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Relativistic analysis of stochastic kinematics
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The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of
the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For
one-dimensional spatial models, the effective diffusion coefficient measured in a frame � moving with velocity
w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz
factor γ (w) = (1 − w2/c2)−1/2. Subsequently, higher-dimensional processes are analyzed and it is shown that
the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the
velocity of the moving frame scale differently with respect to γ (w). The analysis of discrete space-time diffusion
processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several
different simulation experiments. Several implications of the theory are also addressed and discussed.
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I. INTRODUCTION

The inclusion of stochastic processes within the formal
structure of relativity (special or general) is a relevant issue in
theoretical physics (field theory) with important implications
in high-energy physics and cosmology [1,2]. It is a challenging
issue, due to causality and to the formal constraints of the
Minkowskian structure of the space-time, imposed by the
boundedness of the propagation velocity of physical processes,
which forces us to consider space and time variable on equal
footing. Relativistic covariance lies in the background of
extended thermodynamic theories of irreversible processes
and transport phenomena [3–5]. The limit imposed by the
constant value of the velocity of light in vacuo implies that
any consistent relativistic stochastic process should possess
bounded propagation velocity and, as a consequence of this,
an almost-everywhere-smooth structure of the space-time
trajectories.

The works by Dudley [6–8] and Hakim [9–11] elucidated
further the subtleties of the relativistic formulation of stochas-
tic processes. The most relevant constraint is the impossibility
of a strictly Markovian process in the Minkowski space-time.
As observed by Dudley [7], the structure of the Minkowsky
space-time forces one to include information on the velocity
in specifying the state of a stochastic process. This general
and significant observation can be interpreted and followed in
two conceptually different ways in order to define relativistic
models of Brownian motion.

The first strategy is to build up a relativistic version of
Ornstein-Uhlenbeck processes in the μ space [9], that is, the
Cartesian product of the Minkowski space-time M4 times the
R4 space of the 4-velocities. This is the strategy adopted in
defining the so-called relativistic Ornstein-Uhlenbeck process
by Debbasch et al. [12,13] and the relativistic Brownian
motion by Dunkel and Hänggi [14,15]. These classes of mod-
els represent Ornstein-Uhlenbeck processes, i.e., Langevin
equations for the position and the momentum of a particle
driven by a stochastic force in the presence of a friction
contribution. The stochastic force is modeled in the form of
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a Wiener process and the momentum-dependent prefactors
accounting for the Lorentz covariance, modulating both the
friction and the intensity of the stochastic perturbations, can
be derived from the stationary relativistic velocity distribution,
expressed by the Jüttner distribution [16] (or by the modified
Jüttner distribution), corresponding to the stationary solution
of the relativistic Boltzmann equation [17–20]. A central-limit
theorem for these families of relativistic processes is developed
in [21].

All these models describe a stochastic dynamics but not
a stochastic kinematics, i.e., a stochastic process involving
exclusively space-time coordinates that, according to the above
mentioned observation by Dudley and Hakim, cannot be
grounded in a strict Markovian model. The way to approach
a relativistically consistent stochastic kinematic model is to
consider a system of bounded velocities, the selection of
which is controlled by a Markov-chain process. This is the
essence of Poisson-Kac processes, introduced by Kac [22] and
further elaborated by many authors [23–26] and extended in
[27–30] to any space dimension via the concept of generalized
Poisson-Kac processes. For a general review of the different
approaches in relativistic stochastic analysis see [31].

The aim of this article is to analyze the (special) relativistic
transformation of stochastic kinematics and specifically the
transformation of the tensor diffusivity induced by a Lorentz
boost. Although this issue is of general relevance in both theory
and applications, discussion of it in the literature is lacking.
A possible explanation of this lack stems from the fact that,
for relativistic stochastic processes, a μ-space formulation has
been followed and the resulting nonlinear Langevin equations
in M4 × R4 are fairly complex and not easily amenable to
a closed-form analysis of the associated diffusivity tensor.
In this article, using different approaches and relativistic
stochastic processes (Poisson-Kac processes, discrete space-
time diffusion models recently studied in [32,33], etc.), the
relativistic transformation of the tensor diffusivity is derived
and some of its implications are explored.

The article is organized as follows. Section II reviews
briefly the class of Poisson-Kac processes considered and
Sec. III analyzes their relativistic transformation. Section IV
develops the moment analysis of the spatial one-dimensional
Poisson-Kac process in order to obtain the expression for the
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effective diffusivity measured in two inertial frames in relative
motion. Section V extends the analysis to higher dimensions,
showing the occurrence of two different scalings for the
longitudinal and transversal diffusivities. Scaling analysis
and numerical simulations are developed in Secs. VI and
VII, respectively. Section VIII discusses a consequence of
the transformation analysis of tensor diffusivity, associated
with the relativistic invariance of the stochastic action.
Section IX addresses the general transformation theory of
tensor diffusivity, by considering discrete space-time diffusion
models as a prototypical example of stochastic processes
amenable to closed-form analysis due to the homogenization
theory developed in [32,33]. Finally, Sec. X discusses some
implications of the theory, including also a brief analysis
of the concept of deterministic vs stochastic motion in a
Minkowskian space-time.

II. POISSON-KAC PROCESSES

Let �′ (space-time coordinates x ′ and t ′) be a frame in
which a Poisson-Kac process is at rest, i.e., it possesses
vanishing effective (long-term) velocity; �′ can be referred
to as the rest frame of the process. In �′ the free Poisson-Kac
process is described by the stochastic equation

dx ′(t ′) = b′
0(−1)χ(t ′)dt ′, (1)

where χ (t ′) is the realization of a Poisson process possessing
transition rate a′

0, i.e., such that the probability density function
pτ ′(τ ′) for the switching times of the Poisson process is given
by the exponential distribution pτ ′(τ ′) = a′

0e
−a′

0τ
′
, τ ′ ∈ [0,∞).

The parameter b′
0 is the characteristic local velocity of the

Poisson-Kac perturbation 0 < b′ � c, where c is the light
velocity in vacuo.

Let p′(x ′,t ′) be the probability density function associated
with the stochastic evolution (1) and p′,±(x ′,t ′) the partial
probabilities characterizing the statistical evolution of the
Poisson-Kac process (also referred to as partial probability
waves). In �′, the equations for p′,±(x ′,t ′) read

∂p′,+

∂t ′
= −b′

0
∂p′,+

∂x ′ − a′
0p

′,+ + a′
0p

′,−,

∂p′,−

∂t ′
= b′

0
∂p′,−

∂x ′ + a′
0p

′,+ − a′
0p

′,−,

(2)

where p′ = p′,+ + p′,−. The parameter D0 given by

D0 = (b′
0)2

2a′
0

(3)

represents the diffusion coefficient of the Poisson-Kac process
in the rest frame (rest diffusion coefficient). It is well known
from the work by Kac [22] that in the limit of b′

0 and a′
0 tending

to infinity, keeping fixed the ratio D0, the solution of Eq. (2)
converges in the long-term limit to that of a pure diffusion
equation for p′(x ′,t ′) characterized by the diffusivity D0.

III. INERTIAL TRANSFORMATIONS

Let � be an inertial frame moving with constant velocity
w, |w| � c, with respect to �′ and (x,t) its space-time
coordinates. Enforcing the Lorentz transformation between

� and �′,

x = γ (w)(x ′ − wt ′), t = γ (w)(t ′ − wx ′/c2), (4)

where γ (w) = (1 − w2/c2)−1/2 is the Lorentz factor, Eqs. (2)
become

γ (w)

(
1 − b′

0w

c2

)
∂p′,+

∂t

= −γ (w)(b′
0 − w)

∂p′,+

∂x
− a′

0p
′,+ + a′

0p
′,−,

γ (w)

(
1 + b′

0w

c2

)
∂p′,−

∂t

= γ (w)(b′
0 + w)

∂p′,−

∂x
+ a′

0p
′,+ − a′

0p
′,−. (5)

Let us define the transformed partial probability densities
p+(x,t) and p−(x,t) in � as

p+ = γ (w)

(
1 − b′

0w

c2

)
p′,+,

p− = γ (w)

(
1 + b′

0w

c2

)
p′,−.

(6)

The quantities p+(x,t) and p−(x,t) are the representation of
the partial probability densities for the stochastic process (1)
in � and their balance equations read

∂p+

∂t
= −b+ ∂p+

∂x
− a+p+ + a−p−,

∂p−

∂t
= b− ∂p+

∂x
+ a+p+ − a−p−,

(7)

where

b+ = b′
0 − w

1 − b′
0w/c2

, b− = b′
0 + w

1 + b′
0w/c2

(8)

and

a+ = a′
0

γ (w)(1 − b′
0w/c2)

,

a− = a′
0

γ (w)(1 + b′
0w/c2)

.

