĉR

v = 1, ĉV
v = 1 Fully excited Fully excited

given by

α
peak
λ = 2π

Ûbc
E − 1

Ûbc
E + 1

(
�peak = 1

Ûbc
E

)

[(bc) = (KR),(KV ),(RV )],

and its temperature dependence is shown in Fig. 5.
(3) From the remark about the dispersion relation of ET6 in

Sec. VII A and the curves of ET7 shown in Fig. 4, we conclude
that the ET6 theories are reliable in the frequency region � <

O(101), where ET6 theories are quite good approximation

(a)  (b) (c)  
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h
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0.4
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cvR=1,cvV=1/2(D)

cvR=0,cvV=0(A)

cvR=1/2,cvV=0(B)

cvR=1,cvV=0(C)

cvR=1,cvV=1(E)

FIG. 4. Dimensionless phase velocity v̂ph = vph/UEuler and the
attenuation per wavelength αλ for (a) (KR) process, (b) (KV) process,
and (c) (RV) process in the five cases (A)–(E) listed in Table IV. The
ratio of the relaxation time τ̂δ is 10−3.

RV

KR
KV

0.0

0.1

0.2

0.3

0.4

0.5

pe
ak

Log10T[K]
R V

FIG. 5. Temperature dependence of α
peak
λ for (KR), (KV), and

(RV) processes. The characteristic rotational and vibrational temper-
atures are denoted as �R and �V .

of the ET7 theory. It should be emphasized that even in this
frequency region we should pick up a suitable ET6 theory
among the three theories by using the methods mentioned
above. When we go into higher frequency region � > O(101),
we should adopt the the ET7 theory instead of the ET6 theory.
This is true especially for (KR) and (KV) processes.

To sum up, we have proposed the selection methods for
the most suitable relaxation process and made clear the
applicability ranges of ET6 and ET7 theories. Finally, we
point out that the general features of the dispersion relation
discussed above can be found not only diatomic gases but also
in polyatomic gases because such features come mainly from
the global dependence of the specific heats on the temperature.

Remark 9. In Fig. 6, we show the dependence of αλ on the
ratio of the relaxation times τ̂δ in the case of the (KR) process
for an example. We notice from the figure that, when the ratio
increases, two peaks gradually coalesce into a big one. In such
a case the prediction of ETKR

6 is no longer valid even in the
frequency region � < O(101), and ET7 should be used.

Remark 10. As explained in Sec. V, the ET7 theory neglects
the so-called classical absorption, that is, the attenuation due
to the shear viscosity and the heat conduction. For gases in
which these effect emerges in the higher frequency region
� 
 O(101) such as H2 and CO2 [32,33], there is a possibility

10�2 10�1 100 101 102 103 1040.0

0.1

0.2

0.3

0.4 ET7

� 0.001

cv � 7 �2, cvK�R � 5 � 2

� 0.01
� 0.1

FIG. 6. Dependence of αλ for (KR) process on � with ĉv = 7/2
and ĉK+R

v = 5/2. The solid, dashed, and dotted lines indicate,
respectively, the cases with τ̂δ = 0.001,0.01, and 0.1.
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CO2

Cl2

Br2

3.0

3.5

4.0

4.5c v

250 300 350 400 450 500 550 600
T�K�

FIG. 7. Dependence of ĉv on T .

that two peaks from this and from the rapid relaxation studied
above, i.e., the right peak in Fig. 4 coalesce into one. Because
of this, in the above, we have focused on the temperature
dependence of the peak value of αλ in the low frequency
region. On the other hand, there is another possibility: for gases
in which the effects of shear viscosity and heat conduction
emerge around � ∼ O(1), the peaks from this and from the
left peak in Fig. 4 coalesce into one. Moreover, if τ̂δ ∼ O(1),
all three peaks coalesce into one. In the next paper, we will
study such combined effects in detail.

C. Comparison with experimental data

We compare the theoretical prediction of αλ by ET7 with
the experimental data of CO2 [67], Cl2, and Br2 gases [68].

