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We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points
invariant under the permutational symmetry Sq in two dimensions, and we show how one of these scattering
solutions describes the ferromagnetic and square lattice antiferromagnetic critical lines of the q-state Potts model.
Other solutions we determine should correspond to new critical lines. In particular, we obtain that a Sq -invariant
fixed point can be found up to the maximal value q = (7 + √

17)/2. This is larger than the usually assumed
maximal value 4 and leaves room for a second-order antiferromagnetic transition at q = 5.
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I. INTRODUCTION

Symmetry plays a prominent role within the theory of
critical phenomena. The circumstance is usually illustrated
referring to ferromagnetism, for which systems with different
microscopic realizations but sharing invariance under trans-
formations of the same group G of internal symmetry fall
within the same universality class of critical behavior. In the
language of the renormalization group (see, e.g., Ref. [1])
this amounts to saying that the critical behavior of these
ferromagnets is ruled by the same G-invariant fixed point.
In general, however, there are several G-invariant fixed points
of the renormalization group in a given dimensionality. Even
staying within ferromagnetism, a system with several tunable
parameters may exhibit multicriticality corresponding to fixed
points with the same symmetry but different field content.

The nontrivial relation between symmetry and criticality
is further appreciated when extending the discussion to
antiferromagnets. In this case, given the symmetry group G

under which the Hamiltonian is invariant, the critical exponents
that the system exhibits do depend on microscopic details
such as lattice structure and inclusion of next to nearest
neighbor interactions. This forces a case-by-case analysis
and, in principle, leaves room for a variety of G-invariant
renormalization group fixed points.

Remarkably, symmetry proves essential also in the theoret-
ical study of “geometrical” critical phenomena that display
no symmetry at all. A well-known example is that of the
percolation transition [2], which is studied analytically as the
limit q → 1 of the ferromagnetic transition of the q-state Potts
model [3], characterized by permutational symmetry Sq . This
example is sufficient to understand the interest of enlarging the
perspective to symmetries depending on a parameter that can
be made continuous. In principle, this allows one to follow
the evolution of critical behavior along lines of fixed points
obtained varying the parameter and to see for which parameter
intervals criticality can be achieved.

When aiming at the investigation of the relation between
symmetry and criticality, the two-dimensional case is singled
out for two main reasons. In the first place, since the room
for nontrivial fixed points increases as the dimensionality
decreases, the two-dimensional case offers the largest spec-
trum. The second reason is that in two dimensions the
infinite-dimensional nature of the conformal group entitles us

to look for an exact description of fixed points, and conformal
field theory has indeed provided a large amount of results
extending to multipoint correlation functions [4]. However,
some desirable pieces of the picture are still missing, a more
global insight into the problem of antiferromagnets being
one of them. Also, conformal field theory of geometrical
criticality continues to be an open problem which is again
well illustrated by percolation: it proved so far quite difficult to
extend to real values of q the Sq-invariant conformal theories
known for q = 2,3,4. As a consequence, for percolation on
the whole plane, exact universal results have been for a long
time limited to critical exponents [5,6]. Only more recently
a basic quantity such as three-point cluster connectivity has
been exactly predicted [7] and numerically confirmed [8,9].

In this paper, we obtain global properties of two-
dimensional renormalization group fixed points characterized
by Sq symmetry, for q real. We do this within the framework
of scale invariant scattering theory [10] in which one studies
the interaction among the particles of the underlying (1+1)-
dimensional relativistic quantum theory.1 This approach uses
infinite-dimensional conformal invariance in a quite indirect
way, namely as the condition ensuring complete elasticity,
and then exact solvability, of the scattering problem. Scale
invariance is then sufficient to select scattering solutions
corresponding to fixed points. An additional feature of the
approach is that symmetry is manifest from the very beginning
in the particle basis, and that analytic continuation in the
symmetry parameter is naturally implemented. This allows us
to obtain the Sq-invariant lines of fixed points parametrized
by q, as well as the range of q in which each of them
is defined. The number of these fixed lines (which are
listed in Table I below) is relatively small and may appear
insufficient to account for the potential variety of Sq-invariant
critical behavior. However, a different picture emerges from
the theory and from comparison with known results. The
critical properties of Sq-invariant systems are studied on the
lattice through the q-state Potts model. For the latter, early
exact calculations [12–15] allowed to identify second order
transition lines spanning the range q ∈ [0,4], both in the

1See Ref. [11] for a perspective on particles, fields, and critical
phenomena in two dimensions.
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TABLE I. Solutions of Eqs. (13)–(16) with the conditions Eqs. (12). They correspond to renormalization group fixed points of Sq -invariant
theories.