(9)

From Eqs. (7), the overall probability density p = p+ + p−
in � is a conserved quantity. Moreover, from the definitions (6)
it follows that the transformation for the probability densities
and fluxes in the two systems is given by

p = γ (w)

(
p′ − w

c2
J ′

)
, J = γ (w)(J ′ − wp′), (10)

where J ′ = b′
0(p′+ − p′−) and J = b+p+ − b−p− are the

probability fluxes in the two reference systems. Equation (10)
corresponds to the Lorentz boost for the two-dimensional
(as we consider a 1 + 1 Minkowski space-time) 4-vector
j ′
ν = (cp′,J ′). Observe from Eqs. (8) that the transformations

for the coefficient b+ and b− are consistent with the relativistic
composition of the velocities.
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IV. MOMENT ANALYSIS AND DIFFUSIVITY
TRANSFORMATION

The statistical properties of the stochastic process consid-
ered in the moving reference system � can be conveniently
approached by considering the associated moment hierarchy

mn(t) =
∫ ∞

−∞
xnp(x,t)dx = m+

n (t) + m−
n (t), (11)

where the partial moments

m±
n (t) =

∫ ∞

−∞
xnp±(x,t)dx (12)

satisfy the system of equations

dm+
n (t)

dt
= nb+m+

n−1(t) − a+m+
n (t) + a−m−

n (t),

dm−
n (t)

dt
= −nb−m−

n−1(t) + a+m+
n (t) − a−m−

n (t).

(13)

For n = 0 (zeroth-order moment) Eqs. (13) reduce to

dm±
0 (t)

dt
= ∓a+m+

0 (t) ± a−m−
0 (t). (14)

In the long-term limit (here the concept of long-term or asymp-
totic property refers to times larger than the characteristic
time scale characterizing the recombination dynamics between
the two probability waves p+ and p− describing statistically
the Poisson-Kac process and corresponds to time scales
t � max{1/a+,1/a−}), the zeroth-order moments converge
to steady values satisfying the relation

m+
0 = a−

a+ m−
0 . (15)

Enforcing the consistency condition m+
0 + m−

0 = 1, one thus
obtains

m±
0 = a∓

a+ + a− = 1 ∓ b′
0w/c2

2
. (16)

Next consider the first-order moments, i.e., n = 1, for which
Eqs. (13) provide

dm+
1 (t)

dt
= b+m+

0 (t) − a+m+
1 (t) + a−m−

1 (t),

dm−
1 (t)

dt
= −b−m−

0 (t) + a+m+
1 (t) − a−m−

1 (t).

(17)

The long-term behavior of m±
1 (t) is at most linear in time, i.e.,

m±
1 (t) = μ±

1 t + δ±
1 . (18)

Substituting these expressions into Eqs. (17) and equating the
coefficients of equal powers of tp, p = 0,1, one obtains the
algebraic relations

a+μ+
1 − a−μ−

1 = 0 (19)

and

μ+
1 = b+m+

0 − a+δ+
1 + a−δ−

1 ,

μ−
1 = −b−m−

0 + a+δ+
1 − a−δ−

1 .
(20)

Summing the two expressions (20), a further linear equation
in μ±

1 is obtained,

μ+
1 + μ−

1 = b+m+
0 − b−m−

0 . (21)

Enforcing Eq. (16), it follows readily that

μ1 = μ+
1 + μ−

1 = −w, (22)

where μ1 is the effective velocity measured in the moving
reference system, m1(t) ∼ μ1t . Equation (22) is physically
straightforward, implying that the effective mean velocity of
the stochastic process measured in the moving system is just
the reverse velocity −w. Equations (19) and (21) provide a
linear system in the two unknown μ±

1 , yielding as a solution

μ±
1 = a∓(b+m+

0 − b−m−
0 )

a+ + a− . (23)

Finally, in order to derive dispersion properties, consider
the second-order moments m±

2 (t), which satisfy the system of
equations

dm+
2 (t)

dt
= 2b+m+

1 (t) − a+m+
2 (t) + a−m−

2 (t),

dm−
2 (t)

dt
= −2b−m−

1 (t) + a+m+
2 (t) − a−m−

2 (t).

(24)

In the long-term limit, m±
2 (t) attains a quadratic expression

in t ,

m±
2 (t) = σ±

2 t2 + ζ±
2 t + η±

2 . (25)

The substitution of Eq. (25) into Eq. (24) provides the system
of linear relations in the long-term coefficients

a+σ+
2 − a−σ−

2 = 0, (26)

2σ+
2 = 2b+μ+

1 − a+ζ+
2 + a−ζ−

2 ,

2σ−
2 = −2b−μ−

1 + a+ζ+
2 − a−ζ−

2 ,
(27)

and

ζ+
2 = 2b+δ+

1 − a+η+
2 + a−η−

2 ,

ζ−
2 = −2b−δ−

1 + a+η+
2 − a−η−

2 .
(28)

Summing together the two expressions (27) and using Eq. (26),
a system of two linear equations for σ±

2 is obtained, the solution
of which is

σ±
2 = a∓

a+ + a− (b+μ+
1 − b−μ−

1 ). (29)

We are mainly interested in the scaling of the mean square
displacement σ 2(t),

σ 2(t) = m2(t) − [m1(t)]2

= m+
2 (t) + m−

2 (t) − [m+
1 (t) + m−

1 (t)]2. (30)

Asymptotically, i.e., for time scales in which the recombination
process between backward and forward probability waves has
reached a stationary behavior, the expression for σ 2(t) attains
the form

σ 2(t) = A2t
2 + �(v)t + �, (31)

042133-3



MASSIMILIANO GIONA PHYSICAL REVIEW E 96, 042133 (2017)

where

A2 = σ+
2 + σ2 − (μ+

1 + μ−
1 )2,

�(v) = (ζ+
2 + ζ−

2 ) − 2(μ+
1 + μ−

1 )(δ+
1 + δ−

1 ), (32)

� = (η+
2 + η−

2 ) − (δ+
1 + δ−

1 )2.

From the expressions obtained for σ±
2 and μ±

1 it follows
identically that A2 = 0, so that, as expected,

σ 2(t) ∼ �(w)t. (33)

Summing together the two equations (28), one obtains

ζ+
2 + ζ−

2 = 2(b+δ+
1 − b−δ−

1 ). (34)

This equation, together with Eq. (21), provides, after some
algebra, the following expression for �(w):

�(w) = 2(b+ − μ+
1 − μ−

1 )

(
μ−

1 + b−m−
0

a+

)
. (35)

Substituting the expressions for μ±
1 , m−

0 , b±, and a+ into
Eq. (35), one finally arrives at the compact expression

�(w)

2
= (b′

0)2

2a′
0

(
1 − w2

c2

)3/2

. (36)

However, �(v)/2 is the diffusion coefficient D in the moving
reference frame, while, from Eq. (3), (b′

0)2/2a′
0 is the rest

diffusion coefficient D0. Consequently, Eq. (36) can be
expressed in a compact way as

D = D0

(
1 − w2

c2

)3/2

= D0γ
−3(w), (37)

which is the transformation connecting the diffusion coeffi-
cients in the two inertial frames.

V. EXTENSION TO HIGHER SPATIAL DIMENSIONS

The analysis developed in the preceding section is extended
to higher spatial dimensions. Without loss of generality, two
spatial coordinates are considered.

A. Kolesnik-Kac stochastic process

As a two-dimensional model of a Poisson-Kac stochastic
process we consider that proposed by Kolesnik and Turbin
[34] and Kolesnik [35] and therefore referred to as the
Kolesnik-Kac model. It is a particular case of the class of
generalized Poisson-Kac processes introduced in [27] and
thoroughly studied in [28].

Consider a system of N > 2 uniform velocity vectors

b′,(α) = b′
0( cos(2πα/N ), sin(2πα/N )) = (b′,(α)

x ,b′,(α)
y ),

α = 0, . . . ,N − 1, (38)

where b0 is the reference velocity, since |b′,(α)| = b0 for any
α, and the stochastic process

dx′(t ′) = w(t ′)dt ′, (39)

where x′ = (x ′,y ′) and w(t ′) is a stochastic velocity vector
that changes its value, among the N possible states b′′(α) in
a equiprobable way, at random time intervals characterized
by an exponential distribution defined by the transition rate

a′
0 > 0. The mathematical properties of this process have been

studied by Kolesnik [34].
In the stationary system �′ (space-time coordinates x ′,

y ′, and t ′), a system of N partial probability density
functions p′,(α)(x ′,y ′,t ′), α = 0, . . . ,N , fully describes the
statistical properties of the Kolesnik-Kac model and the overall
probability density function of the process is p′(x ′,y ′,t ′) =∑N−1

α=0 p′,(α)(x ′,y ′,t ′). In the stationary frame the partial prob-
abilities satisfy the system of hyperbolic equations

∂p′,(α)

∂t ′
= −b′,(α)

x

∂p′,(α)

∂x ′ − b′,(α)
y

∂p′,(α)

∂y ′

− a′
0p

′,(α) + a′
0

N

N−1∑
β=0

p′,(β), (40)

where α = 0, . . . ,N − 1. In an inertial frame � (space-time
coordinates x, y, and t) moving with respect to �′ at constant
velocity wex along the x axis, the process is characterized by
the N partial probability densities p(α)(x,y,t), α = 0, . . . ,N −
1, defined as

p(α) = γ (w)κ(α)p′,(α), α = 0, . . . ,N − 1, (41)

where

κ(α) = 1 − b′,(α)
x w

c2
. (42)

The balance equation for the partial probability system
{p(α)}N−1

α=0 is obtained from Eq. (40) enforcing the Lorentz
transform (4) and y = y ′, leading to

∂p(α)

∂t
= −b(α)

x

∂p(α)

∂x
− b(α)

y

∂p(α)

∂y

− a(α)p(α) + 1

N

N−1∑
β=0

a(β)p(β), (43)

where α = 0, . . . ,N − 1. The coefficients in these equations
are defined by

b(α)
x = b′,(α)

x − w

κ(α)
, b(α)

y = b′,(α)
y

γ (w)κ(α)
, a(α) = a′

0

γ (w)κ(α)
,

(44)

where α = 0, . . . ,N − 1.