As a preliminary step, we evaluate the specific heats of
CO2, Cl2, and Br2 gases by the statistical-mechanical method.
In these gases, the characteristic rotational temperature �R

is very low. In fact, from the data on the rotational con-
stant at the ground state [71], it is estimated as 0.56K
for CO2, 0.35K for Cl2, and 0.12K for Br2. Therefore, in
the temperature range higher than the room temperature,
the rotational degrees of freedom of these gases are in a
fully excited state with ĉK+R

v = 5/2. While the temperature
dependence of the vibrational specific heat is approximately
calculated by Eq. (57). For CO2 molecule with N = 4, the
characteristic vibrational temperatures are given by �V1 =
�V2 = 960 K, �V3 = 1997 K, and �V4 = 3380 K [71]. For Cl2
and Br2 molecules with N = 1, the characteristic vibrational
temperatures are, respectively, �V = 805 K and �V = 468 K
[71]. The temperature dependence of ĉv is shown in Fig. 7.

Applying the selection method mentioned above to the
experimental data on αλ [67,68], we conclude that these gases
have the (KR) process and the relaxation time τ is several
orders larger than the relaxation time τδ . Therefore, as the
present comparison is made only in the low frequency region,
we may safely assume τ̂δ = 10−3.

As the experimental data are summarized as the relationship
between αλ and f/p [Hz/Pa] (f = ω/2π ) [67,68], we use the
quantity ω/p instead of �. Recalling that � = (τp)(ω/p), we
adopt the quantity τp as a fitting parameter determined by the
least square method.

The comparison is made in Fig. 8. These figures show the
excellent agreement between the theoretical prediction of ET7

×
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FIG. 8. Dependence of αλ on ω/p [Hz/Pa] for several tempera-
tures with ĉK+R

v = 5/2, τ̂δ = 10−3 in rarefied CO2, Cl2, and Br2 gases
[67,68]. A parameter pτ is chosen to fit the experimental data by the
least-square method.

and the experimental data. The selected parameter τp and the
bulk viscosity νV estimated by using Eq. (51) are summarized
in Table V. We also emphasize the importance of the dynamic
pressure in the wave propagation phenomena. This is because
the bulk viscosity coefficients of CO2, Cl2, and Br2 gases
are much larger than the shear viscosity coefficients that are
estimated as 1.49 × 10−5[Pa · s] for CO2, 1.363 × 10−5 [Pa·s]
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TABLE V. The parameter τp and the bulk viscosity.

Gas T [◦C] τp [Pa · s] νV [Pa · s]

CO2 30.5 4.96 × 10−1 5.61 × 10−2

98.7 3.33 × 10−1 4.62 × 10−2

195 2.30 × 10−1 3.75 × 10−2

305 1.64 × 10−1 2.99 × 10−2

Cl2 23 4.08 × 10−1 2.98 × 10−2

103 2.53 × 10−1 2.19 × 10−2

167 1.80 × 10−1 1.68 × 10−2

204 1.49 × 10−1 1.43 × 10−2

256 1.17 × 10−1 1.16 × 10−2

Br2 28.0 6.47 × 10−2 6.40 × 10−3

100 5.47 × 10−2 5.69 × 10−3

177 4.27 × 10−2 4.57 × 10−3

256 3.35 × 10−2 3.65 × 10−3

for Cl2, and 9.42 × 10−4[Pa · s] for Br2 at T = 298 K and
p = 1 atm [72].

Remark 11. Many studies of the dispersion relation of sound
in polyatomic gases have been made basing on nonequilibrium
thermodynamics and/or the kinetic theory [1,73,74]. Except
for different definitions of the relaxation times, these theories
equally describe well the absorption of sound due to the
energy exchange among the degrees of freedom of a molecule
up to some limited frequency [7,53] (see also Ref. [75] for
the classification of the previous studies). In particular, the
Meixner theory with the relaxation processes of the molecular
internal energies [3,4] has been used to describe the attenuation
of sound phenomenologically. As shown in the present paper,
by using the correspondence relationship between the Meixner
theory and the ET7 theory discussed in Sec. VI A, the Meixner
theory seems to be valid also for phenomena out of local
equilibrium to which ET7 is applicable. However, as remarked
above, in the high-frequency region where shear viscosity
and heat conduction play roles, the ET theory with more
independent variables becomes indispensable because there
exists no such correspondence relationship.

