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Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are
developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently
under a common transition rate matrix. Our first formulation derives from Kurtz’s strong approximation theorem
of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978)] and, therefore, strongly
converges with an error bound of the order of ln N/N for ensemble size N . The second formulation eliminates
some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong
formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm
when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is
optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable
increase in the error bound. The resultant formulations are supported by numerical simulations.
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I. INTRODUCTION

The most commonly used stochastic processes in science
and engineering are of the Markovian type [1,2]. The temporal
evolution of one Markov chain is comparatively easy to ana-
lyze [3,4], but the mathematics becomes quite complicated for
the collective behavior of an ensemble of chains, dating back to
Doob [5] and Spitzer [6]. The complication applies even in the
absence of interaction among the chains of the ensemble due
to the fact that the autocorrelation times of the state densities
are finite but not 0. The density of a state here refers to the
number of chains found in that state at a particular instant, in
proportion to the total number of chains over the ensemble.

In a pioneering study, Kurtz [7] introduced a diffusion
model of the class densities in a population of individuals
belonging to certain classes; a density-dependent Markov jump
process was assumed to take place there among the classes (for
a simplified account, see Ref. [8]). Kurtz has also given a strong
convergence bound, of the order of the error of his diffusion
approximation. In an alternate approach, due to van Kampen,
density-dependent processes were modeled by an expansion
of the Kolmogorov (or master) equation (see Chap. X in
Ref. [1]); the associated Langevin formulation contains a
matrix square root operation in its noise term, which makes
the use of this formulation a somewhat burdensome task.
Density-dependent Markov models have appeared in a variety
of contexts, including chemical kinetics [9,10], ecological
modeling [11], epidemics [12], metapopulations [13], and
telecommunications [14].

Using an approach similar to that of van Kampen, Fox and
Lu [15] derived a multidimensional Langevin equation for the
dynamics of ion channel clusters contained within excitable
membranes, where the behavior of each ion channel type
is specified by a continuous-time Markov chain. To bypass
the inherent need for the matrix square root calculations
in that channel-based model, Fox and Lu proposed another
model based on the channel subunits, namely, the gates [15].
Numerical experiments, however, have shown that, although
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the channel-based model accurately simulates channel noise
[16], the subunit model fails to produce good enough statistics
[17]. Analytic solutions to the matrix square roots in the
channel-based model have been obtained for both potassium
and sodium channel types [18,19]. These matrix decomposi-
tions are not unique, as different but equivalent Itô stochastic
differential equation models of random dynamical systems
can be constructed [20]. The work of Fox and Lu has also
motivated the development of alternative diffusion models that
can efficiently realize the excitability and spontaneous firing
in finite-size membranes [18,19,21,22].

In this paper, we study ensembles of noninteracting
continuous-time Markov chains near dynamical equilibrium.
Our conduct is for general Markov chains with any state
transition diagram having constant or slowly varying transition
rates, hence the formalism developed here applies to ensembles
of any Markov chain as well as to the ion channel clusters. We
report two related diffusion formulations in this context. The
first formulation is derived from Kurtz’s strong approximation
theorem; hence, it includes no matrix square roots and strongly
converges with an error bound as O(ln N/N ) for ensemble
size N . When the formulation is used for clusters of potassium
channels and sodium channels, it yields Orio and Soudry’s
stochastic differential equations [18] developed specifically
for the ion channels using heuristics.

The second formulation we introduce serves the purpose
of providing a simpler analytic formulation and a faster
computation algorithm than the aforementioned strong dif-
fusion formulation. That formulation reduces the structural
complexity of the strong formulation by eliminating some
selected state density variables, and correspondingly some
noise terms, therein. It is a model for temporal evolution of
the number of chains in a prescribed set of relevant states.
For example, in the case of ion channels within excitable
membranes, the open channel state is the only relevant state,
while the multiple number of closed channel states is hidden or
not of direct concern. Elimination of the state density variables
is not done simply by setting them to their mean values.
Instead, the error resulting from the removal of variables
is minimized by introducing extra terms into the retained
differential equations; the extra terms are functions of the
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retained variables. Thus, the reduced formulation provides
a weaker but optimal approximation to the strong diffusion
formulation in order to facilitate a structurally simpler set
of model equations. It also offers a computation algorithm
faster than that of the strong formulation provided that the
transition rates are constant or slowly varying. We also provide
a procedure that specifies the set of variables to be eliminated
for a given level of desired structural complexity. There, the
variables for the relevant states are, of course, not allowed to
be eliminated.

In a context similar to that above, our prior work [22]
formulated a weak approximation scheme, called “the minimal
diffusion formulation,” to deduce how the number of chains
in a single relevant state evolves in time. It was developed
under the assumption that marginal state density fluctuations
are only weakly non-Markovian. The formulation consisted
of two specifically coupled Ornstein-Uhlenbeck processes in
a stochastic differential equation representation; its structure
does not change with the state space size or the transition
matrix density. More recently, two variants (namely, 2v1n
and 1v1n formulations) that reduce the structural complexity
of the minimal diffusion formulation even further, without
a significant loss of accuracy, were also formulated [23].
These models are essentially special cases of the present
reduced diffusion formulation at the level of minimal structural
complexity.

