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Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes
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We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which
molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple
hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle.
Three different types of the production terms in the system, which are suggested by a generalized BGK-type
collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory
with seven independent fields (ET;) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave
derived from the ET; theory is confirmed by the experimental data for CO,, Cl,, and Br, gases.
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I. INTRODUCTION

Nonequilibrium phenomena observed in polyatomic gases,
where energy exchanges among the translational, rotational,
and vibrational modes of a molecule play a key role [1],
have attracted longstanding interest in various fields, such
as physics, chemistry, and engineering. To describe such
phenomena, the thermodynamic theory of relaxation processes
of internal variables [2—4], which can be set within the
framework of thermodynamics of irreversible processes (TIP)
[5], has been adopted. Absorption and dispersion of ultrasonic
waves [6,7] and shock waves [8], in particular, have been
studied by using the theory.

TIP relies essentially on the assumption of local equilibrium
[5]. A theory of viscous heat-conducting fluids based on
TIP is the well-known Navier-Stokes Fourier theory of the
Newtonian fluids. Nowadays, however, there exist increasing
demands for deeper understanding of strong nonequilibrium
phenomena in polyatomic gases, that is, the phenomena out of
local equilibrium in nanotechnology, space science, molecular
biology, and so on [9-15].

Rational extended thermodynamics (hereafter referred to as
ET for simplicity instead of RET) [9-11] has been developed
as a thermodynamic theory being applicable to nonequilibrium
phenomena with steep gradients and rapid changes in space-
time, which are out of local equilibrium. ET of rarefied
monatomic gases is summarized in Refs. [9,10], while ET
of rarefied polyatomic gases with one relaxation process is
presented in Ref. [11]. In ET, two different closure methods of
a system of field equations have been proposed and extensively
applied to various problems:

(1) Phenomenological ET. The closure is obtained by using
the universal principles of continuum thermomechanics—
objectivity, entropy, and causality principles—to select admis-
sible constitutive equations (see Refs. [9,10,16] for monatomic
gases and Refs. [11,17] for polyatomic ones);
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(2) Molecular ET. The fields are moments of a distribution
function and the closure is obtained by using the maximum
entropy principle (MEP) [9,18]. In molecular ET, it was proved
that the closure by the MEP is equivalent to imposition of the
entropy principle on the truncated moment equations both for
monatomic gases [19] and for polyatomic gases [20].

It was verified that the two closure methods are equivalent
to each other and also equivalent to the Grad kinetic closure
based on the perturbation around the Maxwellian via Hermite
polynomials [21] (see Refs. [9,10,18] for monatomic gases
with 13 fields and Refs. [11,22,23] for polyatomic gases with
14 fields).

For later reference, we briefly explain ET of rarefied poly-
atomic gases with one relaxation process [11]. In polyatomic
gases, the molecular internal degrees of freedom, which are not
present in monatomic gases, come into play [24]. In particular,
the internal specific energy is no longer related to the pressure
in a simple way.

After the ET theory of monatomic gases with 13 fields has
been established [16], Kremer [25] tried to construct the ET
theory with 14 fields using a single hierarchy of balance laws
to incorporate the dynamic (nonequilibrium) pressure into the
theory. The same author also presented an ET theory with
17 fields [26,27] to take into account the effect of molecular
internal motion although the dynamic pressure was introduced
indirectly. About two decades later, Arima, Taniguchi, Rug-
geri, and Sugiyama [17] have realized the necessity of the
binary hierarchy of balance laws for the 14 independent fields:
mass density, velocity, specific internal energy, shear stress,
dynamic pressure, and heat flux. This theory is called ET 4.
The Navier-Stokes Fourier theory is included in ET4 as a
limiting case, and the ET theory of monatomic gases with 13
fields can be derived from ET 4 as a singular limit [28].

Concerning the kinetic counterpart of ET 4, a crucial step
toward the development of the theory of rarefied polyatomic
gases was made by an idea of Borgnakke and Larsen [29]. The
distribution function is assumed to depend on an additional
continuous variable representing the energy of the internal
degrees of a molecule to take into account the exchange
of energy (other than translational one) in binary collisions.
This model was initially used for Monte Carlo simulations of
polyatomic gases, and later it was applied to the derivation of
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the generalized Boltzmann equation by Bourgat, Desvillettes,
Le Tallec, and Perthame [30] and was applied also to
chemically reacting mixtures [31].

In this model, a nonnegative energy of the internal degrees
of a molecule, /, is introduced. The velocity distribution
function depends on this additional parameter, ie., f =
f(x,c,t,I), where f(x,c,t,])dxdc is the number density of
molecules with the energy [ at time ¢ and in the volume element
dx dc of the phase space (6D position-velocity space) centered
at (x,¢) € R? x R?. The Boltzmann equation is formally the
same as the one of monatomic gases:

o f +cioif =0(f), (N

but, for the collision term Q(f), we take into account the
influence of internal degrees of freedom through the collision
cross-section [29,30]. Here, 0, = 9/0t and 0; = d/0x;. Then,
from the Boltzmann Eq. (1), we have a binary hierarchy of the
field equations [11,20,22]:

3;F + alE = 0’
atF‘il + aiEil = 07
0:Fi, + 0i Fijyiy, = Piyiys ;G + 9;Gy; =0,

0 Fiiiniy + 0i Fijyiniy = 0:Gui, + 0:Guii, = Quiiy»

i1i2i3s

g 2)

involving the momentum-like moments F and the energy-like
moments G:

F=/ /Ooqub(l)dldc,
R3 JO

Fiyi, = / / mei, i, f(I)dlde,
R3 JO

()
GU:/ / m{c” + — f¢(1)d]dc,
R3 Jo m

00 21
Gui,..i, = /}R/O m<02+ ;>c,»l ¢ fo(Ddlde,

where m is the mass of a molecule, ¢ (/) is the state density of
the internal mode, that is, ¢(1)d I represents the number of the
internal states of amolecule having the internal energy between
I and I +dI, and j,k = 1,2, .... The first five moments are
conserved quantities: the mass density F (= p), the momentum
density F;(= pv;), and twice the energy density G (= 2pe +
pv? = 2p(eX + &!) + pv?), where v; is the mean velocity (and
v? = v;v;), and ¢ is the specific internal energy composed of
the kinetic part X and the internal part &’. The quantities P’s
and Q’s in the right-hand side of Eq. (2) are the production
terms derived from the collision term:

Pi i, Z/ /00 mc;, -+~ ¢;; Q(f)p(I)dldc,
r3 Jo

Ouiiy..i :/ /Oom<62 + ﬂ)% <, Q(He(Ddlde,
R3 JO m

where j =2,3,...and k= 1,2, ....
Using the molecular approach and the MEP, Pavi¢, Ruggeri,
and Simi¢ [22] (see also Ref. [11]) deduced the equilibrium
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distribution function that maximizes the entropy:

3/2
fr= P (_m > exp{—L(lmCz—Fl)} 3)
E= mAT \ 2nkgT kgT \ 2 ’

which is the generalized Maxwellian in the case of polyatomic
gases. A(T) is the normalization factor:

A(T) = / o(De Peldl,
0

where Bg = 1/(kgT), kp is the Boltzmann constant, T is
the absolute temperature related with the kinetic energy in
equilibrium:

3kp
Cab i

and C? = C;C; with C; = ¢; — v; being the peculiar velocity.
Then the same authors derived the system of ET4 using
the MEP and obtained the same closure as the one in the
phenomenological approach [17].

The validity of ET 4 has been confirmed by comparing
the theoretical predictions to the experimental data of linear
waves [32], shock waves [33,34], and light scattering [35],
in particular, in the region where the Navier-Stokes Fourier
theory fails.

If all the dissipative fluxes except for the dynamic pressure
are negligible, ETj4 reduces to a simpler ET theory with
six independent fields (ETe): mass density, velocity, specific
internal energy, and dynamic pressure [36,37]. This theory is
the simplest extension of the Euler theory of perfect fluids and
is compatible with the Meixner theory with one internal vari-
able [3,4]. The correspondence relation between ETg and the
Meixner theory was shown explicitly in Ref. [36]. The distinct
shock wave structure observed in polyatomic gases such as
CO, gas is explained satisfactorily also by the ET¢ theory [38].

Furthermore, the ETg theory with a nonlinear constitutive
equation was studied in detail [39—42]. It is noteworthy that the
nonlinear ETg theory is perfectly consistent with the molecular
approach of the kinetic theory in polytropic gases [43] and
also in nonpolytropic ones [44]. In particular, in Ref. [44],
comparison was also made between the present method via
the continuous energy parameter [ in the distribution function
and the mixture-like approach based on a discrete internal
energy given by Groppi and Spiga [45].

The ET theory with any number of independent fields has
also been constructed [20,46], and the convergence to the
singular limit of monatomic gas when the degrees of freedom
of a molecule D — 3 was proved [47].