B. Moment hierarchy

As in the one-dimensional spatial case previously analyzed,
moment analysis provides the simplest tool to extract the
statistical properties associated with Eq. (43). Let

m(α)
m,n(t) =

∫ ∞

−∞

∫ ∞

−∞
xmynp(α)(x,y,t)dx dy, (45)

m,n = 0,1, . . . , and α = 0, . . . ,N − 1 be the (m,n)th partial
moment. The global moment hierarchy {mm,n(t)}∞m,n=0 defined
with respect to p(x,y,t) is readily given by the sum over α of
the (m,n)th partial moments. From the definition (45) and from
Eq. (43) it follows that the partial moments satisfy the linear
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system of differential equations

dm(α)
m,n(t)

dt
= mb(α)

x m
(α)
m−1,n(t) + nb(α)

y m
(α)
m,n−1(t) − a(α)m(α)

m,n(t)

+ 1

N

N−1∑
β=0

a(β)m(β)
m,n(t), (46)

where the regularity conditions at infinity for p(α)(x,y,t) have
been enforced.

C. Zeroth- and first-order moments

To begin with, consider the zeroth-order moments m
(α)
0,0(t),

satisfying the system of equations

dm
(α)
0,0(t)

dt
= −a(α)m

(α)
0,0(t) + 1

N

N−1∑
β=0

a(β)m
(β)
0,0(t), (47)

where α = 0, . . . ,N − 1. In the long-term (asymptotic)
limit, i.e., once the recombination among the partial waves
has reached a steady state dm

(α)
0,0(t)/dt = 0, which im-

plies m
(α)
0,0(t) = C ′/a(α) = Cκ(α), where the constant C

is determined by the probabilistic consistency condition∑N−1
α=0 m

(α)
0,0(t) = 1, leading to the expression

m
(α)
0,0(t) = κ(α)

N
, α = 0, . . . ,N − 1. (48)

Next consider the first-order moments. For m = 1 and n =
0, Eq. (46) becomes

dm
(α)
1,0(t)

dt
= b(α)

x m
(α)
0,0(t) − a(α)m

(α)
1,0(t) + 1

N

N−1∑
β=0

a(β)m
(β)
1,0(t),

(49)

where α = 0, . . . ,N − 1. In the long-term limit Eq. (49)
becomes a nonhomogeneous linear system driven by a constant
contribution b(α)

x m
(α)
0,0, where m

(α)
0,0 is given by Eq. (48). Conse-

quently, the asymptotic solution for m
(α)
1,0(t) grows linearly in

time, i.e.,

m
(α)
1,0(t) = μ(α)

x t + δ(α)
x , (50)

where α = 0, . . . ,N − 1. Substituting these expressions into
Eq. (49) and equating the coefficients of equal powers of t , one
obtains the system of relations for the asymptotic coefficients
μ(α)

x and δ(α)
x ,

a(α)μ(α)
x = 1

N

N−1∑
β=0

a(β)μ(β)
x , (51)

μ(α)
x = b(α)

x m
(α)
0,0 − a(α)δ(α)

x + 1

N

N−1∑
β=0

a(β)δ(β)
x , (52)

where α = 0, . . . ,N − 1 and m
(α)
0,0 equals its long-term expres-

sion (48).
Summing over α in Eq. (52), the expression for the effective

velocity Vx ,

m1,0(t) ∼ Vxt, (53)

is obtained

Vx =
N−1∑
α=0

μ(α)
x =

N−1∑
α=0

b(α)
x m

(α)
0,0 = −w, (54)

and from Eqs. (51) and (54) it follows that the expression for
μ(α)

x takes the form

μ(α)
x = −wκ(α)

N
, (55)

where α = 0, . . . ,N − 1. From Eq. (52) one also obtains the
functional form of δ(α)

x , which plays a central role in the
estimate of diffusional properties. Setting Cx = ∑N1

α=0 a(α)δ(α)
x ,

Eq. (52) can be rewritten as

δ(α)
x = 1

a(α)

[
b(α)

x m
(α)
0,0 − μ(α)

x + Cx

N

]
, (56)

where α = 0, . . . ,N − 1. Substituting the long-term expres-
sions (48) and (55), one finally arrives at

δ(α)
x = γ (w)

Na0

(
b′,(α)

x − w
)
κ(α) + wγ (w)

Na0
κ2(α) + γ (w)Cx

Na0
κ(α),

(57)

where α = 0, . . . ,N − 1. The expressions for δ(α)
x contain the

unknown constant Cx . As we will see in the next section, this
constant is totally immaterial in the estimate of the diffusional
properties.

Finally, consider the other family of first-order partial
moments m

(α)
0,1(t). The analysis is completely specular to

that developed above for m
(α)
1,0(t), so only the final results

are reported. In the long-term limit, m
(α)
0,1(t) attains a linear

expression analogous to Eq. (50), namely,

m
(α)
0,1(t) = μ(α)

y t + δ(α)
y , (58)

where α = 0, . . . ,N − 1. From the balance equations it fol-
lows that

μ(α)
y = 0, (59)

where α = 0, . . . ,N − 1, which implies for Vy , m0,1(t) ∼ Vyt ,
that

Vy = 0. (60)

As regards the factors δ(α)
y in the asymptotic functional form

of these first-order partial moments, one obtains

δ(α)
y = 1

a(α)

[
b(α)

y m
(α)
0,0 + Cy

N

]
= 1

Na0
β(α)

y κ(α) + γ (w)Cy

Na0
κ(α), (61)

where α = 0, . . . ,N − 1. In deriving Eq. (61), Eq. (59) has
been used. The coefficients δ(α)

y contain the constant Cy =∑N−1
α=0 a(α)δ(α)

y , which is immaterial in the estimate of the long-
term diffusional properties, which are addressed in the next
section.
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D. Second-order moments and diffusion tensor

To begin with, consider m
(α)
2,0(t), i.e., m = 2 and n = 0 in

Eq. (46). Equation (46) specializes to

dm
(α)
2,0(t)

dt
= 2b(α)

x m
(α)
1,0(t) − a(α)m

(α)
2,0(t) + 1

N

N−1∑
β=0

a(β)m
(β)
2,0(t),

(62)

where α = 0, . . . ,N − 1. In the long-term limit, since the
forcing term b(α)

x m
(α)
1,0(t) is linear in time, m

(α)
2,0(t) should be,

at most, a quadratic function of t ,

m
(α)
2,0(t) = K (α)

x,x t
2 + g(α)

x,x t + ζ (α)
x,x , (63)

where α = 0, . . . ,N − 1. Substituted into Eq. (62), it provides
the following relations among the expansion coefficients:

a(α)K (α)
x,x = 1

N

N−1∑
β=0

a(β)K (β)
x,x, (64)

2K (α)
x,x = 2b(α)

x μ(α)
x − a(α)g(α)

x,x + 1

N

N−1∑
β=0

a(β)g(β)
x,x, (65)

g(α)
x,x = 2b(α)

x δ(α)
x − a(α)ζ (α)

x,x + 1

N

N−1∑
β=0

a(β)ζ (β)
x,x , (66)

where α = 0, . . . ,N − 1. Summing over α in Eq. (65) and
enforcing Eq. (55), it follows that

N−1∑
α=0

K (α)
x,x =

N−1∑
α=0

bα
x μ(α)

x = w2, (67)

which, together with Eq. (64), provides for K (α)
x,x the expression

K (α)
x,x = w2κ(α)

N
, (68)

where α = 0, . . . ,N − 1. The variance σ 2
x,x(t) along the x

coordinate is given by

σ 2
x,x(t) =

N−1∑
α=0

m
(α)
2,0(t) −

[
N−1∑
α=0

m
(α)
1,0(t)

]2

. (69)

Substituting the long-term expressions and enforcing Eqs. (55)
and (68), it follows that σ 2

x,x(t) is asymptotically a linear
function of time

σ 2
x,x(t) ∼ 2Dx,xt, (70)

where the diffusivity along x is given by the expression

2Dx,x =
N−1∑
α=0

g(α)
x,x + 2w

N−1∑
α=0

δ(α)
x . (71)