The organization of this paper is as follows. Section II
gives the essential background and the moment relations.
Section III is dedicated to the development of the strong
diffusion formulation. The reduced diffusion formulation is
elaborated in Sec. IV and Appendix A. Section V includes
comparative numerical simulation results that complement the
theory. Finally, Sec. VI includes some concluding remarks.

II. THE MOMENTS

Consider an ensemble of ergodic (irreducible) continuous-
time Markov chains evolving independently under a common
transition rate matrix in some finite space of states. For physical
visualization, each chain in the ensemble can be imagined as
a particle. Let S = {0,1, . . . ,L} be the state space and N the
number of Markov chains in the ensemble. The number of
chains in state l at a particular time is Nψl , where ψl is the
density of state l. Symbolize the fluctuation in ψl by φl , that is,

ψl := 〈ψl〉 + φl, (1)

where 〈. . .〉 denotes the expectation value. The state density
expectation value 〈ψl〉 corresponds to the probability of
finding a chain in state l. By definition it reads that∑

l∈S
ψl = 1, (2)

∑
l∈S

〈ψl〉 = 1, (3)

∑
l∈S

φl = 0, (4)

and

〈φl〉 = 0. (5)

The expectation values 〈ψl〉 (l ∈ S) can be computed from
the master equation. Let zlm denote the transition rate from
state l to state m. Then the following coupled differential
equations govern the expectation values:

d〈ψl〉
dt

=
∑

m ∈ Dl

(−zlm〈ψl〉 + zml〈ψm〉). (6)

Here Dl = {m| m ∈ S − {l}, zlm �= 0 or zml �= 0} is the set of
states that directly interact with state l through a transition.

A fundamental property of the master equation in Markov
processes is that, as t → ∞, all solutions tend to a stationary
solution if the state set contains strictly a finite number of
discrete states and the transition rates are constant in time.
There exists only one stationary solution if the transition
rate matrix is not decomposable. Therefore, with constant
transition rates, the state density expectation values reach the
unique steady-state solution identified by

d〈ψl〉
dt

= 0 (7)

in the long-time limit. Among the |S| = L + 1 equations given
by Eq. (7), L are linearly independent; nevertheless, using
these L equations in conjunction with Eq. (3) uniquely solves
the stationary-state density averages.

Also, the second moments of the fluctuations are of concern
to us. The fluctuation variances can be concluded from the
binomial distribution dispersion relation [24] as

〈
φ2

l

〉 = 〈ψl〉(1 − 〈ψl〉)
N

. (8)

For the pair cross-correlation functions, it follows that [22]

〈φlφm〉 = −〈ψl〉〈ψm〉
N

, l �= m. (9)

III. STRONG DIFFUSION FORMULATION
OF THE ENSEMBLE

Our diffusion formulation derives from Kurtz’s strong
approximation theorem [7]. Therefore, we first give a brief
account of that theorem.

A. Kurtz’s theorem

Consider a population of size N , in which an individual
can be in one of c classes. Let vector X ∈ Zc represent the
numbers of individuals in certain classes within the population.
The collective state vector X is assumed to evolve in time
as a Markov process through a finite collection of possible
jumps r ∈ Zc. The jump rates �(X; r), at which the jumps
X → X + r take place, are assumed to scale according to

�(X; r) = Nf (�; r), (10)

where the vector � := X/N appearing in function f rep-
resents the densities of the different classes within the
population. Markov processes with jump rates of that form
are called density-dependent processes.

Kurtz represents the process � as a sum of Poisson pro-
cesses over the jumps; then he replaces each Poisson process
with a scalar Wiener process (Brownian motion), where a
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strong convergence error, of order ln N/N , is introduced. The
result is a stochastic differential equation of the form

d�(t) =
∑

r

rf (�(t); r)dt

+ 1√
N

∑
r

r
√

f (�(t); r) dW (r)(t), (11)

where W (r) are independent Wiener processes.

B. Use of the theorem for the Markov chain ensemble

In the case of Markov chain ensembles, classes are the
states S of an individual chain. The chains in state j make
a jump to state m with the collective jump (transition) rate
Nzjmψj ; recall here that Nψj corresponds to the number of
chains in state j and that zjm denotes the transition rate of a
single chain from state j to state m. The collective jump rates
therefore scale according to Eq. (10), and it is apparent that
the collective jumps are Poisson processes. Thus, we can use
Eq. (11) to formulate the density dynamics of the ensemble.
The jump vector corresponding to the jump from state j to
state m, denoted r(j ;m), reads

r(j ;m) =

⎛
⎜⎜⎜⎝

©
−1
©
+1
©

⎞
⎟⎟⎟⎠

← j

← m
, (12)

where all the elements are 0, except that r
(j ;m)
j = −1 and

r
(j ;m)
m = 1. Note that at this setting the decrease caused by the

jump r(j ;m) in the number of chains in state j is compensated
by the same amount of increase in the number of chains in
state m; that is, the total number of chains remains invariant.
Then Eq. (11) becomes

d�(t) =
∑

j,m ∈ S
j �= m

r(j ;m)zjmψjdt

+ 1√
N

∑
j,m ∈ S
j �= m

r(j ;m)
√

zjmψj dW (j ;m)(t). (13)

It is more convenient to write Eq. (13) in terms of
component derivatives. One can derive by means of Eq. (12)
that