It is evident, however, that the ET theory of polyatomic
gases with the binary hierarchy has the limitation of its ap-
plicability, although the theory has been successfully utilized
to analyze various nonequilibrium phenomena as explained
above. In fact, we have many experimental data showing
that the relaxation times of the rotational mode and of the
vibrational mode are quite different to each other. In such a
case, more than one molecular relaxation processes should be
taken into account to make the ET theory more precise. Our
aim of the present paper is to establish such an ET theory
with much wider applicability range for rarefied polyatomic
gases and to show its usefulness by studying ultrasonic wave
propagation.
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The present paper is organized as follows: In Sec. II, we
explain the kinetic model for a polyatomic gas with two
internal relaxation processes by using two parameters ex-
pressing the rotational and vibrational energies of a molecule.
The equilibrium distribution function, the expressions of the
thermal and caloric equations of state, and the entropy density
in equilibrium are also shown. In Sec. III, we make a general
discussion on the system of balance equations in ET of
polyatomic gases. Defining three kinds of moments, we derive
a triple hierarchy of moment equations from the Boltzmann
equation. And we study the truncated system of balance
equations and its closure via MEP. In Sec. IV, we introduce
a simple collision term with three relaxation times, which is
a generalization of the BGK model. In Sec. V, we establish
the ET; theory with seven independent fields: mass density,
momentum density, translational energy density, rotational
energy density, and vibrational energy density. We derive the
nonequilibrium distribution function and the closed system of
field equations. In Sec. VI, we summarize some features of the
ET; theory. In Sec. VII, we study the dispersion relation of a
plane harmonic wave. Theoretical prediction of the attenuation
is compared with the experimental data for CO,, Cl,, and Br,
gases. Final section is devoted to the concluding remarks and
the discussion on some future problems.

II. DISTRIBUTION FUNCTION WITH TWO ENERGIES
OF INTERNAL MODES

We adopt the closure of molecular ET in this paper;
therefore, we first explain the kinetic model for a polyatomic
gas with two internal relaxation processes and then derive
its equilibrium distribution function. The thermal and caloric
equations of state and the expression of the entropy density in
equilibrium are also shown.

To describe the relaxation processes of rotational and
vibrational modes separately, we decompose the energy of
internal modes [ as the sum of the energy of rotational mode
IR and the energy of vibrational mode 1":

I=I%+1". 4)

Generalizing the Borgnakke-Larsen idea [29], we assume the
same form of the Boltzmann Eq. (1) with a velocity distribution
function that depends on these additional parameters, i.e., f =
fx,e,t, 1% 1V). And we also take into account the effect of
the parameters I® and IV on the collision term Q(f).

Remark 1. As a state near the dissociation temperature, in
which the molecular vibration is highly anharmonic, is out of
the scope of the present study, the relation Eq. (4) can be safely
assumed.

Remark 2. In a harmonic approximation of the molecular
vibration, we may further divide 1" into the energies of several
harmonic modes. However, in this paper, as we focus our study
on the contribution from the rotational or vibrational mode
as a whole, we do not enter into such details although the
generalization in this direction is straightforward.

A. Equilibrium distribution function

We derive the equilibrium distribution function fg by
means of MEP. We remark that the collision invariants of
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the present model are m, mc;, and mc? 4+ 2I% + 21V, These
quantities correspond to the hydrodynamics variables, i.e.,
the mass density F(= p), the momentum density F;(= pv;)
and twice the energy density G (= 2ps + pv?) through the
following relations:

F=/ /oo /oomfw(IR)w(lv)dIRdlvdc,

R3 JO 0

F =/ /w /wmcifw(lk)wuv)dl’*dlvdc,
R3 JO 0

o0 o0
G,,:/f (mc* 4+ 218 +217)
R3 JO 0

x foI®yIVYdIRdIVde. 5)

Here ¢(I®) and v/(1") are the state densities corresponding to
I® and I'V. And it is easy to see from Eq. (5)3, that the specific
internal energy & is composed of the kinetic part ¢X and the
parts of rotational mode &R and of vibrational mode ¢V, i.e.,

=K 4R 46",

The entropy density # is defined by

h= —kB/ /OO/OO flog fo(I®yWYYdIRdIVde, (6)
R3JO 0

where kp is the Boltzmann constant.

Statement 1. The equilibrium distribution function fg,
which maximizes the entropy density Eq. (6) under the
constraints Eq. (5), is given by

B P m 3/2
fe = mAR(T)AY(T) <2nkBT>

1 1
——— | =mC*+ IR+ 1V ), 7
xexp{ kBT(Zm + 1"+ (7)
where AR(T) and AV (T) are normalization factors:

AXT) = / "ot ark,

. 8)
AV(T):/ w(dVye Pl arv.

0

The proof is omitted here, for simplicity, because it is essen-
tially the same as the one shownin [11,22,43]. In fact, replacing
I, ¢(I), and A(T) in Eq. (3) by IR+ 1", o(I®)y (1), and
AR(T)AY(T), respectively, we can obtain Eq. (7).

The equilibrium distribution function can be expressed by
the product of the equilibrium distribution functions of the
three modes:

(K) £(R) (V)
fe=fe fe ' fe s

(K) _ 1% m 3/2 mC2
- Z exp | — ,
m \2mksT 2%pT
=——exp|——),
Te = 4ry P\ Tt

1 IV
€X' _— .
AT P\ T kT

where

V) _
p =
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B. Thermal and caloric equations of state

By using the equilibrium distribution function f, we obtain
the thermal and caloric equations of state. The pressure p is
expressed by

k
p=p"(p.T)= =pT. ©)
m
The caloric equation of state is given by
e =ep(T) =ep (1) +ef(D)+ep(T),  (10)

and, proceeding in similar way as shown in Ref. [44], we have

3ky
Ty=>"27,
eE( )= 2 m
k dlog AR(T
efr) = 22820 an
k dlog AV (T)
eg(T)szz—ng .

Therefore, if we know the normalization factors AR(T)
and AY(T), similar to the partition function in statistical
mechanics, we can derive the equilibrium energies of rotational
and vibrational modes from Eq. (11). Vice versa if we know,
at the macroscopic phenomenological level, the constitutive
equations & E(T) and & E(T) we can obtain by integration of
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Egs. (11)23

(T)
AR = AO exp (kB / T/z ar ),

m (T)
AV(T)=A(‘)/cxp<E/TO 7 dT)

where Ag , A(‘)/ ,and T are inessential constants. As is observed

in Refs. [41,44], the functions AR and A" are, according to

Eq. (8), the Laplace transforms of ¢ and v, respectively:
AR(T) = LuleUI™)](s),  AY(T) = L[y I)](s),

1

kgT’

and then we obtain the state functions ¢(I®) and ¥ (1V) as the

inverse Laplace transforms of AR(T) and A" (T), respectively:

S =

e(I®) = L'ARMIU®), va")=L,"TAY(M1a"),
_1
kBS ’
We also notice the relation
p(p.T) = 3pef(T), (12)

and the specific entropy density s = hg/p in equilibrium is
given by

s =sp(p,T) = 5§ (p,T) + sg(T) + s4(T),

where

k o0 o0
sg(p.T) = —?B/R}/O /0 felog £ o(I®yy1¥yd1Rd1Y de,

_’210 PN (@) ks T m \Y
T m 8 Elm\onks ) |

T m
SR =—— / / f felog £ oIy (1) d1"d1" de,
]RS
kg ek
:—logA (T)+ ( )
STy =—=> / / f felog £ o1y d1*d1" de,
]R%
kp
= logA (T) + E; ) (13)
The Gibbs relations of the three modes are given by
Tdsk _ . K pp,T) R _ IR 1% gV
sp(p,T)=deg(T) — ps dp, Tdsp(T)=dep(T), Tdsp(T)=dey(T). (14)

III. NONEQUILIBRIUM TRIPLE HIERARCHY OF MOMENT EQUATIONS

Before going into a specific ET theory, we briefly make a general discussion on the system of balance equations in ET of
polyatomic gases.
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Let us introduce three kinds of moments F, H®, and H" as follows:

o0 o0
i = f / / mes e f oIV ydIRd1" de,
R3 JO 0

© poo

Hlfil...ik = /]R’/(; /0 ZIRCil
0 oo

Hl}/il...il = /]R"/(; /0 21\/6[1

e foI®yaVydIRdlY de,

e foI®yUVydIRdl de,

where j,k,l = 1,2, ---. From the Boltzmann Eq. (1), we obtain three hierarchies (a triple hierarchy) of balance equations, i.e.,

F, H¥ and H" hierarchies in the following form:
o F +0;F; =0,
aZI?lA] + aIP‘ll] = 05
_ pk
= Py

— pk

i1ipi3?

0 Fii, + 0i Fiiyi,
0 Fiiniy + 0 Fiiyinis

o Hj + 8 Hy; = Py,
R R R
O Hy;, + 0iHyyy, = P,

O H, + 0;Hy, = P,

% % %
0 Hy;, + 0iHyyy, = Py,

where the production terms are related to the collision term as follows:

Py, = / / ) / " e e, QN UMy Uy dIfdl de,
R3 Jo 0 '

o0 o0
o0 o0
Py =/}Rs/0 /O 21¢;, -

We notice that the first and second equations of the F-hierarchy
represent the conservation laws of mass and momentum, while
the sum of the balance equations of Fy;, Hlf, and H, lf represents
the conservation law of energy with
Qu=Pf+Pf+P]=0. (15)

In each of the three hierarchies, the flux in one equation appears
as the density in the next equation.