VIII. SUMMARY AND OUTLOOK

The ET theory of rarefied polyatomic gases with two
molecular relaxation processes for the rotational and vi-
brational modes has been constructed. We have introduced
the generalized BGK model for the collision term. After
discussing the general structure of the ET theory with the
triple hierarchy, we have established, in particular, the ET7

theory. This theory includes three six-field theories as special
cases depending on the molecular collisional process. Finally,
as an application of the ET7 theory, the dispersion relation
of ultrasonic wave has been derived, and excellent agreement
between its theoretical prediction and the experimental data of
CO2, Cl2, and Br2 gases has been confirmed.

In our plan, the present paper is the first one in a series of
papers. We will report the following studies: (i) As mentioned
above, by using the triple hierarchy, more sophisticated
ET theory including also the shear stress and heat flux as
independent variables will soon be reported. (ii) In linear
waves, the excitations of the translational, rotational, and

vibrational modes from a reference state are small. However,
the ET theory can be also applied to the phenomena in
which large excitations take place. In this respect, shock wave
phenomena is worth studying. In Ref. [38], peculiar shock
wave structure in a polyatomic gas was studied by the ET6

theory. When we analyze the shock wave phenomena by
the present ET7 theory, we can find a more detailed shock
wave structure, in particular, in the relaxation region after the
subshock. (iii) The ET theory of dense polyatomic gases with
two molecular relaxation processes will also be constructed by
using the duality principle developed in Ref. [58].
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APPENDIX: PROOF OF STATEMENT 2

Let us introduce the Lagrange multipliers {λ, λi, μK (≡
λll/3), μR, μV } that correspond to the densities
{F,Fi,Fll,H

R
ll ,H

V
ll }. The velocity dependence of the Lagrange

multipliers Eq. (20) is explicitly expressed as follows:

λ = λ̂ − λ̂ivi + μ̂Kv2, λi = λ̂i − 2μ̂Kvi,

μK = μ̂K, μR = μ̂R, μV = μ̂V .

From Eq. (19), it is possible to express the distribution
function of the truncated system Eq. (32) as follows:

f (7) = �e−ηiCi e−βK mC2

2 e−βRIR

e−βV IV

, (A1)

where

� = exp

(
− 1 − m

kB

λ̂

)
, ηi = m

kB

λ̂i,

βK = 2

kB

μ̂K, βR = 2

kB

μ̂R, βV = 2

kB

μ̂V .

In addition, we introduce the following three parameters
θK, θR , and θV through βK, βR , and βV as follows:

θK = 1

kBβK
, θR = 1

kBβR
, θV = 1

kBβV
.

Recalling Eq. (8) and substituting Eq. (A1) into Eq. (31)
evaluated at zero velocity, we obtain ηi = 0 and

ρ = m

(
2πkBθK

m

)3/2

AR(θR)AV (θV )�,

εK (θK ) = 3

2

kB

m
θK,

εR(θR) = kB

m
θR2 d log AR(θR)

dθR
,

εV (θV ) = kB

m
θV 2 d log AV (θV )

dθV
.

These indicate that θK, θR , and θV are the nonequilibrium
temperatures of K, R, and V modes, respectively. Then
�,βK, βR , and βV are expressed in terms of ρ, θK, θR ,
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and θV as follows:

� = ρ

mAR(θR)AV (θV )

(
m

2πkBθK

)3/2

, βK = 1

kBθK
, βR = 1

kBθR
, βV = 1

kBθV
,

and we finally obtain the nonequilibrium distribution function Eq. (33).
The Lagrange multipliers are expressed in terms of the independent fields as follows:

λ̂ = −kB

m
(1 + log �), μ̂K = 1

2θK
, μ̂R = 1

2θR
, μ̂V = 1

2θV
.

Recalling Eq. (13) with Eq. (35), we obtain the following relations:

kB

m
log

[
m

ρ

(
2πkBθK

m

)3/2]
= sK

E (ρ,θK ) − εK
E (θK )

θK
= −gK

E (ρ,θK )

θK
,

kB

m
log AR(θR) = sR

E (θR) − εR
E(θR)

θR
= −gR

E (θR)

θR
,

kB

m
log AV (θV ) = sR

E (θV ) − εV
E (θV )

θV
= −gV

E (θV )

θV
,

and the relations Eq. (34) have been derived.
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