ψ̇l =
∑

m ∈ Dl

(−zlmψl + zmlψm) + 1√
N

×
∑

m ∈ Dl

(−
√

zlmψl ξ̂
(l;m) +

√
zmlψm ξ̂ (m;l)); (14)

recall that Dl is the set of states that connects with the state l.
ξ̂ are independent zero-mean scalar Gaussian white noises
of unit variance. Due to their independence, the two additive
noise terms appearing within the sum for each state pair can
be substituted by a single noise,

ψ̇l =
∑

m ∈ Dl

(−zlmψl + zmlψm + ξlm), (15)

where the Gaussian noise ξlm is of mean 0 and has the mean
square, denoted ≺ · · · �, as

≺ ξlm(t)ξlm(t ′) �= zlmψl(t) + zmlψm(t)

N
δ(t − t ′), l �= m.

(16)

Note from Eqs. (14) and (15) that ξlm are not independent: they
must satisfy

ξml = −ξlm. (17)

Conveniently, the noises ξlm (m > l) can be generated inde-
pendently and then the others set dependently by Eq. (17).
In consequence, our strong diffusion formulation consists of
|S| = L + 1 coupled stochastic differential equations given by
Eq. (15) subject to Eqs. (16) and (17). Note that the formulation
satisfies

∑
l ψ̇l = 0, consistent with the conservation law given

by Eq. (2); hence, there are L independent equations. The
number of noise terms needed is decided by the transition
rate matrix density of the chains. There exists a noise term
corresponding to each pair of states having a nonzero transition
rate between the two. There is no requirement for matrix square
root operations. The deviation of the evaluated state densities
from the actual densities is bounded by the order of ln N/N .

In the cases of potassium channel and sodium channel clus-
ters, our formulation regenerates Orio and Soudry’s stochastic
differential equations [18], developed specifically for ion
channels using heuristics over Fox and Lu’s channel-based
model; in this context, see also the work of Dangerfield, Kay,
and Burrage [19]. Channel-based Fox and Lu equations contain
the matrix square root S = √

D of the diffusion matrix D

(namely, SST = D) for both potassium and sodium channels.
The decomposition of the diffusion matrix, however, is not
unique. The decompositions put forward in both Ref. [18]
and Ref. [19] are the same, and the matrix S obtained is of
the smallest dimension that satisfies SST = D [9]. There is
no such ambiguity in the context of our formulation, and
the strong formulation supports the above decomposition of
Refs. [18] and [19], as Orio and Soudry’s dynamics arises
from our formulation. More importantly, beyond the case of
ion channels, the strong diffusion formulation directly applies
for any arbitrarily given state transition diagram.

IV. THE REDUCED FORMULATION

In many applications, not all, but only a subset of, the
states—often just one, as in the case of ion channels—is
relevant, the others being hidden or not of direct concern.
The reduced formulation simplifies the strong formulation in
this situation by eliminating some of the hidden state density
variables and, correspondingly, some noise terms from its
governing equations. This way the structural complexity of the
governing equations can be reduced to the desired level but, of
course, at the expense of some increase in the approximation
error bound. The formulation is optimal in the sense that it
reduces the complexity with the least possible increase in
the error. In developing the formulation, we assume that the
transition rates are constant (or slowly varying) in time and that
the ensemble had enough time to reach dynamical equilibrium
so that the steady-state condition, (7), applies.
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A. Development of the formulation

First, by means of Eqs. (1) and (6), we write Eq. (15) in
terms of the state density fluctuations rather than the state
densities themselves:

φ̇l =
∑

m ∈ Dl

(−zlmφl + zmlφm + ξlm). (18)

By means of Eq. (1), the differentiation φ̇l has the apparent
meaning

φ̇l := d

dt
(ψl − 〈ψl〉).

By splitting the sum
∑

m∈Dl zmlφm in it, Eq. (18) can be
rewritten identically as

φ̇l = −φl

∑
m∈Dl

zlm +
∑

j∈Dl−El

zj lφj −
∑

p∈S−E

alpφp

+Fl +
∑
m∈Dl

ξlm, (19)

where Fl stands for

Fl :=
∑
k∈El

zklφk +
∑

p∈S−E

alpφp. (20)

Here the parameters alp are to be determined. E ⊂ S is the set
of states where their corresponding fluctuation variables are
desired to be eliminated from the governing equations, that is,
if the variable φq is desired to be eliminated, then q ∈ E. We
refer to the states in E as the eliminated states and the states
in S − E as the retained states. The set El denotes states that
are both in E and in Dl , that is, eliminated states in direct
interaction with state l. Then Dl − El is the set of retained
states in Dl . The rationale behind the split was to group the
retained state variables and the eliminated state variables into
separate summations, for reasons that become clear below.