The first sum in Eq. (71) can be explicated by summing Eq. (66)
over α, providing the compact expression for Dx,x ,

Dx,x =
N−1∑
α=0

(
b(α)

x + w
)
δ(α)
x , (72)

where

b(α)
x + w = b′,(α)

x

γ 2(w)κ(α)
(73)

where α = 0, . . . ,N − 1. From the expressions (72) and (73)
it follows that the term containing the unknown constant Cx

in the expression (56) gives a vanishing contribution in the
estimate of Dx,x . Therefore,

Dx,x = 1

γ 2(w)

N−1∑
α=0

b′,(α)
x

κ(α)

[
γ (w)

Na′
0

(
b′,(α)

x − w
)
κ(α)

+ wγ (w)

Na′
0

κ2(α)

]

= 1

γ (w)Na′
0

[
N−1∑
α=0

b′,(α)
x

(
b′,(α)

x − w
) + w

N−1∑
α=0

b′,(α)
x κ(α)

]

= 1

γ (w)Na′
0

(
1 − w2

c2

) N−1∑
α=0

[
b′,(α)

x

]2 = (b′
0)2

2a′
0

γ −3(w),

(74)

where we have used the identities
∑N−1

α=0 b′,(α) = 0 and∑N−1
α=0 [b′,(α)

x ]2 = (b′
0)2N/2. Equation (74) implies the trans-

formation of the diffusion coefficient Dx,x parallel to the
frame-velocity direction

Dx,x = D‖ = D0γ
−3(w), (75)

consistently with the corresponding expression (37) derived
for the one-dimensional spatial Poisson-Kac process.

Consider now the other family m
(α)
0,2(t), corresponding to

m = 0 and n = 2 in Eq. (46). Details are skipped as the algebra
is identical to the m

(α)
2,0 case. In the long-term regime, m

(α)
0,2(t)

is quadratic in time

m
(α)
0,2(t) = K (α)

y,y t
2 + g(α)

y,y t + ζ (α)
y,y , (76)

where α = 0, . . . ,N − 1. From the moment balance equation
one obtains

K (α)
y,y = 0, (77)

where α = 0, . . . ,N − 1. As regards σ 2
y,y(t) = m0,2(t) −

[m0,1(t)]2, one obtains

σ 2
y,y(t) ∼ 2Dy,yt, (78)

where the diffusion coefficient Dy,y is given by

2Dy,y =
N−1∑
α=0

g(α)
y,y = 2

N−1∑
α=0

b(α)
y δ(α)

y . (79)

Substituting the expressions (44) and (61) for b(α)
y and δ(α)

y into
Eq. (79), one gets

Dy,y =
N−1∑
α=0

b′,(α)
y

γ (w)κ(α)

[
1

Na′
0

b′,(α)
y κ(α) + γ (w)Cy

Na′
0

κ(α)

]

= 1

γ (w)Na′
0

N−1∑
α=0

[
b′,(α)

y

]2 = (b′
0)2

2a′
0

γ −1(w), (80)
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which implies that

Dy,y = D⊥ = D0γ
−1(w) = D0

√
1 − w2

c2
(81)

i.e., the effective diffusion coefficient perpendicular to the
frame direction of motion is proportional to the reciprocal
of the Lorentz factor.

Finally, consider the mixed moments m
(α)
1,1(t), i.e., m = n =

1 in Eq. (46). Also in this case, in the long term

m
(α)
1,1(t) = K (α)

x,y t
2 + g(α)

x,y t + ζ (α)
x,y , (82)

where α = 0, . . . ,N − 1. From the moment balance equation
it follows that

K (α)
x,y = 0, (83)

where α = 0, . . . ,N − 1, and

σ 2
x,y(t) = m1,1(t) − m1,0(t)m0,1(t) ∼ 2Dx,yt, (84)

where

2Dx,y =
N−1∑
α=0

g(α)
x,y −

N−1∑
α=0

μ(α)
x

N−1∑
β=0

δ(β)
x

=
N−1∑
α=0

(
b(α)

x + w
)
δ(α)
y +

N−1∑
α=0

b(α)
y δ(α)

x . (85)

Using the expressions previously derived for the quantities in
Eq. (85), one derives, after some algebra, that

Dx,y = 0, (86)

which completes the diffusional analysis of the Kolesnik-Kac
process.

VI. SCALING ANALYSIS

The transformations of the diffusion coefficient in inertial
systems can be physically interpreted on the basis of time-
dilation and length-contraction phenomena using the classical
Einstein scaling for the diffusion coefficient. The analysis is
not mathematically rigorous and it is aimed at highlighting the
physical origin of the diffusivity transformations, at least in
these simple cases. The diffusivity D′ is proportional to the
ratio of the mean square displacement 〈(�x ′)2〉 divided by the
time scale �t ′,

D′ = 1

2

〈(�x ′)2〉
�t ′

= D0, (87)

which is the Einstein equation for diffusion. Similarly, in the
reference frame �, the diffusion coefficient is given by

D = 1

2

〈(�x)2〉
�t

. (88)

However, �t and �x are related to �x ′ and �t via the Lorentz
transformation, which implies length contraction

�x = �x ′
√

1 − w2

c2
= γ −1(w)�x ′ (89)

and time dilation

�t = �t ′√
1 − w2

c2

= γ (w)�t ′. (90)

Therefore,

〈(�x)2〉 = γ −2(w)〈(�x ′)2〉. (91)

Substituting Eqs. (90) and (91) into Eq. (88), Eq. (37)
follows. Therefore, the scaling of D with the third power
of γ −1(w) can be viewed as a direct consequence of the
space-time contraction and dilation properties of the Lorenz
transformation.

In higher-dimensional spaces

Dxi,xi
= 1

2

〈(�xi)2〉
�t ′

, (92)

where i = 1, . . . d, with d = 2,3, two cases should be consid-
ered separately depending on whether xi is a spatial coordinate
in the direction of the frame velocity or not. In the first case,
namely, for a frame velocity directed along xi , Dxi,xi

= D‖,
〈(�xi)2〉 satisfies Eq. (91), and Eq. (75) is recovered for D‖.
Conversely, if xi is a coordinate in a direction orthogonal to the
frame velocity Dxi,xi

= D⊥, then 〈(�xi)2〉 = 〈(�x ′
i)

2〉, so only
time dilation contributes to D⊥, returning D⊥ = D0γ

−1(w) as
derived in preceding section. For generic stochastic processes,
scaling analysis is not sufficient to provide the expression
for the complete transformation of the tensor diffusivity. This
analysis is developed in Sec. IX.

VII. NUMERICAL EXAMPLES

It is useful to illustrate the main results developed in
the previous sections with the aid of numerical examples of
stochastic dynamics. Throughout this section, a normalized
light velocity is assumed, i.e., c = 1.

To begin with, consider the one-dimensional (1D) spatial
Poisson-Kac process (1). Set b′

0 = c = 1 and a′
0 = 1 so that

the rest diffusivity equals D0 = 1/2. Figure 1 depicts a portion

-10

 0

 10

 20

 30

 40

 0  100  200  300  400  500  600

x′
(t′

), 
 x

(t)

t ′,  t

a

b

FIG. 1. Graph of the evolution of a realization of a Poisson-Kac
process (b′

0 = c = 1 and a′
0 = 1) in the rest frame �′ [line a, i.e.,

x ′(t ′)] and in the inertial system � moving with constant velocity
w/c = 0.8 with respect to �′ [line b, i.e., x(t)].
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FIG. 2. Overall probability density function p(x,t) vs x of a Poisson-Kac process (b′
0 = c = 1 and a′

0 = 1) in the frame � at several time
instants for (a) w/c = 0.8 and (b) w/c = 0.95. Lines a–d refer to t = 30,50,70,100, respectively.

of a realization of this process in the rest frame �′ and in an
inertial frame moving with respect to �′ at constant velocity w.
Consider an ensemble of Np realizations of the Poisson-Kac
process. Each realization can be viewed as a stochastic particle,
the dynamics of which follows the microscopic dynamics (1).
At time t ′ = t = 0 set x ′ = 0 for all the elements of the
ensemble. Figure 2 depicts the overall probability density
function (PDF) p(x,t) vs the spatial coordinate x of the
moving inertial frame obtained numerically from the stochastic
simulations over this ensemble for different values of t and for
two different relative velocities of the frame �: w/c = 0.8
[Fig. 2(a)] and w/c = 0.95 [Fig. 2(b)]. All the simulations
refer to a statistics over Np = 105 particles. As expected, the
PDFs p(x,t) are characterized by a mean value that equals −wt

and by a variance σ 2(t) that becomes narrower as w increases
up to the limit value c = 1 [compare the corresponding curves
in Figs. 2(a) and 2(b)].

The graph of the mean square displacement σ 2(t) vs t for
different values of the relative frame velocity w is depicted
in Fig. 3. The arrow in this figure indicates increasing values
of w, from w = 0 (top curve) up to w = 0.8 (bottom curve).
For w = 0, D0 = 1/2, as expected from Eq. (3), i.e., σ 2(t) = t ,
while as w increases the diffusion coefficient D, corresponding
to half of the slope of the asymptotic linear plot of σ 2(t) vs t ,
decreases.