Solution Range ρ0 ρ 2 cos ϕ ρ3

I q = 3 0, 2 cos ϕ 1 ∈ [−2,2] 0

II± q ∈ [−1,3] 0 1 ±√
3 − q ±√

3 − q

III± q ∈ [0,4] ±1
√

4 − q ±√
4 − q ±(3 − q)

IV± q ∈ [ 1
2 (7 − √

17),3] ±
√

q−3
q2−5q+5

√
q−4

q2−5q+5
±√

(3 − q)(4 − q) ±
√

q−3
q2−5q+5

V± q ∈ [4, 1
2 (7 + √

17)] ±
√

q−3
q2−5q+5

√
q−4

q2−5q+5
∓√

(3 − q)(4 − q) ±
√

q−3
q2−5q+5

ferromagnetic and antiferromagnetic case. The ferromagnetic
transition is known to become first order2 for q > 4, and
second-order criticality is normally considered to be confined
to q � 4 also for antiferromagnets. One of our scattering
solutions spans the interval q ∈ [0,4] and we will show how
it is able to account for the known critical lines (critical and
tricritical ferromagnetic lines, square lattice antiferromagnetic
line) and possibly others in the same range. On the other hand,
we find lines of fixed points which are defined in other ranges
and should correspond to new second-order transition lines. In
particular, we find that a Sq-invariant fixed point can be found
up to qmax = (7 + √

17)/2 = 5.5615 . . . We will argue that
available numerical results for Potts antiferromagnets leave
room for new fixed points in the range 4 < q � qmax.

The mechanism through which the same scattering solution
accounts for critical lines with different exponents is interest-
ing and generalizes beyond the case of Sq symmetry. The
canonical critical exponents are determined by the conformal
dimensions �σ and �ε of the order parameter field σ and of
the energy density field ε. Scale invariant scattering theory,
however, brings forward the role of a third field, namely the
chiral field η, which creates the massless particles. A scattering
solution determines the dimension of η, in a way that is not
unique. Different choices of �η will correspond to different
dimensions for σ and ε, and then to different critical exponents.
We also observe how the triad ε, σ, η supports a form of duality
that we call the ε-η duality: given a critical line characterized
by �ε,�σ , and �η, a new critical line with the same �σ

and different symmetry corresponds to the interchange of �ε

and �η.
It is worth stating explicitly that the study of fixed points

with permutational symmetry that we perform in this paper
does not include random fixed points, that is fixed points of
systems with quenched disorder. It has recently been shown
[16] how scale invariant scattering theory for a group G × Sn

gives exact access (for n → 0) to G-invariant random fixed
points. The corresponding space of solutions for the case G =
Sq will be given in Ref. [17].

The paper is organized as follows. In Sec. II, we recall the
scale invariant scattering formalism and explain the origin of ε-
η duality, before deriving the Sq-invariant scattering solutions

2First-order transitions are characterized by a finite correlation
length and do not correspond to renormalization group fixed points.
Throughout the paper, unless otherwise stated, our use of the term
critical refers to second-order criticality.

in Sec. III. The relation with Potts critical lines is obtained
in Sec. IV for the critical and tricritical ferromagnet and the
square lattice antiferromagnet. Section V contains some final
remarks, in particular about existing numerical results for the
antiferromagnetic case.