Our reduced formulation sets the function Fl , for all
l ∈ S − E, to 0, with the objective of removing the sum of
the eliminated state variables, namely,

∑
k∈El zklφk , from the

equation for φ̇l . Note that, although not necessary in principle,
Fl additionally contains the weighted sum of all the retained
variables; this sum is compensated in Eq. (19). The presence
of the second sum in Eq. (20) serves the purpose of confining
F ′

l s value as close to 0 as possible so that the error brought
in by the removal of Fl from Eq. (19) is at its minimum. Due
to Eqs. (4) and (9), the second sum in Fl lowers the variance
〈F 2

l 〉 provided that the parameters alp are set properly. It derives
from Eq. (20) that 〈F 2

l 〉 attains its minimum with the parameter
values given by

alp =
∑

k∈El zkl〈ψk〉
1 − ∑

q∈S−E〈ψq〉 , ∀p ∈ S − E. (21)

With this parameter attribution, 〈F 2
l 〉 can be shown to read

〈
F 2

l

〉 = 1

N

∑
k∈El

zkl〈ψk〉
⎛
⎝zkl −

∑
j∈El

zj l〈ψj 〉
/∑

s∈E
〈ψs〉

)
. (22)

If the second sum in Eq. (20) were not included, we would
have Eq. (22) in the absence of the denominator

∑
s∈E〈ψs〉.

Since the denominator is less than 1, it shows that the presence

of the second sum in Eq. (20) indeed facilitates a smaller
〈F 2

l 〉. Appendix A provides the detailed derivation of Eqs. (21)
and (22).

It is useful to know not just 〈F 2
l 〉 but also its value with

respect to the variance of the right-hand side of Eq. (18).
Ignoring the noise term in it for the moment, the right-hand
side, denoted RHl, is

RHl =
∑

m ∈ Dl

(−zlmφl + zmlφm). (23)

Its variance can be evaluated down to

N
〈
RH2

l

〉 =
∑
m∈Dl

z2
ml〈ψm〉 + 1

〈ψl〉

( ∑
m∈Dl

zml〈ψm〉
)2

. (24)

In obtaining this equation, we made use of the equality

〈ψl〉
∑

m ∈ Dl

zlm =
∑

m ∈ Dl

zml〈ψm〉 (25)

derived from the simultaneous use of Eqs. (6) and (7). In
addition, Eqs. (8) and (9) were utilized. Consequently, we
obtain for the ratio that〈

F 2
l

〉
〈
RH2

l

〉 =
∑

k∈El z
2
kl〈ψk〉 − (∑

k∈El zkl〈ψk〉
)2/∑

s∈E〈ψs〉∑
m∈Dl z

2
ml〈ψm〉 + (∑

m∈Dl zml〈ψm〉)2/〈ψl〉
,

(26)

which indicates expectantly that the smaller the eliminated
state sets E and El are, the better approximation the reduced
formulation is. The error is in fact smaller than the one given
by Eq. (26). This is because we ignored the noise terms ξlm

from Eq. (18) in evaluating Eq. (26), and 〈RH2
l 〉 increases with

the inclusion of the noise terms.
We cannot use the noise mean squares as given by Eq. (16)

in the reduced formulation since that equation accommodates
the eliminated fluctuation variables as well as the retained
variables. Therefore, we set the fluctuations for the eliminated
variables to 0; that is, we modify the mean squares as

≺ ξlm(t)ξlm(t ′) �= zlmψl(t) + zmlψm(t)

N
δ(t − t ′), l �= m,

(27)

where the overbar is used to designate the identification

ψj =
{
ψj if j /∈ E,

〈ψj 〉 if j ∈ E.
(28)

The modification does not have a significant effect, as the
variances of the fluctuations are much smaller than 1. In this
respect, one can set ψj = 〈ψj 〉 even for j /∈ E.

The governing equations for the reduced formulation are
thus given by the |S − E| coupled stochastic differential
equations

φ̇l = −φl

∑
m∈Dl

zlm+
∑

j∈Dl−El

zj lφj −
∑

k∈El zkl〈ψk〉
1− ∑

q∈S−E〈ψq〉

×
∑

p∈S−E

φp +
∑
m∈Dl

ξlm, l ∈ S − E, (29)
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where not all the noises are independent, as they satisfy
Eq. (17). Noise mean squares are given by Eq. (27). Following
the solution of the governing equations, (29), the state densities
easily result from Eq. (1). If desired, Eq. (29) can be rewritten,
through Eqs. (1) and (6), in terms of the state density variables
rather than the fluctuation variables. This, however, does
not make the equation any simpler or shorter; in fact, the
state density expectation values still appear in the equation
and some extra terms arise. In the case of no eliminated
states, i.e., E = ∅, the reduced formulation is the same as
the strong formulation, as it should be. With regard to the
strong formulation, the reduced formulation not only reduces
the number of variables from |S| to |S − E| but also makes
the noises {ξab| a ∈ E and b ∈ E} redundant. Moreover, the
sum of noises {ξlb| l ∈ S − E and b ∈ El} that may appear
in Eq. (29) can be substituted by a single noise since these
noises do not appear anywhere except in φ̇l . Thus, the
degree of simplification and, consequently, the reduction in
the computational cost achieved by the reduced formulation
depend on the number of eliminated states and the number of
noises that have become redundant. We further address this
issue in Sec. V and in Appendix B.