Observe that the concept of long-term properties regarding
the recombination dynamics among the partial probability
waves p+(x,t) and p−(x,t) refers to time scales t � tmin,
where tmin = 1/a−. For instance, tmin = 3 at w = 0.8, cor-
responding to a very fast relaxation towards the asymptotic
properties compared to the time scales reported on the abscissa
of Fig. 3.

The behavior of the diffusion coefficient D vs the relative
frame velocity w is depicted in Fig. 4 and it is in perfect
agreement with Eq. (37). Next consider higher-dimensional
stochastic processes. The first example is given by the two-
dimensional Kolesnik-Kac model (38) and (39). We have
chosen N = 5, b′

0 = c = 1, and a′
0 = 1, by considering an

ensemble of Np = 105 stochastic particles. Figure 5(a) shows
the behavior of the diagonal entries Dx,x and Dy,y , obtained

from stochastic simulations confirming the theoretical expres-
sions (75) and (81). The off-diagonal entry is not depicted for
the sake of brevity, but is vanishing for any value of the frame
velocity w.

Finally, let us consider a three-dimensional model, namely,
the Poisson-Kac process

dx ′
i(t

′) = b′
0(−1)χi (t ′)dt ′, i = 1,2,3, (93)

where χi(t ′), i = 1,2,3, are three Poisson processes, statisti-
cally independent of each other, characterized by the same
values of the reference velocity b′

0 and of the transition
rate a′

0. This model, statistically described by means of
eight partial probability density functions, converges, for
b′

0,a
′
0 → ∞, keeping fixed the ratio (b′

0)2/a′
0, to an isotropic

three-dimensional parabolic diffusion equation for the overall
PDF p(x′,t ′) with diffusion coefficient equal to D0 given by
Eq. (3).

Let � be an inertial frame moving with a constant velocity
along the direction x ′

1 with respect to �′. It is expected that

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

σ2 (t)

t

FIG. 3. Plot of σ 2(t) vs t for a 1D Poisson-Kac process (b′
0 = c =

1 and a′
0 = 1) in the frame � for different values of the frame velocity

w. The arrow indicates increasing values of w/c = 0,0.2,0.4,0.6,0.8.
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D
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FIG. 4. Plot of D/D0 vs w (c = 1) for a 1D Poisson-Kac process
(b′

0 = c = 1 and a′
0 = 1). Circles represent the results of stochastic

simulations and the solid line is the curve D/D0 = γ −3(w) =
(1 − w2)3/2.

Eqs. (75) and (81) apply also in this case, providing for the
diffusivity tensor Dxi,xj

in � the expression

(
Dxi,xj

) = D0

⎛⎝γ −3(v) 0 0
0 γ −1(v) 0
0 0 γ −1(v)

⎞⎠. (94)

The results of stochastic simulations over an ensemble of
Np = 105 particles are depicted in Fig. 5(b), confirming the
theoretical prediction. Off-diagonal entries (not shown) prove
to be vanishing.

VIII. STOCHASTIC ACTION INVARIANCE

There is a striking analogy between the results expressed
by Eq. (94) and the scaling of the longitudinal and transversal

masses. Although the concepts of longitudinal and transversal
masses, introduced by Einstein [36] in the early days of
relativity theory (see also [37]), are nowadays considered
obsolete, their use in the present context is convenient in order
to derive an interesting implication of Eq. (94).

Consider the equation of motion of a particle of rest mass
m0 = E0/c

2 in an inertial frame � moving with velocity
w along the x1 axis. Introduce the diagonal mass tensor
m = diag(m⊥,m‖,m‖), where m⊥ and m‖ are the longitudinal
and transversal masses, respectively (the mass tensor enters
the three-dimensional expression of the relativistic Newton
equation). The relativistic scaling of m is expressed by

m = m0

⎛⎝γ 3(w) 0 0
0 γ (w) 0
0 0 γ (w)

⎞⎠. (95)

From Eq. (94) it follows that the product mD of a particle
performing purely diffusive stochastic motion is an isotropic
tensor

mD = m0D0I (96)

and the nonvanishing diagonal entries are relativistically
invariant, i.e., they do not depend on the velocity w. This ob-
servation can be expressed as follows: If a particle possessing
rest mass m0 evolves according to a relativistically stochastic
process admitting in a given inertial frame �′ no convective
contribution and an isotropic diffusivity tensor D′ = D0I (this
specific inertial frame can be referred to as the rest frame
for the stochastic motion), then in all the inertial frames �

moving with respect to �′ at constant velocity w, say, along
the x1 coordinate, the product mD of the mass tensor times the
diffusivity tensor is invariant with respect to w and equal to
m0D0I.

The quantity hm = m0D0 has the physical dimension of
kgm2/s, i.e., it corresponds to an action, so Eq. (97) implies
that the stochastic action hm is relativistically invariant. It does
not depend on the relative frame velocity, but eventually it can
depend on the particle rest mass.

 0

 0.2

(a) (b)
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D x
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 /D
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y /

D
0

w

a

b
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 0.6
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0
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b

FIG. 5. (a) Plot of Dx,x/D0 (• and line a) and Dy,y/D0 (� and line b) vs the relative frame velocity w for a two-dimensional Kolesnik-Kac
process (N = 5, b′

0 = c = 1, and a′
0 = 1). Line a represents the function γ −3(w) [Eq. (75)] and line b the function γ −1(w) [Eq. (81)]. Symbols

• and � correspond to the results of stochastic simulations for Dx,x and Dy,y , respectively. (b) Diagonal diffusivities for the three-dimensional
Poisson-Kac process (93) with b′

0 = c = 1 and a0 = 1. Symbols represent the results of stochastic simulations: •, Dx1,x1 ; �, Dx2,x2 ; and �,
Dx3,x3 . Lines a and b are the same as in (a).

042133-9



MASSIMILIANO GIONA PHYSICAL REVIEW E 96, 042133 (2017)

We can further develop this concept by introducing quan-
tum mechanical considerations. From the well known corre-
spondence between the Schrödinger equation and stochastic
processes [38,39], usually obtained via an analytic continu-
ation of the time coordinate towards the imaginary axis, the
quantum mechanical representation of the kinetic energy of a
free particle corresponds to an effective quantum diffusivity
Dquantum expressed by

Dquantum = h̄

2m0
. (97)

Therefore, for a free quantum particle, D0 = Dquantum and
Eqs. (96) and (97) provide

hm = h̄

2
, (98)

i.e., the stochastic action is not only relativistically invariant
but also independent of the particle rest mass. It indicates
that in a stochastic representation of quantum motion, the
basic constraint induced by quantization and by the Lorentz
transformation is the relativistic invariance of the product of
the mass tensor times the effective diffusivity tensor that, in
any inertial frame, returns an isotropic tensor with eigenvalues
equal to h̄/2,

mD = h̄

2
I. (99)

Equation (99) can be viewed as a stochastic quantization rule
emerging from special relativity. Its implication will be ex-
plored elsewhere. However, a qualitative indication emerging
from Eq. (99) is that, even in the low-energy limit, i.e., for the
Schrödinger equation (not speaking of the Dirac counterpart),
a stochastic interpretation of its formal structure could be
properly grounded on a relativistic covariant framework (see
[40]). This implies that the source of stochasticity, originating
quantum uncertainty, should also possess covariant properties.
The natural candidate possessing all these requirements is
the zero-point energy fluctuations of the electromagnetic field
[41,42]. A thorough analysis of this issue is left for future
work.

IX. ANALYSIS OF THE DIFFUSIVITY TENSOR:
SPACE-TIME DIFFUSION

The results obtained for Poisson-Kac processes are con-
firmed and generalized by the study of discrete stochastic
space-time dynamics, which is addressed in this section. This
extension provides a general expression for the relativistic
transformation of the diffusivity tensor.

A. Space-time diffusion

Discrete space-time diffusion (STD) processes in RN

were originally introduced in [32] in order to describe
in a compact way particle transport in periodic arrays of
obstacles or localized repulsive potentials. A STD process
is defined by the quintuple (N,S,π ,{Aα}Sα=1,τ ), where N is
the space dimension, S is the number of states the random
space-time displacements can attain, π = (π1, . . . ,πS) is an
S-dimensional probability vector (with πα > 0, α = 1, . . . ,S,
and

∑S
α=1 πα = 1), Aα (α = 1, . . . ,S) are given (constant)

space displacements in RN , and τ = (τ1, . . . ,τS) are the
corresponding time intervals (time displacements) τα > 0.

Consider an inertial system � defined by the space-
time coordinates (x,t). The dynamics of a STD process
in � is defined with respect to a discrete iteration time
n = 0,1, . . . as

(xn+1,tn) = (xn + Aα,tn + τα), (100)

with probability πα , where α = 1, . . . ,S. Suppose that the
process is defined at n = 0 such that x0 = 0 and t0 = 0 so
that no issues of simultaneity arise. Equation (100) can be
viewed as a stroboscopic sampling of a stochastic process in
the reference system �.