II. PARTICLES AND FIELDS AT CRITICALITY

A Euclidean field theory in two space dimensions cor-
responds to the continuation to imaginary time of a rela-
tivistic quantum field theory with one space and one time
dimension. With this in mind, we switch from one case to
the other according to convenience. Renormalization group
fixed points of (1 + 1)-dimensional quantum field theories
possess specific features at the level of the particle description.
The first is that the particles are right or left movers with
energy and momentum related as p = e > 0 and p = −e < 0,
respectively. The second is that infinite-dimensional conformal
symmetry implies that the scattering has to preserve infinitely
many conserved quantities and is then completely elastic (the
final state is kinematically identical to the initial one). As a
consequence, the scattering amplitude of a right mover with
a left mover can only depend on the center of mass energy,
which is the only relativistic invariant in the process. This
invariant, however, is dimensionful, so that scale invariance
and unitarity imply that the amplitude is a constant. It follows
that, denoting by Aa(p) a particle of species a with momentum
p, and by Scd

ab the amplitude for the process with initial
state Aa(p1)Ab(p2) and final state Ac(p1)Ad (p2), the unitarity
and crossing equations [18] for right-left scattering take the
particularly simple form [10,11]

∑
e,f

S
ef

ab

[
Scd

ef

]∗ = δc
aδ

d
b , (1)

Scd
ab = [

Scb̄
ad̄

]∗
, (2)

where the asterisk denotes complex conjugation and the bar
over indices denotes antiparticles.

The energy independence of the amplitudes expresses
the fact that they actually encode the statistical properties
associated to position exchange of the particles on the line;
a relation with the spin of the fields which create the particles
is then expected. We recall that a field 	(x) with conformal
dimensions (�	,�̄	) has scaling dimension

X	 = �	 + �̄	 (3)
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and spin

s	 = �	 − �̄	 . (4)

Right and left movers are created by chiral fields η and η̄

with conformal dimensions (�η,0) and (0,�η), respectively.
Upon diagonalization of the scattering in the neutral channel,
the scattering eigenvalue S, which by unitarity is a phase, is
related to sη = �η as [10,11]

S = e−2iπ�η . (5)

Bosons and fermions are obtained for �η integer and half-
integer, respectively, and particles with generalized statistics
otherwise.3

As the other physically interesting fields of the theory, η is
local with respect to the energy density field ε, which is the
most relevant (i.e., with smallest scaling dimension) spinless
field left invariant by the internal symmetry (excluding the
identity). In general, two fields 	i and 	j are said to be
mutually local if a correlator 〈· · · 	i(x)	j (0) · · · 〉 is single
valued when x is taken around 0. For statistical mechanical
applications we think of x = (x1,x2) as the coordinate on the
Euclidean plane. The operator product expansion (OPE)

	i(x)	j (0) =
∑

k

Ck
ij z�k−�i−�j z̄�̄k−�̄i−�̄j 	k(0), (6)

where �i ≡ �	i
, z = x1 + ix2 and z̄ = x1 − ix2, allows us

to write the mutual locality condition (invariance under z →
e2iπ z, z̄ → e−2iπ z̄) as

s	i
+ s	j

− s	k
∈ Z ; (7)

normally, the fields 	k contributing to the right-hand side of
Eq. (6) have spins that differ by integers, so that it is sufficient
to check Eq. (7) for one of them. Since sε = 0 and the OPE
ε · η produces fields 	k with �̄k = �ε, the condition of mutual
locality between ε and η reads

�η − �k + �ε ∈ Z. (8)

Concerning the order parameter field σ (x) (sσ = 0), it
carries a representation of the internal symmetry and its OPE
with the energy density is of the form

σ × ε ∼ σ + · · · . (9)

Here and in the following we write OPEs omitting coefficients
and coordinate dependence, giving for granted that the com-
plete form follows from Eq. (6). Generically, σ is nonlocal
with respect to η, a property encoded by an OPE of the form

σ × η ∼ σ̃ + · · · , (10)

with sσ̃ = 0 (no mutual locality for �η noninteger). On the
other hand, �̄η = 0 implies �̄σ̃ = �̄σ . Hence, σ and σ̃ have
identical conformal dimensions but are mutually nonlocal and
cannot coincide. This structure is well known for the Ising
model, where η is a free fermion and σ̃ the disorder field
associated to high-low temperature duality. The structure,

3Away from criticality, generalized statistics does not enter low-
energy applications (see, e.g., Ref. [19]), but appears in high-energy
asymptotics [20–22].
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γ γ γ
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FIG. 1. Amplitudes S0, S1, S2, and S3 of the Sq -invariant theory.
Different letters correspond to different colors.

however, is more general and extends also to the case of
continuous symmetries, which in two dimensions do not
break spontaneously and do not give rise to the canonical
order-disorder duality.