Remark 3. Equivalently, instead of the one of the three
hierarchies, we may adopt the hierarchy of the total energy
(G-hierarchy):

0,Gy +0;Gy; =0,

0:Guiy iy, + 0 Guiiiyoiy, = Quiiyoviyy, m=12,--+,

where Gy, is given by Eq. (5); and

Guiiy iy, =/ / / (mc? 4+ 2I% +21Y)
rJo Jo

xci e, foI®waVydi®dr"de,
and
Quiiy iy = Pty iy, + Pity iy, + Pty M =12,

The G hierarchy has been introduced in the theory with the
binary hierarchy of balance equations [see Eq. (2)].

ci, QN eIy VydIRdr de,

¢, Q) eI®ywaVydI®dr" de.

Truncated system of balance equations and its closure

To have a finite system of balance equations, we truncate
the F, HR, and H" hierarchies at the orders of N, M, and L,
respectively. For conciseness, it is convenient to introduce a
multi-index A:

{1
Cp =
Cil...

The multi-index is also introduced for other quantities in a
similar way (see for more details Ref. [11]). Then, we can
express the densities as follows:

forA=0

ci, forA>1

FA=/ / / mea fo(I®IYYdIRdIV de,
R3 JO 0

o0 o0
Hify = /R 3 /0 /0 2% cq foU My )dI"d1" de,

Vo _
= |
]R3

The fluxes Fia, HR .., HY, ,, and the productions PX, PR,
P}, are also expressed in a similar way.

Then a triple hierarchy of moments truncated at the
orders N,M, and L [(N,M,L) system] is compactly

/00 /Oo 21V cpr fo(IRY (1YYdIRATY de.
0 0 16)
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expressed as
O Fa+ 0 Fia=Pf,
O<ASN)

with PX =0 and P¥ = 0 and with the condition Eq. (15)
representing the conservation laws of mass, momentum, and
energy.

1. Galilean invariance

Since the velocity-independent variables are the moments
in terms of the peculiar velocity C; instead of ¢;, it is
possible to express the velocity dependence of the densities
F = (FA,HZfA,,HZYA,/)T, the nonconvective fluxes ® = (Fj4 —
Favi,HY ., — HY, v H). ., — H}),,v))T, and the production
terms P = (PX, PR, P/, as follows [48]:

F=XWF, &®=Xwé, P=XWwP,

where a hat on a quantity indicates the velocity-independent
part of the quantity.

We assume that the constitutive quantities Fjy, Hlﬁ Mo
H),, PX, PR and Py,, which we express as ¥ generically,

J

R R R
0 Hyja + 0i Hyjpo = Py,
O<A <M

PHYSICAL REVIEW E 96, 042143 (2017)

S H)y + 0 Hiar = Py, (17)
(0<A"<L)

(

depend on the densities locally and instantaneously:
U = W(Fy, B8 ). (18)

Remark 4. In principle, the truncated orders N, M, and L
may be chosen independently. However, if we naturally impose
the condition that the (N,M,L) system can make the G-
hierarchy be Galilean invariant, the inequality; min(M,L) <
N — 1 should be satisfied [20] because of the relation

Gia = Xab(ﬁllb + I:I]fb + ﬁl‘l/b + 21)1F[b + v2l:},)
[0 < a,b <min(M,L)].

2. MEP and the closure of the system

To obtain the constitutive Egs. (18) explicitly, we utilize the
MEDP. That is, the most suitable distribution function fix .z,
is the one that maximizes the functional defined by (we omit
the symbol of summation for the repeated indices: A from 0
to N, A’ from0to M, and A” from 0 to L)

Lovarn(f) = —ks f f h f OOflogfw(IRwuV)ledlvdc+AA<FA— / f N / oochfgo(IR)x/f(IV)dIRdlvdc)
R JO 0 R3 JO 0
+u§,<H,fA, —/ /Oo /oo 2IRcAff(p(lR)1//(IV)dIRdIVdc>
R3 JO 0

oo oo
+MX~<HI}/A/,—// / 21VcA~f<p(IR)1p(IV)dIRdIVdc),
R3 JO 0

where Ay, uX,, and HX” are the Lagrange multipliers. As a
consequence [49], we have

m
Jav.m.L) = exp (‘1 - _X(N,M,L)>s
kp
21 21V,
XV, ML) = AaCa + ——UyCn + ——UygCar.
m m

Due to the Galilean invariance, the distribution function can
be expressed in terms of the velocity-independent quantities:

kg

R . 2I% 21V,
Xvom. = 2aCa + TMA/CA/ + WMA/,CAU,

m A
Jov.m,L) = exp <—1 - —X(N,M,L)>,
(19)

Therefore, we obtain the velocity dependence of the Lagrange
multipliers A = (A4, 1%, u%,) as follows [10,48]:

A = AX(—v). (20)

By inserting Eq. (19) into Eq. (16), the Lagrange multipliers

M, uﬁ/, and NX" are evaluated in terms of the densities

Fa, HR,, and H)/,,. And, finally, by plugging Eq. (19) into

(

the last fluxes and production terms, the system is closed. In
this way, we obtain the ET theory for the (N,M,L) system.

Remark 5. An alternative approach to achieve the closure
(phenomenological closure) of the system makes use of the
entropy principle. In this case, it is required that all the
solutions of Eq. (17) satisfy the entropy inequality:

oh+0;h =% >0,

where £ is given by Eq. (6), and h; and ¥ are the entropy flux
and the entropy production defined by

b = kg / / N [ " e ftog £ (MY yd1"ar de.
R3J0O 0

% = —kg / / N / 0 tog £ oYy dIRdlY de.
R3JO 0
@1)

According with the general results given first in Ref. [19] the
two closure methods give the same closed system of balance
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equations. Moreover, we obtain the following relations:

dh = AdFy + uXdHF, + ph.dH) .,
dhi = hadFip + pXdHR  + 0l dHY 0, (22)
=P+ u PR+l Pl > 0.

IV. GENERALIZED BGK MODEL

Concerning the collision term, Struchtrup [50] and Rahimi
and Struchtrup [51] proposed a variant of the BGK model
[52] to take into account a relaxation of the energy of the
internal mode. In this section, we introduce a simple collision
term with three relaxation times to describe a more refined
model in which rotational and vibrational modes are treated
individually.

A. Three relaxation times

In polyatomic gases, we may introduce three characteristic
times corresponding to three relaxation processes caused by
the molecular collision (see also Refs. [7,53-55]):

(i) Relaxation time tg: This characterizes the relaxation
process within the translational mode (mode K) of molecules.
The process shows the tendency to approach an equilibrium
state of the mode K with the distribution function fx.r having
the temperature 0%, explicit expression of which is shown
below. However, the rotational and vibrational modes are, in
general, in nonequilibrium. This process is observable also in
monatomic gases.

(i1) Relaxation time tp.: There are energy exchanges
among the three modes: mode K, rotational mode (mode
R), and vibrational mode (mode V). The relaxation process
occurs in such a way that two of the three modes [say
(be) = (KR), (KV), (RV)] approach, after the relaxation time
Tpe, an equilibrium state characterized by the distribution
function fu..p with a common temperature 6°¢, explicit
expression of which is shown below. Because of the lack of
experimental data, we have no reliable magnitude-relationship
between tx and t,.. However, it seems natural to adopt the
relation: O(ty.) 2 O(tg), which we assume hereafter (see
also Sec. VII). In Table I, three possible cases are summarized
depending on the choice of b and c.

(iii) Relaxation time t of the last stage: After the relaxation
process between b and ¢, all modes, K, R, and V, eventually
approach a local equilibrium state characterized by fr with a
common temperature 7 among K, R, and V modes, which is
given by Eq. (7). Naturally, we have the relation: T > ..

Diagrams of the possible relaxation processes are shown in
Fig. 1.

TABLE 1. Three possible relaxation processes in the second
stage (ii).

(bc) Process (a,b,¢) Relaxation time Collision term
(KR)process  (V,K,R) TKR 0% (f)
(KV)process  (R,K,V) Txy oKV (f)
(RV)process  (K,R,V) Try V(1)
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Fariy

FIG. 1. Diagram of the three possible relaxation processes of the

translational mode (K), rotational mode (R), and vibrational mode
(V) for (a) (KR) process, (b) (KV) process, and (c) (RV) process. The
symbols 8%, 0% [(bc) = (KR), (KV), (RV)] are partial equilibrium
temperatures and 7 is the local equilibrium temperature. A mode
without attaching a symbol of the temperature is not necessarily in
partial equilibrium.