From the theory of STD processes developed in [32],
the long-term evolution for the probability density p(x,t),
x = (x1, . . . ,xN ), associated with Eq. (100) converges to
the solution of an effective constant-coefficient advection-
diffusion equation

∂tp(x,t) = −
N∑

k=1

vk∂xk
p(x,t) +

N∑
h,k=1

Dh,k∂xh
∂xk

p(x,t),

(101)

where ∂t = ∂/∂t , ∂xk
= ∂/∂xk , and v = (v1, . . . ,vN ) and D =

(Dh,k)Nh,k=1 represent the constant effective velocity vector and
tensor diffusivity, respectively. Introducing the quantities

V
(n)
t =

S∑
α=1

πατα, V
(n)
k =

S∑
α=1

παAα,k, k = 1, . . . ,N

D
(n)
t = 1

2

[
S∑

α=1

πατ 2
α − (

V
(n)
t

)2

]
,

D
(n)
t,k = 1

2

[
S∑

α=1

παταAα,k − V
(n)
t V

(n)
k

]
, k = 1, . . . ,N

D
(n)
h,k = 1

2

[
S∑

α=1

παAα,hAα,k − V
(n)
h V

(n)
k

]
, h,k = 1, . . . ,N,

(102)

where Aα,k is the kth entry of the space-displacement vector
Aα , the effective transport parameters attain the expression

vk = V
(n)
k

V
(n)
t

, k = 1, . . . ,N (103)

and

Dh,k = D
(n)
t V

(n)
h V

(n)
k(

V
(n)
t

)3 −
[
D

(n)
t,hV

(n)
k + D

(n)
t,kV

(n)
h

](
V

(n)
t

)2 + D
(n)
h,k

V
(n)
t

,

(104)

where h = k = 1, . . . ,N . Observe that the quantities ex-
pressed by Eqs. (102) represent the effective space-time
velocity and diffusivities parametrized with respect to the
discrete iteration time n.

B. Relativistic analysis

Let Eq. (100) be the dynamic description of a stochastic
process in � and let �′ be another inertial frame, the space-
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time coordinate of which is (x′,t ′), moving with respect to �

with constant relative velocity w along the x1 axis. Set c = 1
for the light speed in vacuo so that w ∈ (−1,1). Enforcing the
requirements of special relativity, the velocities of the STD
process (100) should be bounded by c, which implies, since
c = 1, that

|A|α < τα, α = 1, . . . ,S. (105)

For simplicity, consider the case N = 2, i.e., a spatial two-
dimensional model. In �′ the STD process (100) is described
by the evolution equation

(x′
n+1,t

′
n) = (x′

n + A′
α,tn + τ ′

α) (106)

with probability πα , where α = 1, . . . ,S, expressed with
respect to the space-time coordinates of �′, where the
displacements A′

α and τ ′
α are related to Aα and τα by a Lorentz

boost

τ ′
α = γ (w)(τα − wAα,1),

A′
α,1 = γ (w)(Aα,1 − wτα), (107)

A′
α,2 = Aα,2.

Given A′
α and τ ′

α , α = 1, . . . ,S, Eqs. (102)–(104) can be
applied to derive the effective transport parameters measured
in �′.

As regards the effective parameters with respect to the
iteration time n, elementary algebra provides

V
′(n)
t = γ (w)

(
V

(n)
t − wV

(n)
1

)
, V

′(n)
1 = γ (w)

(
V

(n)
1 − wV

(n)
t

)
,

V
′(n)

2 = V
(n)

2 (108)

and

D
′(n)
t = γ 2(w)

[
D

(n)
t − 2wD

(n)
t,1 + w2D

(n)
1,1

]
,

D
′(n)
t,1 = γ 2(w)

[
(1 + w2)D(n)

t,1 − w
(
D

(n)
t + D

(n)
1,1

)]
,

D
′(n)
t,2 = γ (w)

[
D

(n)
t,2 − wD

(n)
1,2

]
,

D
′(n)
1,1 = γ 2(w)

[
D

(n)
1,1 − 2wD

(n)
t,1 + w2D

(n)
t

]
,

D
′(n)
1,2 = γ (w)

[
D

(n)
1,2 − wD

(n)
t,2

]
,

D
′(n)
2,2 = D

(n)
2,2.

(109)

For the effective velocities v′
k measured in �′, from Eqs. (103)

and (108) one obtains

v′
1 = V

′(n)
1

V
′(n)
t

= v1 − w

1 − wv1
, v′

2 = V
′(n)

2

V
′(n)
t

= v2

√
1 − w2

1 − wv1
,

(110)

which correspond to the velocity transformations of special
relativity.

More interesting is the transformation of the effective tensor
diffusivity, i.e., how D′ measured in �′ is related to D. To begin
with, consider D′

1,1. Equation (104), expressed in �′, can be

written in the form of an Euclidean scalar product 〈·,·〉, as

D′
1,1 = 1(

V
′(n)
t

)3 〈Ṽ′,D̃′Ṽ′〉, (111)

where

Ṽ′ =
(

V
′(n)

1

V
′(n)
t

)
, D̃′ =

(
D

′(n)
t −D

′(n)
t,1

−D
′(n)
t,1 D

′(n)
1,1

)
. (112)

Here Ṽ′ is related to Ṽ = (V (n)
1 ,V

(n)
t ) by a Lorentz boost

Ṽ′ = L̂wṼ ,

L̂w =
(

γ −γw

−γw γ

)
. (113)

The transformation for the entries of D̃′ stemming from
Eq. (109) is compactly expressed by⎛⎜⎜⎜⎜⎝

D
′(n)
t

−D
′(n)
t,1

−D
′(n)
t,1

D
′(n)
1,1

⎞⎟⎟⎟⎟⎠ = γ 2(w)

⎛⎜⎜⎜⎜⎝
1 w w w2

w 1+w2

2
1+w2

2 w

w 1+w2

2
1+w2

2 w

w2 w w 1

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝
D

(n)
t

−D
(n)
t,1

−D
(n)
t,1

D
(n)
1,1

⎞⎟⎟⎟⎠. (114)

The latter transformation can be expressed in tensorial form
as D̃′

h,k = �
m,n
h,k D̃m,n, where the fourth-order tensor �

m,n
h,k

accounts for the transformation (114) and Einstein summation
notation has been adopted. Consequently, Eq. (111) becomes

D′
1,1 = 1

γ 3(w)(1 − wv1)3

M
p,q

h,k Ṽ hṼ kD̃p,q(
V

(n)
t

)3 , (115)

where Ṽ h and D̃p,q are the entries of Ṽ and D̃, defined
above, and M

p,q

h,k = L̂p

w,h�
h,k
p,qL̂

q

w,k , L̂p

w,h being the entries of
the Lorentz boost (113). Developing the algebra, Eq. (115)
yields the following expression for D′

1,1:

D′
1,1 = 1

γ 3(w)(1 − wv1)3

=
[

D
(n)
t

(
V

(n)
1

)2 − 2D
(n)
t,1V

(n)
1 V

(n)
t + D

(n)
1,1

(
V

(n)
t

)2(
V

(n)
t

)3

]
.

(116)

The term in square brackets in Eq. (116) is just D1,1 as
measured in � [Eq. (104)] for h = k = 1. Consequently, the
transformation for D1,1 attains the compact expression

D′
1,1 = D1,1

γ 3(w)(1 − wv1)3
. (117)
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Next consider D′
1,2, which in �′ is given by

D′
1,2 = D

′(n)
t V

′(n)
1 V

′(n)
2 − D

′(n)
t,1 V

′(n)
2 V

′(n)
t − D

′(n)
t,2 V

′(n)
1 V

′(n)
t + D

′(n)
1,2

(
V

′(n)
t

)2(
V

′(n)
t

)3 . (118)

Substituting the expressions (108) and (109) for the transport parameters in �′ referring to the iteration time n as a function of
the corresponding quantities in �, elementary algebra provides the expression

D′
1,2 = D1,2 + wQ1,2

γ 2(w)(1 − wv1)3
, (119)

where

Q1,2 = D
(n)
1,1V

(n)
2 V

(n)
t − D

(n)
1,2V

(n)
1 V

(n)
t − D

(n)
t1 V

(n)
1 V

(n)
2 + D

(n)
t,2

(
V

(n)
1

)2(
V

′(n)
t

)3 . (120)

Equation (104) can be used to express D
(n)
1,1 and D

(n)
1,2 as a function of D1,1 and D1,2. In this way, the expression for Q1,2 greatly

simplifies, providing Q1,2 = D1,1v2 − D1,2v1, and consequently the transformation relation for D′
1,2 becomes

D′
1,2 = D1,2 + w(D1,1v2 − D1,2v1)

γ 2(w)(1 − wv1)3
. (121)

Finally, consider D′
2,2. From its definition

D′
2,2 = D

′(n)
t

(
V

′(n)
2

)2 − 2D
′(n)
t,2 V

′(n)
2 V

′(n)
t + D

′(n)
2,2

(
V

′(n)
t

)2(
V

′(n)
t

)3 , (122)

which can be rearranged in the form

D′
2,2 = D2,2 + 2wP2,2 + w2R2,2

γ (w)(1 − wv1)3
, (123)

where

P2,2 = D
(n)
1,2V

(n)
2 V

(n)
t − D

(n)
2,2V

(n)
1 V

(n)
t − D

(n)
t,1

(
V

(n)
2

)2 + D
(n)
t,2V

(n)
1 V

(n)
2(

V
′(n)
t

)3 ,

(124)

R2,2 = D
(n)
1,1

(
V

(n)
2

)2 − 2D
(n)
1,2V

(n)
1 V

(n)
2 + D

(n)
2,2

(
V

(n)
1

)2(
V

′(n)
t

)3 .