A remarkable property of the relations Eqs. (8)–(10) is their
symmetry under the exchange of �ε with �η. Given a critical
point with �ε = �1,�η = �2 and a �σ , also a critical point
with �ε = �2,�η = �1 and the same �σ will satisfy the
relations. We will see explicit examples of this “ε-η duality”
in Sec. IV.

III. Sq-INVARIANT SCATTERING SOLUTIONS

We now implement the scattering approach of the previous
section for the case of scale invariant theories possessing
permutational symmetry Sq . The first step is to introduce
a particle basis carrying a representation of the symmetry.
For Sq this is achieved considering particles Aαβ with α,β =
1,2, . . . ,q, and α �= β. For the Potts ferromagnet below critical
temperature, these particles correspond to the kinks that
interpolate between pairs of the q degenerate ground states
[23]. It was argued in Refs. [10,16] that this particle basis has
to be identified as the fundamental way of representing Sq

symmetry also at criticality (where the ground states coalesce
and there are no kinks4) and beyond the ferromagnetic case.
The results of the present paper will provide an illustration of
this point.

In general, we think of the trajectory of the particle Aαβ

as a line separating a region of the plane characterized by the
value (“color”) α from a region characterized by the color
β. Permutational invariance then yields the four inequivalent
amplitudes S0, S1, S2, and S3 depicted in Fig. 1. For these, the
crossing relations Eq. (2) yield

S0 = S∗
0 ≡ ρ0, S1 = S∗

2 ≡ ρeiϕ, S3 = S∗
3 ≡ ρ3, (11)

where we introduced

ρ � 0, ρ0, ρ3, ϕ ∈ R. (12)

With this parametrization the unitarity Eq. (1) translate into
(see also Fig. 2)

(q − 3)ρ2
0 + ρ2 = 1, (13)

(q − 4)ρ2
0 + 2ρ0ρ cos ϕ = 0, (14)

(q − 2)ρ2 + ρ2
3 = 1, (15)

(q − 3)ρ2 + 2ρρ3 cos ϕ = 0. (16)

4See, however, Ref. [24], where it was shown that domain wall
configurations play an important role for finite-size corrections in
the critical Ising ferromagnet. We thank an anonymous referee for
bringing these papers to our attention.
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FIG. 2. Pictorial representations associated to the unitarity
Eqs. (13), (14), (15), and (16), respectively. The amplitude for the
lower crossing multiplies the complex conjugate of the amplitude for
the upper crossing, and sum over ε is implied.

Note that the equations contain q as a parameter which does
not need to be integer, so that the scattering formalism realizes
in the continuum the analytic continuation in q which is known
from the lattice representation of the symmetry (see next
section). For q integer, the amplitudes involving a number
of colors larger than that integer (S0 for q = 3, also S1 and S2

for q = 2) are unphysical. All amplitudes, however, enter the
continuation to noninteger values of q. Various mechanisms
of this continuation, in particular for the case q → 1 relevant
for percolation, are illustrated in Refs. [7,25–28].

The solutions of the unitarity equations are listed in Table I
together with the range of q in which they satisfy the conditions
Eqs. (12). The sign doublings follow from the general fact
that, given a solution of the unitarity and crossing Eqs. (1)
and (2), another solution is obtained reversing the sign of
all amplitudes. In our notation, II+ (II−) corresponds to the
solution with upper (lower) signs, and similarly for III, IV,
and V.

Solution I, which has ϕ as a free parameter, is defined for
q = 3 only. Although S0 is unphysical at q = 3, we quote
the values of ρ0 allowed by the equations for the purpose
of comparison with solutions II, III, and IV, which allow
continuation away from q = 3.

We conclude this section observing that it follows in general
from the amplitudes of Fig. 1 that the state

∑
γ �=α Aαγ Aγα

scatters into itself with the amplitude

S = S3 + (q − 2)S2, (17)

which is the phase entering Eq. (5).