@ﬁ

T 9/(1{

B. Generalized BGK collision term

The generalized BGK collision term for (bc) process
[(bc) = (KR), (KV), (RV)] is proposed as follows:

1 1 1
0°(f)=——(f — fx:r) — —(f — focr) — =(f — f&),

Tk Tohe T
(23)

where the distribution functions fx.r and fp g are given as
follows:
(a) Distribution function fx.p. This is given by

RV(IR IV 3/2 C2
p U IT) m exp _ mC™ Q4
m 27Tk39K 2k39K

pRVUR 1V = / mfdc. (25)
R}

frE=

where

This is the equilibrium function with respect to the K mode
with the temperature 8% and with the “frozen” energies, I % and
1V . In other words, fx.r is a Maxwellian with the mass density
pRV(IR 1Y) and temperature K. Therefore, fx.r given in
Eq. (24) is obtained by maximizing not the true entropy Eq. (6)
but the entropy with the frozen energies:

YR 1"y = —k,g/z flog f de,
]R;

under the constraints
pRV R IY) m
PRV (IR, TV Y :/ mc; | fde.
3
20RV(IR 1)eK0F)) 7 \mc?
Then we have the relation Eq. (25), and the relation

ek = &K%,

from which we can determine the temperature 6% .

(b) Distribution function fgg.p. Let us study the process
in which the K and R modes reach their common equilibrium
with the temperature §X® and the vibrational energy 1" can
be considered as frozen. In this case, we have the distribution
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function:
f o ,OV(IV) m 3/2
KRE = HAR@OKRY\ 21k g0KR
1 mC2+IR
X expy———— —
Pl kporr 2 ’
where

pV(IV):m/ /oofgo(IR)dIRdc. (26)
R3 JO

Since the equilibrium state is described by the mass density
oV (I") with the frozen vibrational energy I" and the internal
energy ep TR(OKR) = eK(OKR) + eR(OKR), we obtain fxr.k
by using the MEP and searching the maximum of the entropy,

hV(IV)=—kB/ / flog fe(I®dI® dc,
R3 JO

under the constraints
pVav)
PV (I,
2pV(IV)8§+R(0KR)

m

00
= / / mec;
R3 JO

mC? 4+ 2[R

Fo(I®dIR de.

Therefore, we have the relation Eq. (26), and the relation

¥R = eF 6% = ef (OFF) + 65 (0% F) = 6§ TR (OFP),

27)

from which we can determine the temperature %%,

(c) Distribution function fxy.g. In a similar way, we have
pR(®) m_\"
mAYV(OKVY\ 2mkpokKV

1 mC? v
X exp _W T+I ,

fKV —

where

pR(I®) =/ /Oomﬁﬁ(lv)dcdlv.
R? JO

And we have the relation, from which we can determine the
temperature 6%V

8K+V = 8[( +8V — 81E<(9KV) +8Z(9KV) = 8§+V(9KV).
(28)
(d) Distribution function fry.g. In this case, the K mode is

in equilibrium with the temperature 6%, and R and V modes
are also in equilibrium but with the different temperature 9%V .
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Then we have the expression similar to Eq. (7):

P m 3/2
fRV:E = mAR(QRV)AV(QRV)<27TkB'9K)
mC> IR 41V
x exp|— - ’
P ZkBOK kBeRV

where the temperature 8%V is determined by the relation:
8R+V = 8R +8V — 8§(QRV) +8‘E/(9RV) = 8§+V(9RV)«
(29)

(e) Distribution function fg. This is the local equilibrium
distribution function given by Eq. (7), in which the temperature
T is given by the condition

e = ep(T). (30)

C. H-theorem

From the definition of the distribution functions fk.g,
fxrE> fxv:E, frv:E,and fg, itis easy to verify the following
relations [(bc) = (KR), (KV), (RV)]:

/ / / (f —frp)log freoI*)wV)dIRd1" de = 0,
R3J0 0
/ / / (f = foc:e)log focee(I)wIV)YdI”d1"de = 0,
R3J0O 0

/ /Oo/oo(f —fe)log fro(I®ywV)YdIRdIYde = 0.
R3JO 0

Then the entropy production Eq. (21) can easily be shown to
be positive:

S

A Sl R
x log SocE * T log fE}

x IRy IVydIRd1"de > 0,

f +f_fbc:E

fxE Toe

and the H-theorem holds.

V. ET THEORY WITH SEVEN INDEPENDENT
FIELDS: ET;

The simplest system of Eq. (17) next to the Euler system
in the present approach is the system with seven independent
fields (ET7):

Mass density: F=p,
Momentum density: F; = pv;,

Fy=2pe" +pv?. (31)
H,f =2peR,

H) =2pe".

Translational energy density:
Rotational energy density:
Vibrational energy density:

By neglecting the dissipation due to the shear stress and heat
flux, the ET7 theory focuses on the description of the internal
relaxation processes in a molecule.
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In this section, by means of the kinetic closure, we derive
the nonequilibrium distribution function and the closed system
of field equations following the general procedure adopted in
Refs. [36,43,44]. We assume the generalized BGK model of
the collision term introduced above.

A. System of balance equations

From Eq. (17), the system of balance equations is expressed
as follows:

oF 0 _,
ar - Axi
oF; | 0F, -0
ot 0x; ’
oF; 0Fy; %
5 to = fuo (32)
ot ax; i
oy ol .
at ax; i

where (Fy;, HY, H)) and (PX, PR, P)) are the fluxes and
productions of the densities (F;;, H¥, H,/). Itis easily verified
that the production terms are velocity independent.

B. Nonequilibrium distribution function

First of all, we start with the following statement:

Statement 2. The nonequilibrium distribution function for
the truncated system Eq. (32) obtained by using the MEP is
expressed as

02 0 m 3/2
mARORYAV(OV) \ 2mkpOK

o mC? IR Iv

exp [ — - - ,
P\ 7 2k56% ~ kpb®  kpoV

where AR(6F) and AV (0") are normalization factors given by

Eq. (8). Nonequilibrium temperatures 8% and 6¥ of R and V
modes are determined through the relations

(33)

eR = eR@®), & =¢eL6").

The proof of this statement is given in the Appendix. A
similar result was obtained in Ref. [44] in the case of ET¢. In
the present case, as shown also in the Appendix, the Lagrange
multipliers are given as the functions of (p,v;,6%,6%,6"):

sE(0%)  gfOY gre") | v
0K OR oV 20K°
R S Y SR T L
oK’ 20V°
(34)

A=

hi =

PHYSICAL REVIEW E 96, 042143 (2017)

where gX(p,0%),gR(O%), and g}.(6") are the nonequilibrium
chemical potentials of the modes:

K ,91(
pr(p )—kag

gr(p,0%) = e (0%) + (p,0%),

g (6%) = ef(6%) — 6"s£(6"), (35)
gr @) =¢e}©")—0"sp@").

Remark 6. From Eq. (33), we notice that, within ET7,
any nonequilibrium state can be identified by assigning the
nonequilibrium temperatures 6%, 9%, and 9V together with p
and v;. In other words, ET7 adopts the approximation that K,
R, and V modes are always in equilibrium but, in general, with
different temperatures from each other. Therefore, ET; does
not take into account the relaxation (i) with the relaxation time
Tk . See also Fig. 1.

Remark 7. The nonequilibrium temperatures have been
introduced in many studies although there still remain subtle
conceptual problems [56]. In the context of ET, the nonequilib-
rium temperature is defined through the Lagrange multiplier
corresponding to the conservation law of energy [11,57].
Indeed, the expression of the Lagrange multiplies of ET5,
Eq. (34), ensures the present definition of the nonequilibrium
temperatures 6%, % and 6".

C. Closed system of field equations

By using the distribution function Eq. (33), we obtain the
constitutive equations for the fluxes as follows:

o0 o0
Fj= / / f meic; fO o(I®yyV)dI®d1"de
R3 JO 0 ’
=PK(/0:9K)5U+PU1‘U]‘,
Fm:// / mc?ci f7 oIy 1Y) dIRd1" de
R3 JO 0
= {2pef (6%) +2p" (0.6%) + pv*}ui,

o0 o0
Hj; =/}Rf0 /0 26, 1% F D o(I®yy(1V)dIRd 1V de

=2pep(0®)v;,
o0 o0
Hy, =f / / 2,1V D oIy 1YydIRd1" de
R3 JO 0
=201 (0" ;. (36)

We notice that the velocity-independent parts of Fj;, Hlfi, and
Hl}/[. vanish.

The trace part of the momentum flux Fj; is related to
the pressure p and the dynamic pressure IT in continuum
mechanics as follows:

Fy=3(p+TD)+ pv*.

Comparing this relation with Eq. (36),, we notice that IT is
given by

= pX(p,6%) — pX(p,T), (37)
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or, from Eq. (12), it is given by

PHYSICAL REVIEW E 96, 042143 (2017)

= 2p[ef(0%) — e (1)].