We assumed the transition rates to be constant or slowly
varying, primarily for the following reason. Since the state
density expectation values appear explicitly in the governing
equations, (29), their calculation is required, which degrades
the computational efficiency of the formulation. For constant
transition rates, steady-state conditions, (7), nevertheless hold
once equilibrium is reached. Hence, the expectation values
need not be evaluated at each time step; it suffices to compute
them, or solve them analytically, only once, at the beginning,
from the system of linear equations (3), (6), and (7). The
steady-state conditions can be safely presumed to be intact,
to a high degree of accuracy, even when the rates are not
constant but slowly varying. In this case, first, the expectation
values are solved analytically, and then the solutions obtained
as functions of the rates are used in the governing equations.
To further clarify this point and to provide the reader with a
simple case study that illustrates the implementation of the
introduced formulations, we exploit the kinetic scheme of
potassium channels in Appendix B.

B. A procedure for the specification of retained
and eliminated states

In principle, any set of hidden (nonrelevant) states can be
chosen as the eliminated states. However, forming the elimi-
nated state set by giving higher precedence to states that are
distant to the relevant states seems more effective: in this way,
there exists no error originating from the variables of the states
neighboring the relevant states; the error propagates from the
states at a distance. Let us attribute a level to each state as
follows. The relevant states are at level 0. The states at level n

are such that they can be reached from at least one relevant state
by n number of successive transitions, but it is not possible to
reach them by less than n transitions from any relevant state.
Our procedure for specifying the retained and eliminated state
sets makes use of the levels. Let Ln denote the total number of
states from level 0 up to and including level n. Suppose that
d number of states are desired to be retained. Also suppose that

d falls into the range Ln � d < Ln+1. Then the procedure is
such that all states from level 0 up to and including level n are
retained states. In addition, d − Ln number of states at level
n + 1 are retained states which can be selected randomly. The
remaining states at that level and the states at higher levels are
eliminated states.

For demonstration, consider the state transition diagram in
Fig. 1. The diagram contains 17 states, one of which—state
0—is the relevant state. States 1 and 2 are at level 1, states
3–5 are at level 2, states 6–8 are at level 3, states 9–11 are at
level 4, states 12 and 13 are at level 5, and states 14–16 are
at level 6. If, for example, four of the states are desired to be
retained, then states {0,1,2} and one randomly selected state
among {3,4,5} are the retained states.

At this point, we address a study [25] which argues that the
computing time of the exact microscopic Markov simulations
can be shortened considerably, without significant loss of
accuracy, by regarding fluctuations only for transitions to and
from states directly connected to the relevant state in every
chain, setting all other fluctuations to 0. The method was named
“stochastic shielding.” However, a diffusion approximation
based on stochastic shielding cannot be the same as our

2

0

1

3 5

6 7 8

9 10 11

12 13

14 15 16

4

7

FIG. 1. State transition diagram used in the demonstrations and
simulations. State 0 is the relevant state.
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reduced formulation at level 1. This is because the reduced
formulation does not completely neglect the fluctuations in
those states that are not directly connected to the relevant state
but, instead, incorporates their collective effect optimally into
the governing equations. For further discussion of the issue,
see Ref. [23].

C. The case of a single retained state

Consider the special case of having just one retained state,
say state r . In this case, we have that Er = Dr and E =
S − {r}. Then, using Eq. (25), it derives from the governing
equations, (29), that

φ̇r = − φr

1 − 〈ψr〉
∑
m∈Dr

zrm + ξ, (30)

in which we have substituted the noise ξ for the sum∑
m∈Dr

ξrm, (31)

owing to the independence of the noises in the sum and their
appearance only in that sum. By means of Eq. (27), ξ has the
mean square

≺ ξ (t)ξ (t ′) �= 1

N

(
〈ψr〉

∑
m∈Dr

zrm +
∑
m∈Dr

zmr〈ψm〉
)

, (32)

where we have used the setting ψr = 〈ψr〉. Employing the
equality, (25), Eq. (32) can be written as

≺ ξ (t)ξ (t ′) � = 2

N
〈ψr〉

∑
m∈Dr

zrm. (33)

The governing equation, (30), together with Eq. (33), is in
fact the same as the so-called 1v1n diffusion formulation
introduced in our prior work [23]. The two formulations are
thus in agreement with each other.

V. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments in order
to assess the effectiveness of our models. The assessment
develops computations and statistics from (a) the microscopic
simulation of each Markov chain in the ensemble, (b) the
strong formulation, and (c) the reduced formulation, in a
comparative manner. The measurements are on the relevant
state density, namely, on its time course, its expectation value,
and the autocorrelation time.

In the numerical simulations of the strong formulation
and the reduced formulation, the noise mean squares ≺
ξlm(t)ξlm(t ′) � given by Eqs. (16) and (27), respectively, might
numerically be negative if both 〈ψl〉 and 〈ψm〉 are very small;
in such instances, the mean squares can simply be set to 0.

We perform two simulation experiments on ensembles of
300 Markov chains. In the first experiment, the Markov chains
are characterized by the state transition diagram in Fig. 1, and
in the second experiment, by that in Fig. 8.

A. Experiment 1

In this experiment, the ensemble we study consists of
Markov chains identified by the state transition diagram in
Fig. 1. Using state 0 as the relevant state, we obtained
simulation results for the cases of

(a) the strong diffusion formulation (abbreviated SF),
(b) the reduced formulation with six retained states (ab-

breviated RF6),
(c) the reduced formulation with three retained states

(abbreviated RF3), and
(d) the exact microscopic Markov simulation.

We have provided Supplemental Material that includes the
C++ code for an implementation of SF, RF6, and RF3 [26].