IV. POTTS CRITICAL LINES

A. Potts model and Fortuin-Kasteleyn representation

The q-state Potts model [3] is defined on the lattice by the
Hamiltonian

H = −J
∑
〈i,j〉

δsi ,sj
, si = 1,2, . . . ,q, (18)

where the sum is taken over nearest neighboring sites. The
model generalizes the Ising model (q = 2) to the case in which
the site variable takes q colors and is clearly invariant under
permutations of the colors.

An important feature of the q-state Potts model is that
the partition function admits the graph (or Fortuin-Kasteleyn)

expansion [29],

Z ≡
∑
{si }

e−H/T ∝
∑
G

pNb (1 − p)N̄bqNc , (19)

where G is a graph obtained placing bonds on the edges of
the lattice, Nb is the number of bonds in G, N̄b the number of
edges without a bond, and

p = 1 − e−J/T , (20)

T being the temperature; Nc is the number of clusters in G, with
a cluster corresponding to a set of connected bonds, but also to a
site not touched by any bond. This representation of the model
is also known as random cluster model, since it corresponds to
configurations that are obtained placing bonds with probability
p; each of the resulting clusters can take q different colors.
Within this representation, q appears as a parameter that
is no longer restricted to take integer values. In particular,
for q → 1 the weight pNb (1 − p)N̄b of a bond configuration
coincides with that of the percolation problem, in which edges
are randomly occupied with probability p and color plays no
role. Percolation is characterized by the existence of a critical
value pc above which an infinite cluster is found with nonzero
probability. Equation (19) relates such a percolation transition
to the spontaneous symmetry breaking of Sq symmetry in
the q → 1 Potts ferromagnet. The Fortuin-Kasteleyn random
cluster representation makes sense of the Potts model with
noninteger q also in the antiferromagnetic case (J < 0), in
spite of the absence of a probabilistic interpretation5 (p < 0).
In the following, when talking of the Potts model, we will
generally understand its continuation to real values of q.

In the two-dimensional case, a renormalization group fixed
point of the Potts model should correspond to one of the
Sq-invariant fixed points identified in the previous section
within the scale invariant scattering formalism. The following
subsections explore this correspondence.

B. Ferromagnetic critical line

Since the ferromagnetic phase transition in the two-
dimensional q-state Potts model is known to be of the second
order up to q = 4 [12], the critical ferromagnetic line must
correspond to one of the solutions in Table I having q = 4 as
upper endpoint. The fact that in two dimensions the Ising
model is a theory of free fermions implies ρ3 = −1, and
uniquely selects the solution III−. This identification was
already obtained in Ref. [10], and we now recall how it is
further characterized in the language of conformal field theory.

Two-dimensional conformal field theories [4] are first of all
characterized by the central charge c, which grows with the
number of degrees of freedom of the system. The four-state
Potts model is a particular case of the Ashkin-Teller model (see
Ref. [31] for the scattering description), which corresponds to
two Ising models coupled by a four-spin interaction and has

5Notice, on the other hand, that for T → 0 the partition function
of the Potts antiferromagnet counts the number of ways the sites of
a lattice can be colored with q colors in such a way that nearest
neighbors always have different colors (q-coloring problem, see
Ref. [3]).
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c = 1. The critical line III− must then be able to account
for a conformal field theory with central charge c(q) � 1. In
this range of central charge a main physical role is played by
the so-called “degenerate” primary fields 	m,n(z) [30] with
conformal dimension

�m,n = [(p + 1)m − pn]2 − 1

4p(p + 1)
, (21)

where m,n = 1,2, . . . , and p parametrizes the central
charge as

c = 1 − 6

p(p + 1)
; (22)

one similarly has 	̄m,n(z̄) with dimension �̄m,n, and a complete
degenerate field is the product of a z and a z̄ part, with different
indices if the spin is nonzero. The OPE is specified by

	m1,n1 × 	m2,n2

∼
min(m1,m2)−1∑

k=0

min(n1,n2)−1∑
l=0

[	|m1−m2|+1+2k,|n1−n2|+1+2l],

(23)

together with a similar relation for the fields 	̄m,n.
The strategy for relating this “colorless” conformal field