Using Eq. (104) to express D
(n)
h,k as a function of the diffusivities Dh,k expressed with respect to the physical time, the expressions

for P2,2 and R2,2 simplify to obtain for D′
2,2 the transformation

D′
2,2 = D2,2 + 2w(D1,2v2 − D2,2v1) + w2

(
D1,1v

2
2 − 2D1,2v1v2 + D2,2v

2
1

)
γ (w)(1 − wv1)3

. (125)

C. Three-dimensional case

The extension of the transformations developed in the preceding section to three-dimensional spatial coordinates in
straightforward. As before, suppose that �′ moves relatively to � with a constant velocity w along the x1 axis.

As regards D′
1,1, D′

1,h = D′
h,1, and D′

h,h, with h = 2,3, the expressions follow from Eqs. (117), (121), and (125), namely,

D′
1,1 = D1,1

γ 3(w)(1 − wv1)3
, D′

1,h = D1,h + w(D1,1vh − D1,hv1)

γ 2(w)(1 − wv1)3
, h = 2,3

(126)

D′
h,h = Dh,h + 2w(D1,hvh − Dh,hv1) + w2

(
D1,1v

2
h − 2D1,hv1vh + Dh,hv

2
1

)
γ (w)(1 − wv1)3

, h = 2,3.

The entry D′
2,3 = D′

3,2 requires some additional calculations that, following the same approach outlined in the preceding section,
return the expression

D′
2,3 = D2,3 + w(D1,2v3 + D1,3v2 − 2D2,3v1) + w2

(
D1,1v2v3 − D1,2v1v3 − D1,2v − 1v3 + D2,3v

2
1

)
γ (w)(1 − wv1)3

. (127)
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FIG. 6. Behavior of the second-order central moments σ ′2
h,k(t ′)

measured in �′ vs t ′ for the two-dimensional spatial model described
in the text. Symbols are the results of numerical simulation of the
stochastic dynamics and solid lines are the theoretical predictions
based on the Einstein scaling σ ′2

h,k(t ′) = 2D′
h,kt

′, where D′
h,k are given

by Eqs. (117), (121), and (125): line a and �, σ ′2
1,1; line b and ◦, σ ′2

1,2;
and line c and •, σ ′2

2,2.

This completes the analysis of the Lorentzian transformation
of the tensor diffusivity referring to two inertial frames in
relative motion.

D. Numerical simulations

In this section, a numerical validation of the transformation
theory for the effective tensor diffusivities is provided. Con-
sider a spatially two-dimensional STD model, N = 2 and S =
3, with π = (0.5,0.1,0.3), τ = (1,0.6,0.5), A1 = (0.8,0.4),
A2 = (−0.4,0.3), and A3 = (0.48, − 0.05).

Numerical simulations of STD dynamics have been per-
formed by considering an ensemble of 107 particles, initially
located at the same space-time point (x0,t0 = 0) evolving ac-
cording to Eq. (100). Using the Lorentz boost, the correspond-
ing coordinates x′

n and t ′n in �′ can be derived, and from the
linear scaling of the first and second-order (central) moments
with respect to t ′, the values v′

k and D′
h,k can be estimated.

Figure 6 depicts the scaling of the second-order central
moments σ ′2

h,k(t ′) = 〈[x ′
h(t ′) − 〈xh(t ′)〉][x ′

k(t ′) − 〈xk(t ′)〉]〉 for
w = 0.7. Solid lines represent the theoretical predictions
σ

′,2
h,k(t ′) = 2D′

h,kt
′, where D′

h,k are given by Eqs. (117), (121),
and (125), while symbols refer to the results of the numerical
simulations of the stochastic STD model.

The review of the value of the effective transport parameters
measured in �′ vs the relative velocity w can be found in Fig. 7.
Figure 7(a) refers to the effective velocity entries and Fig. 7(b)
to the effective tensor diffusivities.

Apart from the excellent agreement between theory (lines)
and simulations (symbols), the behavior of D′

h,k vs w is
highly nontrivial and the effective diffusivities display a local
maximum at some values w∗

h,k of the relative velocity that
depend on h and k. This phenomenon is a consequence of
the presence in the STD model considered of an advective
contribution, accounted for by the effective velocity v1, that
is significantly greater than zero. Consequently, the factor
(1 − wv1)3 in the denominator of the expressions for D′

h,k

-1
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FIG. 7. Effective transport parameters of the spatial two-
dimensional STD model described in the text measured in �′ as a
function of the relative frame velocity w. (a) Effective velocity entries:
line a and �, v′

1; line b and ◦, v′
2. (b) Effective tensor diffusivities:

line a and �, D′
1,1; line b and ◦, D′

1,2; and line c and •, D′
2,2.

modulates their behavior, determining nonmonotonic effects
vs w. For example, in the case of D′

1,1, the abscissa w∗
1,1

of the local maximum equal v1 itself, in the present case
v1 � 0.726, and D′

1,1(w∗
1,1) is almost three times larger than

D1,1. For w → 1, all the diffusivities D′
h,k decay to zero, as

D′
1,1 ∼ γ −3(w), D′

2,2 ∼ γ −1(w), and D′
1,2 ∼ γ −2(w).

The behavior of the tensor diffusivities in �′ for a
spatially three-dimensional STD model (N = 3) is depicted
in Fig. 8. The STD model considered admits S = 6 states with
π = (0,1,0.2,0.3,0.1,0.2,0.1), τ = (1,2,0.5,5,3,0.8), A1 =
(0.5, − 0.3,0.2), A2 = (1, − 0.4,0.2), A3 = (1,0.05, − 0.05),
A4 = (−1.5,0.4,0.2), A5 = (1.5,1,0.6), and A6 = (0.3, −
0.2,0.3). Also in this case, the agreement of the theoretical
predictions (solid lines) based on Eqs. (126) and (127) with
respect to the stochastic simulation data (symbols) is excellent.

X. DISCUSSION AND IMPLICATIONS

In this section, some implications and observations related
to the transformation theory of tensor diffusivities are ad-
dressed.
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FIG. 8. Effective tensor diffusivities D′
h,k vs the relative frame

velocity w for the spatial three-dimensional model described in the
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2,2; line d and •, D′

2,3; and line e
and �, D′
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A. Observation 1: Generality of the transformation

Although we have considered specific stochastic kinemat-
ics, i.e., Poisson-Kac processes and STD dynamics, Eqs. (126)
and (127) are of general validity. To support and confirm this
claim let us consider a totally different problem, fairly unusual
in a relativistic context.

Consider a classical Langevin equation in R3,

dxh(t) = vhdt +
√

2Dhdwh(t), h = 1,2,3, (128)

where wh(t), h = 1,2,3, are the realizations of three indepen-
dent Wiener processes and vh and Dh are constant. This model
is obviously relativistically inconsistent as, by definition, a
Wiener process possesses infinite propagation velocity [and
so do the xh(t) defined by Eq. (128)], due to its Gaussian
distribution of increments. Therefore, in order to use Eq. (128)
in the present analysis, this process should be somehow
rectified. The correction we apply is conceptually similar to
the classical Wong-Zakai mollification of Brownian motion
[43,44] (see also [45]).

Let {̃xα(t)}Np

α=1 be an ensemble of Np particles moving
according to the stochastic kinematics (128), starting from

xα(t = 0) = 0, and let {̃x(n)
α = xα(nT )}Np

α=1, n = 0,1, . . . , be
their stroboscopic sampling at multiples of the time interval
T > 0. In order to make the sampling {̃x(n)

α }Np

α=1 of the stochastic
dynamics relativistically consistent, particle positions should
be filtered in order to ensure a propagation velocity less than
c (c = 1 in the present analysis). Let {x(n)

α }Np

α=1 be the filtered

stroboscopic sampling of {̃x(n)
α }Np

α=1, obtained in the following
way: (i) x(0)

α = x̃(0)
α = 0 for all α = 1, . . . ,N ; (ii) choose a

reference maximum velocity vmax < c, say, vmax = 0.99; (iii) if
δ(n)
α = ‖̃x(n)

α − x(n−1)
α ‖ > vmaxT , i.e., if the relativistic velocity

constraint could be locally violated, set for x(n)
α the value

x(n)
α = vmaxT

δ
(n)
α

x̃(n)
α +

(
1 − vmaxT

δ
(n)
α

)
x(n−1)

α , (129)

corresponding to a local propagation velocity equal to vmax.
By definition, the filtered stroboscopic sampling {x(n)

α }Np

α=1,
n = 0,1,2, . . . , is relativistically consistent and can be viewed
as a form of Wong-Zakai mollification of the original process,
by considering the stochastic trajectories between time instants
(n − 1)T and nT represented by straight lines connecting
x(n−1)

α to x(n)
α .