For the state transition diagram under consideration, it
reads from the governing equations, (29), that there are
17 variables and 29 independent noises in SF, 6 variables
and 12 independent noises in RF6, and 3 variables and 7
independent noises in RF3. In fact, the numbers of noises
for the cases of RF6 and RF3 can be brought down further, to
10 and 5, respectively. In the case of RF3, the retained states
are 0, 1, and 2. Consequently, the noises ξ13 and ξ14 (or ξ31

and ξ41) appearing in φ̇1 do not appear in φ̇0 or φ̇2. It therefore
follows that the sum ξ13 + ξ14 in φ̇1 can be substituted by a
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FIG. 2. A sample time course of the relevant state density for an
ensemble of 300 Markov chains each evolving independently under
the state transition diagram in Fig. 1. A randomly generated transition
rate matrix was used. Time courses are for (a) the microscopic
Markov simulation, (b) the strong formulation, and, (c) the reduced
formulation with six retained states. The deterministic state density
value in this particular case is 0.31.
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single noise. Likewise, a single noise can substitute for the
sum ξ24 + ξ25 in φ̇2. A similar procedure applies for RF6.

The above numbers of variables and noises in SF, RF6,
and RF3 facilitate the estimation of the relative computational
costs of these formulations. RF6 and RF3 are about three and
six times faster than SF, respectively. RF3 is about twice as
fast as RF6. The measurement of computation times in a
software implementation can be dependent on the coding
and the random number generator used. In our coding, we
found RF6 and RF3 to be 3.1 and 5.9 times faster than SF,
respectively. As another two cases, consider RF2 (two retained
states) and the minimal diffusion formulation [22]. There is no
significant difference between the computational costs of the
two formulations, as both formulations contain two variables,
and for the noises the former includes three and the latter two.
Suppose that 0 and 1 are the retained states for RF2. The three
noises are then ξ01, ξ02, and another one as the substitute for
ξ12 + ξ13 + ξ14.
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(b) RF6
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Measurement number

(c) RF3

FIG. 3. Expectation value of the relevant state density (denoted
〈ψ0C〉), measured using (a) the strong diffusion formulation, (b) the
reduced formulation with six retained states, and (c) the reduced
formulation with three retained states, relative to the standard
deviation obtained from the exact microscopic Markov simulation
(denotedy 〈ψ0S〉). An ensemble of 300 Markov chains, each evolving
independently under the state transition diagram given in Fig. 1,
was used. One hundred sets of standard deviation measurements
were performed using a different transition rate matrix, with every
matrix element being randomly and independently generated within
the range of (0–0.5), in each set. The horizontal axis in each plot gives
the measurement set number. The straight line, a guide for the eyes
in each plot, indicates the situation of a perfect match between the
formulation and the microscopic simulation.

The sample time courses presented in Fig. 2 show the behav-
ior of the relevant state density in the cases of the microscopic
simulation, SF and RF6. The three time courses appear to
behave in similar manner. For a more detailed quantitative
investigation, we measure the expectation value, standard
deviation, and autocorrelation time of the relevant state density.
Results from the strong and reduced formulations are presented
relative to the corresponding microscopic Markov simulation
results. Measurements were taken over 100 different random
transition rate matrices. For that, every matrix element was
randomly and independently generated within the range of
0–0.5 using the uniform distribution. The autocorrelation time,
denoted τ , satisfies the equality

〈φ0(t)φ0(t + τ )〉〈
φ2

0(t)
〉 = e−1, (34)
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FIG. 4. Standard deviation of the relevant state density (de-
noted σC), measured using (a) the strong diffusion formulation,
(b) the reduced formulation with six retained states, and (c) the
reduced formulation with three retained states, relative to the standard
deviation obtained from the exact microscopic Markov simulation
(denoted σS). An ensemble of 300 Markov chains, each evolving
independently under the state transition diagram given in Fig. 1,
was used. One hundred sets of standard deviation measurements
were performed using a different transition rate matrix, with every
matrix element being randomly and independently generated within
the range of 0–0.5, in each set. The horizontal axis in each plot gives
the measurement set number. The straight line, a guide for the eyes
in each plot, indicates the situation of a perfect match between the
formulation and the microscopic simulation.
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where the time t is large enough for equilibrium to be reached.
It is seen from the results displayed in Figs. 3 and 4 that
SF, RF6, and RF3 all predict the expectation values and
standard deviations with virtually no error; less than 1% error
materializes in all cases. Concerning the autocorrelation times,
Fig. 5 shows that SF yields an excellent accuracy, whereas the
RF6 findings and the RF3 findings can reveal errors of up to
8% and 24%, respectively. Having a higher accuracy in RF6
than in RF3 is expected. Of course, the error can be reduced to
a desirable level by increasing the number of retained states.
The worst-case autocorrelation time error of 24% in RF3 might
seem high. However, consider the exponential decay function
A(x):

A(x) = e−x/τ . (35)