theory to the Sq-invariant scattering solution III− is the
following (details are given in Ref. [10]). It can be argued
that the energy density field ε(x) for the ferromagnetic model
is a degenerate field. Then, knowing that �ε = 1/2 at the Ising
point (c = 1/2, p = 3), that ε cannot produce more relevant
fields in the OPE with itself, and that it is odd under the
high-low temperature duality characteristic of the model, one
arrives at the identification �ε = �2,1. One then looks for the
particle-creating field η as the most relevant chiral field local
with respect to ε. It can be shown that also η needs to be
degenerate, so that Eq. (23) can be used to obtain �η = �1,3.
This result for �η as a function of p can then be compared
with that provided by Eq. (5) as a function of q [Eq. (17) gives
S = ∓e−4iϕ for the solutions III±]. This provides the relation

√
q = 2 sin

π (p − 1)

2(p + 1)
= 2 cos

π

p + 1
, (24)

which determines the central charge as a function of q. This
result coincides with that obtained in Ref. [6] from the exact
lattice determination of scaling dimensions [5]; here it is
derived in a self-contained way in the continuum limit. A
slightly more general analysis involving nondegenerate fields
[10] allows us to find �σ = �1/2,0.

The ε-η duality associated to Eqs. (8)–(10) relates the Potts
ferromagnetic critical line to a critical line with �ε = �1,3

and �η = �2,1. The latter corresponds to the scale invariant
scattering solution with O(n) symmetry, n = 2 cos π

p
[10].

C. Ferromagnetic tricritical line

When the Potts Hamiltonian Eq. (18) is generalized
allowing for the presence of vacant sites, tricriticality can be
realized. The tricritical line exists as long as the critical one
exists, and the two lines meet at the common endpoint q = 4
[32]. The presence of vacancies preserves color permutational

symmetry, so that the tricritical line must also correspond to
one of the scattering solutions of Sec. III. Since the solutions
III± are the only ones terminating at q = 4, and since they do
not coincide at q = 4, we are again left with III− as the only
possibility.

Hence, besides that of the previous subsection, there should
be another relation between solution III− and conformal field
theory with c � 1, a relation corresponding to the tricritical
line. This is indeed found as follows. The energy density field
on the tricritical line must have the same OPE and duality
properties as on the critical line. We also know the value of
�ε at q = 4 where the two lines meet. This information then
selects �ε = �1,2. Since this differs from the result on the
critical line by exchange of the two indices, the form of the
OPE Eq. (23) ensures that the search for η as a chiral field local
with respect to ε has a solution with the same exchange, i.e.,
�η = �3,1; one can check that this is indeed the most relevant
solution. We can now use this result in Eq. (5), with S = e−4iϕ

for solution III−, to obtain

√
q = 2 sin

π (p − 2)

2p
= 2 cos

π

p
; (25)

comparison with Eq. (24) shows that the same q corresponds
to p on the critical line and to p + 1 on the tricritical one.
For the order parameter, one obtains �σ = �0,1/2. Again,
these findings coincide with those of Refs. [5,6]. ε-η duality
relates this tricritical line to the scattering solution with O(n)
symmetry, n = 2 cos π

p+1 [10].

D. Critical line at q = 3

Solution I contains ϕ as a free parameter and then
corresponds to a line of fixed points with q = 3. Such a line is
generated by a truly marginal field and does not fit within the
basic lattice realization Eq. (18) of S3 symmetry. Indeed, in
two-dimensional spin models with discrete internal symmetry
the presence of a line of fixed points requires an additional
interaction parameter besides the exchange coupling J (see,
e.g., the Ashkin-Teller model [31]). The Hamiltonian Eq. (18),
however, can describe a point on this line, and an explicit
example of this situation will be given in the next subsection.
For the time being, we explain why such a line arises at
q = 3. The point is that S3 can be realized by cyclic Z3

permutations together with a Z2 reflection. The particles
admit the identifications Aα,α+1(mod 3) ≡ A,Aα,α−1(mod 3) ≡ Ā,
where A and Ā carry Z3 charges 1(mod 3) and −1(mod 3),
respectively, and are exchanged by the Z2 reflection (charge
conjugation). In general, however, a doublet of particles A and
Ā with opposite charges can represent a symmetry U (1). It
is well known that the minimal realization of this symmetry
in two-dimensional conformal field theory is provided by the
free bosonic action,