Therefore, as was shown in Refs. [44,58], the dynamic pressure is related to the energy exchange.
Using the constitutive equations above, we obtain the closed system of field equations for the independent seven fields,
0.v;,6%.0% 0V [the equations of state are given by Egs. (9) and (10)]:

ap 0pv; e
- + —(pv; — 0™)s; v} =0,
8t+3x(p) ” +a {p*(0,6%)8i; + pviv} =
a d a a
T —{20ef (0%) + pv?} + 5{(2,055 ©F) + pv*> +2p%(0,065))v;} = Pf, 5{2;)8115(9’?)} + g{2pe§(t9’*)v,-} = Pk,
d
—{2pg§(9V)} + —{2pep 0" )i} = P, (38)
at 0x;
where expressions of the production terms are given in Sec. V E.
By using the material derivative, the system Eq. (38) is rewritten as follows:
. A . ap*(p.6%) K K p*(p,6%) du PI{( “R/nR sz VgV PIY
— =0, i+ ———=0, 0 _ = 0% = —, 0"y =—" 39
'O+'08x,» pY; + 9x; g (07) + Ixe 20 Ep(07) 2 ep(07) 2 (39)

D. Entropy density and production

The nonequilibrium specific entropy density n = h/p for
the truncated system Eq. (32) is obtained from Eq. (6) as
follows:

n=sK(p,65) +sRO%) + 5V (6"), (40)

where sX(p,0%), sR(6F), and sV(8") are calculated by
Eq. (13). From Eq. (40) with Eq. (14), we obtain the extension
of the Gibbs relation in nonequilibrium as follows:

pK K
& PR00%) 1
41
In the present case, the nonconvective part of the entropy
flux is zero. Therefore, we have

h,' = ]’lU,‘.

Then the balance law of the entropy density is written as
follows:

on=2x, (42)
where, from Eq. (22) with Eq. (34), we obtain the entropy
production:

L
20K 7 20k T 20V 7
E. Production terms in the generalized BGK model

As we can prove that [ = = fx. (7). the relaxation time Tk
plays no role in the production term. This is natural from the
Remark 6 above. By using the collision term for the processes,
Eq. (23), the production terms are given explicitly as follows:

Process (KR):

2p
P = ———[ep(0") —e£ (6"™)]
TKR

2
- Lk - £ 1)

(

P} = e [eR(6F) — ef(6FF)] - 2—p[a§(9R) —eR(1)],
TKR T
2

P = Tp[ r@Y) —ep (1)), (43)

where, from Eq. (27), 0% is determined by
ep MO = ep0%) +ef@"),
and, from Eq. (30), T is determined by
ep(T) = eg (0") +ef(0") +ep(6"). (44)

Process (KV):

20 2

Py = —m[ £0%) —ep (0] — 7:0[85(91() — (D],
2

Pf = =L[ef0") - ef(D)].
2 2

Py == 22 (a0 — o) - Lleko) - k)

where, from Eq. (28), XV is determined by
eXOF)+ e 6",

and T is determined by Eq. (44).
Process (RV):

8§+V(9KV) —

2
P = =L[eF ") = ef (D).

P = — 22 [e8(0%) - eB0RY)] — 2[R (™) — 2],
TRV T
2

P = =22 ") - efi™)] - Lletie") - 0],

where, from Eq. (29), 6%V is determined by
eptV(ORY) = ef(0™) + L"),
and T is determined by Eq. (44).

042143-10



RATIONAL EXTENDED THERMODYNAMICS OF A ...

VI. CHARACTERISTIC FEATURES OF ET,

We summarize some features of the ET; theory.

A. Comparison with the Meixner theory

Thermodynamic theories with internal variables have been
developed [5,59-62], the prototype of which is the Meixner
theory [3-5]. The system of field equations of the Meixner
theory with two internal variables, & M and & @ s expressed
as follows:

. Bv,- . P
p+p—=0, pi+_—=0,
8xi Bx,-
o0& +¢>aﬂ —0, £éH—_ghgW (45)
8xk ’ ’

£D = _g2 7™

where P, &, and AY(a = 1,2) are, respectively, the pressure,
the specific internal energy, and the affinities of the relaxation
processes, and 8@ are positive phenomenological coefficients.
The generalized Gibbs relation in the Meixner theory is
assumed to be

P 2
TS = d& — —dp - > AVdED, (46)

a=1

where 7" is the temperature and S is the specific entropy. Note
that the quantities 7, S, $, and A depend not only on the mass
density p and the specific internal energy & but also on the
internal variables £@. From Eq. (46), with the use of Eq. (45),
we obtain

2
. 1 2
S=— @ A@7 47
T;ﬂ @7)

Comparing the system of the ET; theory Egs. (39), (41),
and (42) with the system of the Meixner theory Egs. (45),
(46), and (47), we have the following relationship between the
Meixner theory and the ET; theory:

g0 =ef(0F). £P=ep©")., P=ptp.0%),
E=ep(l), S=n(p.0%.0%0").
1 1

— pk () _ K
T=6K AV=—0 (Q—R—Q—K),

1 1
2) _ K
A = -0 <9_V_9_K>’
1 1 1\!
O _ R
p _2,09K(9R_9K> Fu

1 /1 1N,
—(—-—] P
200K\ 9V 9K i

To sum up, we have identified the quantities in the Meixner
theory in terms of the more understandable quantities of ET;.
In particular, the nonequilibrium temperature 7 is recognized
as the temperature of the translational mode 6%. This is
reasonable because, from Eq. (46), 7(= %) is the temperature
of a state in equilibrium under a constraint that the system is
kept at fixed values of £ @[= eR(0%),e/(0V)].

B —
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B. Characteristic velocity, subcharacteristic conditions,
and local exceptionality

Itis well known that the characteristic velocity V associated
with a hyperbolic system of equations can be obtained by using
the operator chain rule (see Ref. [11]):

d
- —-Vs, — —>nié, f—0,

at 0x;
where n; denotes the i component of the unit normal to the
wave front, f is the production terms, and § is a differential
operator [11]. In the present case, if we choose {p,v;, n,0%,6v}
as independent variables instead of {p,v;,6%,0% 6V}, and
adopt the entropy law Eq. (42) instead of the energy equation

of the K mode in Eq. (39);, we obtain
ContactWaves: V =v, =0 (48)

(multiplicity 5),

op(p,0K(p,n,0R,0V
Sound Waves : V = v, + <p (0,67 (o1 )))
n,0%,0v

ap
(each of multiplicity 1), 49)
where v, = v;n;. Here and hereafter, pX is denoted by p

for simplicity. We can rewrite the velocity of the sound wave
U =V — v, as follows:

0% p3e(p.0%)
U? = 0Ky + 6
Po(p,07) K05
where a subscript attached to p indicates a partial derivative
and cX is the specific heat of the translational mode defined
by cX(T) = de&(T)/dT. In an equilibrium case, we have

Tpi(p.T)
U2 = T T )
5= Do, T)+ pch(T)
The sound velocity of the Euler fluid is given by
Tpz(p.T)
2 T
Uguler = Po(0,T) + m,

where c, is the specific heat defined by ¢,(T) = deg(T)/dT
and

K R 14
cy=c¢, +c, +c,,

with the specific heat of the rotational mode c® and the
vibrational mode ¢): ¢®(T)=def(T)/dT and c)(T)=
dsg(T)/d T. Since the specific heats of the three modes are
positive, we notice that the subcharacteristic condition [49] is
satisfied:

Ug > Uguler-

It is well known that a characteristic velocity associated
with a wave is classified as (see, e.g., Ref. [11]): genuinely
nonlinear if §V =V,V.-éu « V.,V .r#0, Vu; linearly
degenerate or exceptional if 8V =0, Vu; locally linearly
degenerate or locally exceptional if §V =0, for some u,
where r is the corresponding eigenvector associated to the
system Eq. (32). The contact waves Eq. (48) are exceptional
while the sound waves Eq. (49) can be locally exceptional if
the condition is satisfied. Simple algebra similar to the one in
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Ref. [63] gives that, if the hypersurface of local exceptionality
exists, the following relation is satisfied on it:

1 (ap2U2> o
2p2U 8,0 n,0%.0V ’

The results obtained here will be useful in the analysis of
nonlinear waves such as shock waves.

C. ETg theories as the principal subsystems of the ET; theory

Let us consider the (bc) process [(bc) = (KR), (KV), (RV)]
defined in Eq. (23) again, and assume that the relaxation time t
is of several orders larger than the relaxation time 7. In such
a case, the composite system of b mode and ¢ mode quickly
reaches a state with the common temperature 65¢. Therefore,
except for the short period of O(7p) after the initial time, we
have the relation

6° =6° = 9"
As the balance equation of the density [52(96) —e5(69]

is identically satisfied in the present approximation, the
remaining equations are given by

dp

54‘5(00,)—0
Pov; + i{(p +1IDé;; + pviv;} =0
at ax; Y w ’

0 0
5{2/08 + pv?) + E{(Zpe +2p + 211 + pv?)y;} =0,

92p8E) | 92p&i)
+ =
dat 0x;

where & is the nonequilibrium energy density characterizing
the relaxation process, and &; and Pg are its flux and
production. We may regard this system as the ET theory with
six fields, which we call ETEC. In Table II, three possible ETg
theories corresponding the types of the relaxation process are
summarized.

The above argument can be rigorously formulated by using
the idea of the principal subsystem [10]. In the present case,
ETj is the principal subsystem of ET5. The crucial point is that
all the universal principles of continuum thermomechanics—
objectivity, entropy, and causality principles—are automati-
cally preserved also in the subsystem.

The characteristic velocity of ET&Y

0% p2e(p,0%)
2 K(QK) ’

&>

is obtained as
2
URY = p,(0.6%) +

which is the same as the characteristic velocity of ET;: URY =
U. On the other hand, for ET¢® with (b,¢) = (K, R) or (K,V),

TABLE II. Three possible ET¢ theories.