We plotted the function in Fig. 6 using the worst-case
autocorrelation time in RF3 and using the corresponding
microscopic Markov simulation autocorrelation time. We see
that two plots match quite closely; therefore, the state density
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FIG. 5. Autocorrelation time of the relevant state density (de-
noted τC), measured using (a) the strong diffusion formulation,
(b) the reduced formulation with six retained states, and (c) the
reduced formulation with three retained states, relative to the standard
deviation obtained from the exact microscopic Markov simulation
(denoted τS). An ensemble of 300 Markov chains, each evolving
independently under the state transition diagram given in Fig. 1,
was used. One hundred sets of standard deviation measurements
were performed using a different transition rate matrix, with every
matrix element being randomly and independently generated within
the range of 0–0.5, in each set. The horizontal axis in each plot gives
the measurement set number. The straight line, a guide for the eyes
in each plot, indicates the situation of a perfect match between the
formulation and the microscopic simulation.
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FIG. 6. Plot of the exponential decay function, given by Eq. (35),
using (i) the worst-case autocorrelation time in the reduced formu-
lation with three retained states (RF3) and (ii) the corresponding
microscopic Markov simulation (Mic.) autocorrelation time.

autocorrelation function is reasonably good even in the case
of RF3 and much better in the case of RF6.
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FIG. 7. Numerical experiments performed over an ensemble of
300 potassium channels, each characterized by the state transition
diagram in Fig. 8. Measurements for the reduced formulation with
two retained states (indicated by subscript “C”) are presented relative
to the corresponding exact microscopic Markov simulation results
(indicated by subscript “S”). (a) Expectation values, (b) standard
deviations, and (c) autocorrelation times, over the density of the
relevant state 4. A set of 30 randomly and independently generated
rate values in the space of {α ∈ (0:1); β ∈ (0:0.5)} was used.
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B. Experiment 2

Compared to the rather complicated state transition diagram
used in experiment 1, we now employ a simpler transition
diagram, namely, the kinetic scheme of potassium channels
shown in Fig. 8 (Appendix B). We randomly and independently
generated 30 pairs of rate values in the space of {α ∈ (0 : 1);
β ∈ (0 : 0.5)} using the uniform distribution and measured
the expectation value, standard deviation, and autocorrelation
time of the relevant state density for each rate pair. The
measurements obtained from the reduced formulation with
two retained states are presented in Fig. 7. We observe
that the formulation perfectly predicts the expectation values
and standard deviations, essentially within the range of the
numerical error limits. The prediction of autocorrelation times
is excellent, with errors of less than 2%. When the strong
formulation is adopted, even more accurate autocorrelation
times are revealed (not plotted here).

The findings from these two experiments confirm the high
accuracy of the strong formulation and support the adequacy
of the reduced formulation as a simplified model. It is also
indicated that taking even a small portion of the states as
retained states, in the reduced formulation, suffices for good
accuracy.

VI. CONCLUSION

In this paper, we have studied the temporal evolution of
state density fluctuations in Markov chain ensembles evolving
independently under a common transition rate matrix in some
finite state space. We have in this context developed two
related diffusion formulations in the form of coupled stochastic
differential equations. The first formulation is referred to
as the “strong diffusion formulation” since it was derived
from Kurtz’s strong approximation theorem [7]; hence, it is
a universal and consistent Langevin-type formulation that
accurately represents the Markov channel dynamics. The
numerical simulations we have provided support the high

accuracy of the formulation. Furthermore, simulations by
other researchers [27] have shown the accuracy of Orio and
Soudry’s stochastic differential equations [18]; these findings
also support our formulation because the strong formulation
generates Orio and Soudry equations for the ion channel
clusters.

We have introduced the “reduced diffusion formulation”
to obtain a simpler set of governing equations by reducing
the numbers of variables and noise terms in use. Thereby, the
reduced formulation facilitates a simpler analytic description
and a faster computation algorithm over the strong formula-
tion. It is important to emphasize that the simplification of the
governing equations is realized with the least possible increase
in the error. For the reduced formulation to apply, the set of
relevant states must be a subset of the set of all states and
the transition rates must be temporally constant (or slowly
varying). The simulations indicate that using only a fraction
of the states as the retained states suffices for good enough
accuracy, which makes the reduced formulation an important
model for practical use. In the case of a single retained state,
the reduced formulation yields the so-called 1v1n diffusion
formulation introduced in our previous paper [23]; in the case
of two retained states, it yields a result somewhat similar to
that obtained with the so-called minimal diffusion formulation
introduced in our earlier paper [22]. The reduced formulation,
however, has the advantages that the retained state set there can
be specified to be of any desired size and that it is a completely
self-contained formulation.

APPENDIX A: DERIVATION OF EQS. (21) AND (22)

In this Appendix, we show that the minimum variance of the
function Fl (l ∈ S − E) in Eq. (20) is obtained in the parameter
space by setting alp as in Eq. (21). In addition, we derive
Eq. (22) in that parameter regime.