A = 1

4π

∫
d2x (∂aφ)2, (26)

which indeed describes a line of fixed points with central
charge c = 1. The energy density field ε(x) = cos 2bφ(x),
with scaling dimension Xε = 2b2, contains the parameter b,
which provides the coordinate along the fixed line. It was
shown in Ref. [10] that �η = 1/4b2 on this line. Since Eq. (17)
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gives S = S2 = e−iϕ for solution I, Eq. (5) yields

ϕ = π

2b2
(27)

for the scattering along the line. As required, S = −1 at the
point b2 = 1/2, where Eq. (26) also admits a free fermion
representation (see Ref. [11] and references therein). U (1)
symmetry also yields �σ = 1/16b2 (see Ref. [10]).

E. Critical line of the square lattice antiferromagnet

The Potts model Eq. (18) can become critical also in the
antiferromagnetic case (J < 0). An antiferromagnet tries to
find at low temperature a ground state in which nearest-
neighboring spins take different values. The number of such
configurations can be zero, finite, or infinite, depending on
the lattice. It follows that, in contrast with the universality
exhibited by ferromagnets, antiferromagnetic critical behavior
essentially depends on the lattice structure and needs to be
investigated case by case. In this subsection, we discuss the
implications of our continuum approach for the case which is
best understood in the discrete formulation [12,13], that of the
square lattice.

The q = 2 (Ising) square lattice antiferromagnet has two
ground states: one in which all spins on the even sublattice
have color 1 and the spins on the odd sublattice have color
2, and one in which the even sublattice has color 2 and the
odd sublattice has color 1. The phase transition is essentially
the same as in the ferromagnet, with the order parameter now
corresponding to the staggered magnetization, which differs
from the usual one by a multiplicative factor (−1)P , P being
the sublattice parity. In particular, for the central charge and the
scaling dimensions at the critical point, one still has c = �ε =
�η = 1/2, and �σ = 1/8, with �σ referring to the staggered
magnetization in the antiferromagnetic case.

For q = 3 the number of antiferromagnetic ground states
on the square lattice is infinite, and the T = 0 case can be
mapped onto a specific case of the six-vertex model [12,33,34],
which is known to be critical and to renormalize on the c = 1
conformal field theory with action Eq. (26). This means that,
within our scattering classification, this T = 0 critical point
corresponds to a point of solution I identified by a specific value
of b2 in Eq. (27). This value can be determined recalling that
Baxter showed that the square lattice Potts antiferromagnet has
a second-order transition for q ∈ [0,4], although for q > 3 this
no longer corresponds to physical values of the temperature
[13]. The range of existence of this transition selects the
scattering solutions III±, and the fact that �η = 1/2 at q = 2
finally identifies solution III−. The latter has 2 cos ϕ = −1
at q = 3, and this yields6 b2 = 3/4 through Eq. (27). This
in turn gives �ε = b2 = 3/4, in agreement with the lattice
determination of Ref. [37].

It was argued in Ref. [36] that in the presence of temper-
ature and staggered polarization, the q = 3 model exhibits a
phase transition associated to a renormalization group flow

6Note that ϕ = 4π/3 would give b2 = 3/8. However, it was shown
in Refs. [35,36] that the interesting range in this case is b2 > 1/2
(repulsive regime for T → 0).

from the c = 1 antiferromagnetic fixed point to the c = 4/5
ferromagnetic fixed point. It was also argued that this flow,
later observed numerically in Ref. [38], is the case N = 4 of
a family of integrable flows which was found in Ref. [39] to
relate the ZN parafermionic conformal field theories [40] with
central charge

c = 2(N − 1)

N + 2
(28)

to the models with central charge Eq. (22) and p = N + 1.
For N = 2, one consistently finds that the fixed points in the
two series have the same central charge 1/2, and it is natural
to conjecture a general relation between the critical line of
the square lattice q-state antiferromagnet and Eq. (28). The
relation between q and N was first obtained from the lattice
by Saleur [41] (see also Ref. [42] for a very detailed study and
Ref. [43] for a review of this approach). Within our framework
this relation follows from the fact that, due to the ε-η
duality, the dimension �η along the Potts antiferromagnetic
line coincides with that of the most relevant neutral field
of the ZN models (known from Ref. [40]), and then reads
�η = 2/(N + 2). We can then use Eq. (5) with S = e−4iϕ for
solution III− to obtain

q = 4 cos2 π

N + 2
. (29)