Process (a,b,c) p+11 & & Pg
ETER (KR)  (V.K.R) p(p.65F) el ©®")  ef@)v; Py
ETEY (KV) (RK.V) p(p.0XY)  ef©F)  ef©®"ui P
ETSY  (RV) (K.RV) p(p.0%) eRVORY) XV @RV, PR+ P
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we obtain

6% p2o.(p,6)

be2 _ b
U Pp(PHC)‘FT(HbC)v

b+c K

where cf*c = cf + ¢;. Since ¢, > ¢, > ¢,’, we have the

following relation in equlhbrlum
UE > Ugc > UEuler-

Remark 8. The ET¢ theory studied in the previous papers
[36—42] directly corresponds to the ETg Y theory in the present
notation. However, it should be noted that the previous ETg
theory may also correspond to the ET; theories with (KR) and
(KV) processes as far as the V mode is kept in the ground state
and has no role in the phenomena under study.

D. Near-equilibrium case

In the (bc) process [(bc) = (KR), (KV), (RV)], energy
exchanges among a, b, and ¢ modes are characterized by the
following quantities:

8 =2e%0%) — eb(6°) = —£5.(0%) + £5.(0"),
A= Eg(ga) _ 8%(T) — b+C(9bC) + 8b+C(T).

By expanding the nonequilibrium energies of the three modes
with respect to the nonequilibrium temperatures around an
equilibrium temperature 7 up to the first order, we obtain

_ ebC) — —CIC)(GC _ OBC)’
T) = —cP*e @ —T).

s§=clo°
A=cy0® —

Here and hereafter we use the notation ¢}, instead of ¢(7T") and
so on for simplicity. Inversely, the nonequilibrium tempera-
tures are expressed as follows:

A A
0% =T =—, 0"-T=——r,
CU CU
5 A 5 A
0 —T=" g T=—
ch CU-H Clc) CE‘H

The production terms are now given by

P’ =-2 A
= 'Or’
1) cb A
P”=—2p +2P e
) AN
P11—2,0 +2,0 chre g
where 75 is defined as
1 1 1
— =4 =

Ts Toe T
Then the entropy production is given by

,0 Cb+c 1

T2c s t,g

2y p o Lo
T? c3cbte

Smcec > 0, c >Oandc >0, and 75 > 0, T > 0, the
entropy productlon is nonnegative.
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TABLE III. Explicit expression of A, A,, and IT.

(bc) Ay A, I
(KR)or (KV) o 0 bry— LA
(RV) 0 ¢ 2LA

The system of field Egs. (39) is rewritten as follows:

+p 8v, —0
p 8x, -
pi)i+—(p+1'1)=0,
8)C,'
. BU,‘
o, T +(p+T1I)— =0, (50)
8)6,‘
. IT 1 d b ad 1)
IR LY P (i D S
0 ¢y dT \ cbe 8x, 5
. IT A, —c? v, A
Ag P A o A
0 cy  0x; T

where p = p(p,T), and A;, A,, and IT are given in Table III.
In the limit 75 — O, this system reduces to the system of ETg‘.
When we apply the Maxwellian iteration [64] on Eq. (50)4 5
and retain the first-order terms with respect to the relaxation
times 75 and t, we obtain the following approximations for
small relaxation times:
p . 0v; DAy —cy Bv,

3——1’5—141— A=—-1— .
0 8)C, 1% Cy 8)6,‘

For (bc) process [(bc) = (KR) or (KV)], from Eq. (37), we
have

I =TI1° + 1% with

n° = p(p,0%) — p(p,0°) = —15p a %,
2oghe oy
év E)v,-

4 — ,9[" _ T)= —gp—_ OV

P(p,07") — p(p,T) p e o
where &, = ¢,/(kp/m). 2 = cf /(kp/m). e[ =
(kg/m), and &/ = ¢ /(kg/m). Recalling the definition of the
bulk viscosity v,

K+R
v

av;
n=-v—,

0Xx;

we have its expression as follows:
C; . ¢y
V=T5p ™D .

;b ab+c ;o+ep
eyey eytee,

This expression is a generalization of the previous results
[65,66].If T > 75 and ¢}, has a value of O(1), the bulk viscosity
is approximated by

60

v = tpote = [(0F) — G Jrp. ()

where UY™ = USY/ksT/m and Upne = Uger/
kpT/m. This expression can be derived also from ETg ‘.
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For (RV) process, we have
R+V avl

§=0,
éke, Bx,

Mm=—1p2

and the bulk viscosity is evaluated as

@R+V

V=1p

)

cke,

which is the same as the one derived from ETéW [36,37].

E. Homogeneous solution and relaxation
of nonequilibrium temperatures

To focus our attention on the behavior of the internal
molecular relaxation processes, we study first a simple case:
homogeneous solutions of the system Eq. (39), i.e., solutions
in which the unknowns are independent of space coordinates
and depend only on the time ¢. The system Eq. (39) reduces
now to an ODE system:

dp _ . dv_ . def6%) _ PBf
dt Todt ’ dt — 2p’ 52)
def(0%) _ Pf  def©") _ BY
dt 20’ dt 20

The first two equations give that p and v are constant and
for Galilean invariance we can assume without any loss of
generality that v = 0. Moreover, from Eq. (44), summing the
last three equations of Eqgs. (52), and taking into account
that the sum of the productions is zero and that eg(T) is
monotonous function, we conclude that also T is constant.
Therefore there remain only the last three equations of
Egs. (52) that govern the relaxation of the nonequilibrium
temperatures.

For simplicity, we now assume a process near equilibrium
and then consider a linearized version. Taking into account
Eq. (43), we obtain the following linear ODE system:

dog* 1-

=——§°
dt T’
07 _ _lgo_ Lg%, (53)
dt T The
doe 1 _
= 29t — — 9( ebc
dt T rbc( )
where 0% = 0% — T,0° =0 — T,0°=0°— T, and
_ b@“b céc
ch = ch T = Cy Cbtccv ) (54)

The solution with the initial data 5 = 6°,—o, 0¢ = 0°|,—pand
05 = 0°l;=o is given by

9% = (?e_t,
e »
0" = e C00) + 685)e "+ O — )" 659)
Ac ~b Acac\ —f 61[; Ab ac\,—f/%s
0" = "b+c( o0o +E50)e - @(90 —f5)e '™,
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R
O,

0",

T s

Ty Y

0 1:)‘ T t

FIG. 2. Schematic time-evolution of the relaxation of the
nonequilibrium temperatures 0%,0% 0V, and 0X® in the (KR)
process. The R mode is excited from Ty to 6F instantaneously at
the initial time, while K and V modes are initially at the temperature
Tp. Final equilibrium temperature is 7. Relaxation times 75 and 7 in
this case are also indicated.

where
t Ts

A

~ Toc/T
[:—’ § = — = —————.
T T 1+ 16 /7

We have also the following relations:

0 — 0% = g (0~ 3)e
e (56)
0 — 0" = o (09 — )™

As is expected, we can clearly see, from Egs. (55), (56), and
(54), that the temperatures #° and #° relax to the temperature
6°¢ with the relaxation time 75, while the temperatures 6°¢ and
0° relax to the equilibrium temperature 7' with the relaxation
time 7.

From experimental data on polyatomic gases such as
CO,, Cly, Br; gases, the (KR) process is a suitable process
[54,55] (see also the analysis in Sec. VII). Therefore, as a
typical example, we particularly focus on this process and
study the relaxation evolved from a nonequilibrium initial
state: 05|,_o = 0" |,—o = T, 0%|,=0 = 6F (> Tp). This initial
state may be generated experimentally as follows: we first
prepare the equilibrium state with the temperature with T,

J

L [1+ (0 -0 8+ (0 - )
(ZUEuler)2 B 1+ (UI%‘ - 1) 1512{2
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then we excite only the R mode from the temperature Tj to
the temperature 6F instantaneously at the initial time. The
relaxation is analyzed by solving Eq. (53) under the initial
condition, in which T should be replaced by 7;. From the
condition Eq. (44), T} is given by

e (05 = To)

Cy

T =T+

The time-evolution of the relaxation is shown schematically
in Fig. 2, from which we understand the two-step relaxation,
and the energy redistribution from the R mode to the K and V
modes. We also notice that, after the elapse of a period of time
of O(ts) from the initial time, the relation 8% = % = 9KR
is approximately satisfied. Therefore, the results derived from
ETX® and ET; with (KR) process are nearly the same with
each other. This means that ET; can be safely replaced by the
simpler theory, ETé R,

VII. DISPERSION AND ATTENUATION OF ULTRASONIC
WAVE: AN APPLICATION OF ET,

We derive the dispersion relation of a plane harmonic wave
in Sec. VIT A, and discuss its general features in Sec. VII B.
Theoretical prediction of the attenuation per wavelength «;, is
compared with the experimental data in the case of CO, [67],
Cl,, and Br; [68] gases in Sec. VIIC.