The variance of Fl is

〈
F 2

l

〉 =
∑

p∈S−E

a2
lp

〈
φ2

p

〉 + ∑
p,q ∈ S − E

q �= p

alpalq〈φpφq〉 + 2
∑
k∈El

zkl

∑
p∈S−E

alp〈φkφp〉 +
∑
k∈El

z2
kl

〈
φ2

k

〉 + ∑
j,k ∈ El

j �= k

zjlzkl〈φjφk〉, (A1)

where l ∈ S − E. Then making use of Eqs. (8) and (9) gives

N
〈
F 2

l

〉 =
∑

p∈S−E

a2
lp〈ψp〉(1 − 〈ψp〉) −

∑
p,q ∈ S − E

q �= p

alpalq〈ψp〉〈ψq〉 − 2
∑
k∈El

zkl

∑
p∈S−E

alp〈ψk〉〈ψp〉

+
∑
k∈El

z2
kl〈ψk〉(1 − 〈ψk〉) −

∑
j,k ∈ El

j �= k

zjlzkl〈ψj 〉〈ψk〉. (A2)

Its derivative with respect to alp yields

N
∂
〈
F 2

l

〉
∂alp

= 2〈ψp〉

⎡
⎢⎢⎢⎣(1 − 〈ψp〉)alp −

∑
q ∈ S − E

q �= p

alq〈ψq〉 −
∑
k∈El

zkl〈ψk〉

⎤
⎥⎥⎥⎦, (A3)
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which can be rewritten as

N
∂
〈
F 2

l

〉
∂alp

= 2〈ψp〉
⎡
⎣alp −

∑
q ∈ S − E

alq〈ψq〉 −
∑
k∈El

zkl〈ψk〉
⎤
⎦. (A4)

The condition

∂
〈
F 2

l

〉
∂alp

= 0, ∀p ∈ S − E

yields a unique minimum taking place at equal values of
{alp| ∀p}, and the value of alp at the minimum is as in Eq. (21)
for each l ∈ S − E. Substituting Eq. (21) into Eq. (A2) and
employing Eq. (3) results in Eq. (22).

APPENDIX B: A SIMPLE DEMONSTRATION
USING POTASSIUM CHANNELS

The objective of this Appendix is to illustrate the implemen-
tation of our formulations through a simple example, namely,
potassium channels in excitable membranes. The gating of ion
channels is typically modeled by means of a continuous-time
discrete state Markovian kinetic scheme, in which a channel
can be open (the relevant state) or can be found in one of
the multiple closed states. The state transition diagram of
a potassium channel is as in Fig. 8. The transition rates α

and β therein are time dependent through the transmembrane
voltage. Nevertheless, it is the subthreshold activity that
matters for the initiation of an action potential, and since the
voltage does not vary much within that phase of activity, the
rates can be supposed to be slowly varying.

In this case, Eq. (3) reads

〈ψ0〉 + 〈ψ1〉 + 〈ψ2〉 + 〈ψ3〉 + 〈ψ4〉 = 1, (B1)

and the master equation, (6), yields, at steady state, the coupled
set of equations

α〈ψ3〉 − 4β〈ψ4〉 = 0,

2α〈ψ2〉 − (α + 3β)〈ψ3〉 + 4β〈ψ4〉 = 0,

3α〈ψ1〉 − 2(α + β)〈ψ2〉 + 3β〈ψ3〉 = 0, (B2)

4α〈ψ0〉 − (3α + β)〈ψ1〉 + 2β〈ψ2〉 = 0,

−4α〈ψ0〉 + β〈ψ1〉 = 0.

Simultaneous solution of Eqs. (B1) and (B2) gives

〈ψ4〉 = n̄4, 〈ψ3〉 = 4n̄3(1 − n̄), 〈ψ2〉 = 6n̄2(1 − n̄)2,

〈ψ1〉 = 4n̄(1 − n̄)3, 〈ψ0〉 = (1 − n̄)4, (B3)

4 3 2

β β2 β3 4β
2 3 41

α α α α

0

FIG. 8. Potassium channel state transition diagram. State 4 is the
relevant state.

where

n̄ := α

α + β
.

The strong formulation reads as follows. Equation (15)
becomes

ψ̇4 = −4βψ4 + αψ3 − ξ34,

ψ̇3 = −(α + 3β)ψ3 + 2αψ2 + 4βψ4 − ξ23 + ξ34,

ψ̇2 = −2(α + β)ψ2 + 3αψ1 + 3βψ3 − ξ12 + ξ23, (B4)

ψ̇1 = −(3α + β)ψ1 + 4αψ0 + 2βψ2 − ξ01 + ξ12,

ψ̇0 = −4αψ0 + βψ1 + ξ01,

in which the noise variances conclude from Eq. (16)

≺ ξ 2
34 � = αψ3 + 4βψ4

N
, ≺ ξ 2

23 �= 2αψ2 + 3βψ3

N
,

≺ ξ 2
12 � = 3αψ1 + 2βψ2

N
, ≺ ξ 2

01 �= 4αψ0 + βψ1

N
.

(B5)

For the reduced formulation, consider the case of two
retained states—states 4 and 3—as an example. It reads
through the governing equation, (29), that

φ̇4 = −4βφ4 + αφ3 − ξ34,

φ̇3 = −(α + 3β)φ3 + 4βφ4 − 2α〈ψ2〉
1 − 〈ψ3〉 − 〈ψ4〉 (φ3 + φ4)

− ξ23 + ξ34, (B6)

in which the noise variances conclude from Eqs. (27) and
(28)

≺ ξ 2
34 � = αψ3 + 4βψ4

N
,

≺ ξ 2
23 � = 2α〈ψ2〉 + 3βψ3

N
. (B7)

Here, the dynamics is governed by two differential equa-
tions and two noises, whereas the corresponding strong
formulation above consists of five differential equations
and four noises. Hence, in this particular case, the re-
duced formulation is about twice as fast as the strong
formulation.
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