In turn, the dimension �ε along the Potts antiferromagnetic
line coincides with that of η (fundamental parafermion) of
the ZN models (known from Ref. [40]), and then reads �ε =
(N − 1)/N , in agreement with the lattice result of Ref. [42].
Concerning the order parameter of the antiferromagnet (stag-
gered magnetization), its dimension should coincide with that
of one of the order parameters of the ZN models. These have
dimensions k(N − k)/2N (N + 2), with k = 1,2. . . . ,N − 1
[40], and the desired values 1/16 for N = q = 2 and 1/12
for N = 4 (q = 3) are obtained for k = N/2. This gives
�σ = N/8(N + 2), in agreement with the lattice result of
Ref. [41].

Some of the results of this section are summarized in
Table II.

V. DISCUSSION

It appears from the results collected in Table II that the
best-known Potts critical lines all correspond to the scattering
solution III−. It is then natural to ask whether this solution
possesses some special property. We can observe that it follows
from Eq. (23) that the field η of the critical and tricritical
ferromagnetic lines (	1,3 and 	3,1, respectively) satisfy the
property7

η × η ∼ I + η + · · · , (30)

which in terms of particles gives Aαγ Aγβ ∼ Aαβ . It was shown
in Ref. [10] that this relation yields a set of equations for the
scattering amplitudes for which III− is the only solution. It
does not seem true, however, that all critical lines described
by III− satisfy Eq. (30). Indeed, for the last case of Table II,

7The OPE coefficient Cη
ηη vanishes at q = 2.

042137-6



CLASSIFYING POTTS CRITICAL LINES PHYSICAL REVIEW E 96, 042137 (2017)

TABLE II. Realizations of the Sq -invariant scattering solution III− as Potts ferromagnetic (F) and square lattice antiferromagnetic (AF
square) critical lines. The central charge and the conformal dimensions of the energy density, chiral, and order parameter fields are given
together with the critical lines obtained by ε-η duality. The conformal dimensions �m,n are specified through Eq. (21).

Sq (III−) Potts c �ε �η �σ ε-η dual
√

q = 2 cos π

(p+1) F critical 1 − 6
p(p+1) �2,1 �1,3 � 1

2 ,0 O(n), n = 2 cos π

p√
q = 2 cos π

p
F tricritical 1 − 6

p(p+1) �1,2 �3,1 �0, 1
2

O(n), n = 2 cos π

(p+1)√
q = 2 cos π

(N+2) AF square 2(N−1)
N+2

N−1
N

2
N+2

N

8(N+2) ZN

Eq. (30) would amount by ε-η duality to ε × ε ∼ I + ε + · · ·
in the ZN models, a property which does not hold because ε is
odd under the high-low temperature duality of these models.

We already recalled in the introduction that the exact lattice
results for second-order phase transitions in the Potts model re-
fer to the interval q ∈ [0,4]. One can ask whether it is possible
to find a second-order phase transition in a Potts model with
q > 4. Our results indicate that this should be possible, as long
as q does not exceed qmax = (7 + √

17)/2 = 5.5615 . . . Of
course, since the ferromagnetic case is settled by universality,
one should look to antiferromagnets. In this respect, it is
interesting that infinite families of two-dimensional lattices

allowing for an antiferromagnetic transition with q arbitrarily
large have been found in Ref. [44]. The authors expect
the transition to be first order whenever q > 4, and verify
numerically that this is the case for q � 8. For 4 < q � 8 they
state that the transition is presumably first order, with a large
correlation length complicating numerical verification. These
considerations seem to supersede the indication of Ref. [45]
that the transition observed numerically at q = 5 on one of
these lattices could be second order rather than weakly first
order. It seems, however, that the data do not yet exclude that
this class of antiferromagnets can provide a realization of fixed
points falling within our solution V.
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