A. Dispersion relation

Let us study a plane harmonic wave propagating along the
x axis expressed by

u=uy+u,

where u = (p,v,T,5,A) is a state vector with v being the x
component of the velocity v;, and ug = (p9,0,75,0,0) is a state
vector at a reference equilibrium state at rest. The deviation
it = (p,v,T,5,A) from u is expressed by
i = wei(wt—kx)’

where w is the amplitude vector, w is the angular frequency,
and k is the complex wave number: k = Re(k) + ilm(k) being
Re(k) and Im(k) the real and imaginary parts of k.

From the linearized system of field equations with respect
to &, we obtain the dispersion relation, derivation method of
which is given in Ref. [69]:

% for (bc) process [(be) = (KR) or (KV)],

for (RV) process,

where z = k/w, 2 = wt, and the dimensionless characteristic velocities: Ug = Ug /Uguler and U g‘ =U gc /Ugyier given by

& 1+eék

A A ’
K 1+4¢,

72
E

f]bcz — Cy

14 ép*e
eote 144,

For (RV) process, § does not play any role in the dispersion relation as seen from the linearized equations of Egs. (50).
From the dispersion relation, the phase velocity vy, the attenuation factor o, and the attenuation per wavelength o, are derived

by using the relations:

@ Im(k)
Uph = ——, & =— ,
P Re(k)

o) =

Im(k)

27 vpho
= —— =27 .
Re(k)
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In the high-frequency limit 2 — oo, we have

~ ~Be2 A B2
1 O2-Up +2(U2 -1)

PHYSICAL REVIEW E 96, 042143 (2017)

. 2Uguler T
aoo = llm o = Euler .

Uph,co = lim Uph = :*:UE,
w—>00 w—>00 1

In a similar way, we can also derive the dispersion relations
of the ET theories explained in Sec. VI C, explicit expressions
of which are omitted here for simplicity. A remarkable point is
as follows: the dispersion relation of ETg V' [70] coincides with
the dispersion relation of ET; with (RV) process. While the
dispersion relation of ETg’c [(bc) = (K R)or (K V)]is obtained
from the dispersion relation of ET7 with (bc) process by taking
the limit s — 0.

B. Qualitative description of the dispersion relation

In this subsection, we discuss the general features of the
dispersion relation by studying some typical cases so that we
may address the following two questions: (i) For given experi-
mental data, how can we determine the most suitable relaxation
process among possible (KR), (KV), (RV) processes? (ii) What
is the relationship between the applicability ranges of ET; and
ETjg theories?

In the above, we have noticed that the dispersion relation
depends on the temperature through the specific heats. There-
fore, before going into the main discussions, we remark here
on the estimation method of the specific heats. As usual in
thermodynamics, we may use the experimental data on the
specific heats. However, for a simple gas like a homonuclear
diatomic molecule gas, which we adopt in this subsection, the
specific heats can be estimated by the statistical-mechanical
considerations. That is, the specific heats ¢® and ¢! are
evaluated by using the rotational and vibrational partition
functions Z® and Z" as follows:

82 R _Sn__ sp+1
¢, (T) = —ﬂE . with ZR =z z2
Bz
= Z Q2 + 1)e ksOrBell+D),
I=even
[o.¢]
Zy= Y (2 + D)e kuOrbel+D
I=o0dd
*zv
|4 2 .
¢, (T)=— ,  with
o (1) = ﬂE 75
N o—ks©vy,pr/2
zV = 57)

1 — o—Fs0v B’
i=1

where s,, ®g, and ®y, are, respectively, the nuclear spin,
the characteristic rotational temperature, and vibrational tem-
perature of the ith harmonic mode. In the case of diatomic
molecules with s, = 1/2 and N = 1, a typical temperature
dependence of the specific heats ¢, cX ™%, and ¢ *V is shown
in Fig. 3.

Up—1
2Ukuler T 02—

0%, for (bc) process [(be) = (KR) or (KV)],

for (RV) process.

Let us study the temperature dependence of the phase
velocity vpn(w) and the attenuation per wavelength «; (w) in
the five typical cases listed in Table IV. The temperature of the
reference equilibrium state u( increases from the case (A) to
the case (E) as seen in Fig. 3.

As many experimental data [7] indicate that the ratio of
the relaxation times %5 is O(10~%) or more (see Sec. VIIC
for (KR) process), we assume here that £5 = 10~ for all
processes. Therefore, we can observe the slow and fast
relaxation processes separately. In fact, we expect that the
dispersion relation has a remarkable change at around 2 ~
O(l) [w~ O(r™"H]and Q@ ~ O(10°) [ ~ O(z; 1)]. See also
Remark 9 below.

In Fig. 4, the dimensionless phase velocity D,n = vpn/Uggler
and the attenuation per wavelength «; predicted by ET; with
(KR), (KV), and (RV) processes in the five cases (A)—(E) are
shown.

Noticeable points are summarized as follows:

(1) Among the three relaxation processes, i.e., (KR), (KV),
and (RV) processes, the dependence of the curve vyp(w) on the
temperature is quite different from each other. In other words,
each relaxation process has its own characteristic temperature
dependence of the curve vyp(w). Conversely, experimental data
on such a temperature dependence can afford a suitable method
to identify the relaxation process in a gas under study.

(2) The dependence of the curve «; (w) on the temperature
is also quite different from each other among the three
relaxation processes. Experimental data on such a temperature
dependence can afford another suitable method to identify the
relaxation process in a gas under study. To be more precise,
let us focus on the temperature dependence of the value of «;,
at its peak in the low frequency region, i.e., the left peak in

Fig. 4. The peak value o™ attained at Q = QP is explicitly

FIG. 3. Typical temperature dependence of the dimensionless
specific heats; ¢,, é5T®, and ¢¥*V. The five cases (A)—(E) listed
in Table IV are also indicted.
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TABLEIV. Five typical cases. Translational mode is fully excited
in all cases.

Vibrational
mode

Rotational
mode

Specific
Case heats

A ¥ =3/2,68=0,8Y =0 Ground state Ground state
(B) ¢&X¥=3/2,6"=1/2,¢Y =0 Partly excited
© K =32=1,¢"=0

D) ek =3/2,8=1,¢Y=1/2

Ground state

Fully excited Ground state

Fully excited Partly excited

v

(E) e =3/2,68 =1,¢Y =1  Fully excited  Fully excited

given by

o =2 —I{IEC — <Qpeak = Al >
O +1 75
[(be) = (KR),(KV),(RV)],

and its temperature dependence is shown in Fig. 5.

(3) From the remark about the dispersion relation of ET¢ in
Sec. VII A and the curves of ET7 shown in Fig. 4, we conclude
that the ETg theories are reliable in the frequency region Q2 <
0(10"), where ETg theories are quite good approximation

T T T
N (a)
A [ 4=0.001

----- (A)eR=0,eY=0
L2 @)eR=172,¥=0

= -(©ck=1,e¥=0

D)eR=1,eY=1/2

—@®R=1,8Y=1 [/ -
1.08F A
1041 i
1.001- E

L e e
0.4- E
=
S
0.3- g
(| S ———

L L L L L L L L L L L L L L L L L L
1071 10° 10" 102 10° 10° 107" 10° 10" 10 10° 10° 1071 10° 10" 10% 10° 10°
Q Q Q

FIG. 4. Dimensionless phase velocity Do = Upn/Uguer and the
attenuation per wavelength «;, for (a) (KR) process, (b) (KV) process,
and (c) (RV) process in the five cases (A)—(E) listed in Table IV. The
ratio of the relaxation time £ is 1072.
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0.51

a; peak

03F

0.1f

00 Or Ov
Log;(T[K]

FIG. 5. Temperature dependence of o™ for (KR), (KV), and
(RV) processes. The characteristic rotational and vibrational temper-
atures are denoted as O and ©y,.

of the ET; theory. It should be emphasized that even in this
frequency region we should pick up a suitable ETg theory
among the three theories by using the methods mentioned
above. When we go into higher frequency region Q > O(10"),
we should adopt the the ET; theory instead of the ET¢ theory.
This is true especially for (KR) and (KV) processes.

To sum up, we have proposed the selection methods for
the most suitable relaxation process and made clear the
applicability ranges of ET¢ and ET; theories. Finally, we
point out that the general features of the dispersion relation
discussed above can be found not only diatomic gases but also
in polyatomic gases because such features come mainly from
the global dependence of the specific heats on the temperature.

Remark 9. In Fig. 6, we show the dependence of «; on the
ratio of the relaxation times T in the case of the (KR) process
for an example. We notice from the figure that, when the ratio
increases, two peaks gradually coalesce into a big one. In such
a case the prediction of ET5 ¥ is no longer valid even in the
frequency region 2 < O(10'), and ET; should be used.

Remark 10. As explained in Sec. V, the ET; theory neglects
the so-called classical absorption, that is, the attenuation due
to the shear viscosity and the heat conduction. For gases in
which these effect emerges in the higher frequency region
Q > 0(10") such as H, and CO, [32,33], there is a possibility

T T T T T T
04- ET; ¢,=7/2, ¢,fR=5)2 b
$ — #5=0.001
03 —-— %=001 - J
== 15=0.1 /f\
v\
0.2* ‘,~’ \A‘/ \ .
! s
N /" \
0.1F N\ 2 \ .
; N B \
AN
2 . ~

(). L L L il imale e T

072 107! 10° 10! 102 103 104

ke

FIG. 6. Dependence of «; for (KR) process on 2 with ¢, = 7/2
and é¥tF =5/2. The solid, dashed, and dotted lines indicate,
respectively, the cases with 75 = 0.001,0.01, and 0.1.
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0
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FIG. 7. Dependence of ¢, on T'.

that two peaks from this and from the rapid relaxation studied
above, i.e., the right peak in Fig. 4 coalesce into one. Because
of this, in the above, we have focused on the temperature
dependence of the peak value of «; in the low frequency
region. On the other hand, there is another possibility: for gases
in which the effects of shear viscosity and heat conduction
emerge around 2 ~ O(1), the peaks from this and from the
left peak in Fig. 4 coalesce into one. Moreover, if 5 ~ O(1),
all three peaks coalesce into one. In the next paper, we will
study such combined effects in detail.

C. Comparison with experimental data

We compare the theoretical prediction of «; by ET; with
the experimental data of CO, [67], Cl,, and Br; gases [68].

As a preliminary step, we evaluate the specific heats of
CO,, Cl,, and Br; gases by the statistical-mechanical method.
In these gases, the characteristic rotational temperature ®g
is very low. In fact, from the data on the rotational con-
stant at the ground state [71], it is estimated as 0.56K
for CO,, 0.35K for Cl,, and 0.12K for Br,. Therefore, in
the temperature range higher than the room temperature,
the rotational degrees of freedom of these gases are in a
fully excited state with ¢+ = 5/2. While the temperature
dependence of the vibrational specific heat is approximately
calculated by Eq. (57). For CO, molecule with N = 4, the
characteristic vibrational temperatures are given by ®y, =
By, = 960K, Oy, = 1997K, and ®y, = 3380K [71]. For CI,
and Br, molecules with N = 1, the characteristic vibrational
temperatures are, respectively, ®y = 805K and ®y = 468K
[71]. The temperature dependence of ¢, is shown in Fig. 7.

Applying the selection method mentioned above to the
experimental data on «;, [67,68], we conclude that these gases
have the (KR) process and the relaxation time 7 is several
orders larger than the relaxation time t;. Therefore, as the
present comparison is made only in the low frequency region,
we may safely assume 75 = 1073,

As the experimental data are summarized as the relationship
between oy and f/p [Hz/Pa] (f = w/27) [67,68], we use the
quantity w/ p instead of Q2. Recalling that 2 = (tp)(w/p), we
adopt the quantity 7p as a fitting parameter determined by the
least square method.

The comparison is made in Fig. 8. These figures show the
excellent agreement between the theoretical prediction of ET;

PHYSICAL REVIEW E 96, 042143 (2017)

0,28 ey
— x:30.5°C (1p=0.496) CO
—— 0:98.7°C (1 p=0.333)
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0.15 ————r
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FIG. 8. Dependence of «; on w/p [Hz/Pa] for several tempera-
tures with 8578 = 5/2 ¢ = 1073 inrarefied CO,, Cl,, and Br, gases
[67,68]. A parameter pt is chosen to fit the experimental data by the
least-square method.

and the experimental data. The selected parameter Tp and the
bulk viscosity v" estimated by using Eq. (51) are summarized
in Table V. We also emphasize the importance of the dynamic
pressure in the wave propagation phenomena. This is because
the bulk viscosity coefficients of CO,, Cl,, and Br, gases
are much larger than the shear viscosity coefficients that are
estimated as 1.49 x 107>[Pa - s] for CO,, 1.363 x 1073 [Pa-s]
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TABLE V. The parameter tp and the bulk viscosity.

Gas T [°C] p [Pa - s] vY [Pa-s]
CO, 30.5 4.96 x 107! 5.61 x 1072
98.7 3.33 x 107! 4.62 x 1072
195 2.30 x 107! 3.75 x 1072
305 1.64 x 107! 2.99 x 1072
Cl, 23 4.08 x 107! 2.98 x 1072
103 2.53 x 107! 2.19 x 1072
167 1.80 x 107! 1.68 x 1072
204 1.49 x 107! 1.43 x 1072
256 1.17 x 107! 1.16 x 1072
Br, 28.0 6.47 x 1072 6.40 x 1073
100 5.47 x 1072 5.69 x 1073
177 427 x 1072 457 x 1073
256 3.35 x 1072 3.65 x 1073

for Cly, and 9.42 x 10~*[Pa - s] for Br, at 7 = 298K and
p = latm [72].

Remark 11. Many studies of the dispersion relation of sound
in polyatomic gases have been made basing on nonequilibrium
thermodynamics and/or the kinetic theory [1,73,74]. Except
for different definitions of the relaxation times, these theories
equally describe well the absorption of sound due to the
energy exchange among the degrees of freedom of a molecule
up to some limited frequency [7,53] (see also Ref. [75] for
the classification of the previous studies). In particular, the
Meixner theory with the relaxation processes of the molecular
internal energies [3,4] has been used to describe the attenuation
of sound phenomenologically. As shown in the present paper,
by using the correspondence relationship between the Meixner
theory and the ET; theory discussed in Sec. VI A, the Meixner
theory seems to be valid also for phenomena out of local
equilibrium to which ET5 is applicable. However, as remarked
above, in the high-frequency region where shear viscosity
and heat conduction play roles, the ET theory with more
independent variables becomes indispensable because there
exists no such correspondence relationship.

VIII. SUMMARY AND OUTLOOK

The ET theory of rarefied polyatomic gases with two
molecular relaxation processes for the rotational and vi-
brational modes has been constructed. We have introduced
the generalized BGK model for the collision term. After
discussing the general structure of the ET theory with the
triple hierarchy, we have established, in particular, the ET;
theory. This theory includes three six-field theories as special
cases depending on the molecular collisional process. Finally,
as an application of the ET; theory, the dispersion relation
of ultrasonic wave has been derived, and excellent agreement
between its theoretical prediction and the experimental data of
CO,, Cl,, and Br, gases has been confirmed.

In our plan, the present paper is the first one in a series of
papers. We will report the following studies: (i) As mentioned
above, by using the triple hierarchy, more sophisticated
ET theory including also the shear stress and heat flux as
independent variables will soon be reported. (ii) In linear
waves, the excitations of the translational, rotational, and

PHYSICAL REVIEW E 96, 042143 (2017)

vibrational modes from a reference state are small. However,
the ET theory can be also applied to the phenomena in
which large excitations take place. In this respect, shock wave
phenomena is worth studying. In Ref. [38], peculiar shock
wave structure in a polyatomic gas was studied by the ETg
theory. When we analyze the shock wave phenomena by
the present ET; theory, we can find a more detailed shock
wave structure, in particular, in the relaxation region after the
subshock. (iii) The ET theory of dense polyatomic gases with
two molecular relaxation processes will also be constructed by
using the duality principle developed in Ref. [58].
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APPENDIX: PROOF OF STATEMENT 2

Let us introduce the Lagrange multipliers {1, A;, uX(=
’i/3), n®, uV} that correspond to the densities
{F,F;, Fy, Hlf , Hl}/ }. The velocity dependence of the Lagrange
multipliers Eq. (20) is explicitly expressed as follows:

A=A =+ 50 =4 205,

K ~nK
s

pC=pf wf=pk u=pn"

From Eq. (19), it is possible to express the distribution
function of the truncated system Eq. (32) as follows:

D = QoGBS BT BTV (A1)

where

:—AV
kg

In addition, we introduce the following three parameters
6%, 6%, and 6" through g%, B, and B" as follows:

gk 1 gr_ L v 1
kgBX’ kgBR’ kgBY"

Recalling Eq. (8) and substituting Eq. (Al) into Eq. (31)
evaluated at zero velocity, we obtain n; = 0 and

2k 0K \/?
p=m<”—3> AR@R)AY (02,
m

3k
eK (%) = 220K,

2 m

k dlog AR@OR
efor) = K2 gr2dlog A (07)

m doRr

k dlog AV (Y
V") = —BGVZ—Og ( ).

m dov

These indicate that %, 6%, and 8V are the nonequilibrium
temperatures of K, R, and V modes, respectively. Then
Q, BX, BR, and BY are expressed in terms of p, 0%, 6%,
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and 0" as follows:

Q= p m 3/2 B
T mARORAV OV \ 2mkpgoK )
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and we finally obtain the nonequilibrium distribution function Eq. (33).
The Lagrange multipliers are expressed in terms of the independent fields as follows:

.k
i=—ZL1+1logQ), af=
m

~ 20K

- BR = b B = :
kgok’ kgoR’ kgoV’
R 1 v 1

TR M T v

Recalling Eq. (13) with Eq. (35), we obtain the following relations:

k m [ 2mkz0k \/? K% g8 (p,0%)
b (28) s A0 -

0

k
“2log AR@OF) = sRO%) -
m

k
L loga©") =sk@O") -
m

and the relations Eq. (34) have been derived.

gk gk ’
eROF)  gR©OF)

L Y
ef(0V)  gr®")
oV~ eV
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