Consequently, {x(n)
α }Np

α=1 can be viewed as an ensemble of
realizations of a relativistically plausible stochastic process
defined in an inertial system �, out of which its transport
parameters can be estimated. If the velocities and the diffu-
sivities are small enough, the effective transport parameters
estimated in � practically coincide with vh and Dh, i.e., with
the velocity and diagonal entries of the diffusivity tensor in
Eq. (128). Enforcing the Lorentz boost, the effective transport
parameters estimated in a reference �′ moving with respect to
� with constant relative velocity w < 1 along the x1 axis can
be obtained.

Consider for the velocities and diffusivities in Eq. (129)
the values v1 = a, v2 = −0.2, v3 = 0, D1 = 0.05, D2 = 0.03,
and D3 = 0.01, where a is a parameter, and let dh,h(w) =
D′

h,h(w)/Dh for h = 1,2,3 and dh,k(w) = D′
h,h(w) for h �= k.

Figures 9(a)–9(f) depict the six independent entries of dh,k(w)
as a function of the frame velocity w at four different values
of the parameter a = 0,0.2,0.4,0.6 controlling convective
particle motion along the x1 direction.

Simulation results refer to the ensemble {x(n)
α }Np

α=1 obtained
from Eq. (128) using the Wong-Zakai filtering discussed
above with a sampling time T = 20 and Np = 105. Stochastic
trajectories have been obtained from Eq. (128) using a classical
Euler-Langevin algorithm with a time step �t = 10−3. In
the present simulations, involving a rather small ensemble
of particles, Eq. (129) has never been used, and only the
Wong-Zakai linear interpolation between x(n−1)

α and x(n)
α has

been applied in order to obtain the particle position at a constant
value of time t ′ measured in �′. Solid lines in Fig. 9 refer
to the theoretical predictions based on Eqs. (126) and (127),
where Dh,k = Dhdh,k , with Dh the diagonal diffusivity in
Eq. (128). Excellent agreement between theory and stochastic
simulations can be observed, confirming the general validity
of Eqs. (126) and (127).
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FIG. 9. Plot of dh,k(w) vs w for the filtered Wong-Zakai mollification of the process (128) sampled at T = 20: (a) d1,1(w), (b) d2,2(w), (c)
d3,3(w), (d) d1,2(w) = d2,1(w), (e) d1,3(w) = d3,1(w), and (f) d2,3(w) = d3,2(w). Lines refer to Eqs. (126) and (127) and symbols to numerical
simulations: line a, a = 0; line b, a = 0.2; line c, a = 0.4; and line d, a = 0.6.

B. Observation 2: Poisson-Kac processes and the limit
for w → c

The analysis developed for STD processes is in agreement
with the results obtained for the relativistic kinematics of
Poisson-Kac processes. In the latter case D1,2 = 0 and the
convective contributions are absent, i.e., v1 = v2 = 0. Corre-
spondingly, Eqs. (126) and (127) predict the scaling of the
longitudinal D′

1,1 and transversal D′
2,2 diffusivities given by

Eq. (94).
Particularly interesting is the limit of these equations for w

approaching c = 1. In this case, the measured diffusivities in
�′ vanish identically. For an observer that moves close to the
velocity of light, the contribution of external stochastic per-
turbations, the intensity of which is related to the diffusivities
D′

h,k , becomes progressively irrelevant as w → c. In point of
fact, the vanishing properties of D′

h,k for w → c could have
a deeper physical meaning: This indicates that in a reference
system, moving with a velocity approaching that of light, all
the external dissipative and irreversible processes associated
with stochastic fluctuations decay to zero.

C. Observation 3: Relativity of stochasticity and determinism

There is another interesting implication of the transforma-
tion theory of the tensor diffusivity. From Eqs. (126) and (127)
it follows that the effective diffusivities D′

h,k measured in �′
depend on the convective velocities vh. Apart from the term
(1 − wv1)−3, this dependence enters as factors multiplying
the O(w) and O(w2) terms in the expressions for D′

h,k .

The only diffusivity entry that is not influenced by these
convective contributions is the longitudinal diffusivity since
D′

1,1 = D1,1/γ
3(w)(1 − wv1)3.

This observation suggests that it may happen that a process
that is regarded as fully deterministic in a reference system �

appears to possess a stochastic nature in �′ and vice versa.
To clarify this concept it is convenient to consider a simple
example. Consider a STD process in � (referred to as model
I) with N = 2 and S = 2 characterized by the parameters

π1 = π2 = 1

2
, τ1 = τ2 = 1,

A1 =
(

0.8
0.5

)
, A2 =

(−0.8
0.5

)
. (130)

For this process v1 = 0, v2 = 0.5, D1,1 = 0.32, and D1,2 =
D2,1 = D2,2 = 0. Let x = x1 and y = x2. In the long-term
limit, the dynamics of this process in � is described by
the probability density function p(x,y,t) that approaches the
solution of the parabolic transport equation

∂tp(x,y,t) = −v2∂yp(x,y,t) + D1,1∂
2
xp(x,y,t). (131)

The marginal probability density py(y,t) = ∫ ∞
−∞ p(x,y,t)dx

of the y process satisfies a strictly deterministic advection
equation

∂ypy(y,t) = −v2∂ypy(y,t), (132)

which follows directly from the inspection of the structure of
the space-time displacements (130) characterizing this model.
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FIG. 10. Diffusivities D′
1,2 and D′

2,2 measured in �′ vs the relative
frame velocity w for model I discussed in the text: line a and ◦, D′

1,2;
line b and •, D′

2,2. Solid lines represent the theoretical predictions
(126) and (127) and symbols the results of the numerical simulations
of the stochastic STD dynamics (130).

Viewed from �, the evolution of the y dynamics defines a
strictly deterministic process.

Consider the same process viewed by �′ moving with
respect to � with constant relative velocity w > 0 along the
x axis. In this case the entries D′

1,2 and D′
2,2 of the diffusivity

tensor are different from zero, specifically

D′
2,2 = D1,1w

2v2
2

γ (w)(1 − wv1)3
> 0. (133)

This phenomenon is depicted in Fig. 10, where the theoretical
expressions for D′

1,2 and D′
2,2 (solid lines) are compared

with numerical simulations of the STD (130). Therefore,
the marginal probability density function p′

y ′ (y ′,t ′) for the
transversal y ′ process in �′ approaches the solution of the
advection-diffusion equation

∂t ′p
′
y ′ (y ′,t ′) = −v′

2py ′ + D′
2,2∂

2
y ′p

′
y ′ (y ′,t ′), (134)

corresponding to the evolution of a stochastic process charac-
terized by an effective diffusivity D′

2,2 > 0.
The reverse is also true, by adopting the same argument.

Consider a stochastic process in �, for which D2,2 �= 0. By
tuning the relative velocity w of �′, it can happen that D′

2,2 =
0. Consequently, what appears in � as a stochastic dynamics
is qualified in �′ as strictly deterministic. This phenomenon is
depicted in Fig. 11, where vh and Dh,k are given by v1 = −0.5,
v2 = 0.433, D1,1 = 0.208, D1,2 = 0.060, and D2,2 = 0.0173
(referred to as model II), corresponding to the values of v′

h

and D′
h,k obtained in the STD model depicted in Fig. 9 at

w = 0.5, and �′ moves with respect to � with a negative
relative velocity w.

D. Observation 4: Diffusivity and Markovian processes in the
Minkowski space-time

The concept of tensor diffusivity for a relativistic stochastic
process is a long-term emerging property, exactly as for
Poisson-Kac processes that are characterized by an effective
diffusivity for time scales much larger than the characteristic
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FIG. 11. Diffusivities D′
h,k vs the relative frame velocity w

measured in �′ for model II discussed in the text: line a, D′
1,1; line b,

D′
1,2; and line c, D′

2,2.

recombination time among their partial probability waves.
A local (pointwise) diffusivity (possessing the dimension of
m2/s) cannot be defined in a Minkowski space-time M4, as it
would be necessarily associated with fluctuations possessing a
local almost-everywhere-nondifferentiable structure as a func-
tion of time and consequently an unbounded local propagation
velocity.

There is another general observation arising from the
analysis developed in Sec. IX related to the Markovian nature
of a stochastic process in a Minkowski space-time. From
the works by Dudley and Hakim quoted in the Introduction,
the impossibility of defining a strictly Markovian stochastic
kinematics (continuous in time) in M4 follows. The case
of STD processes introduced in Sec. IX provides a concrete
example of a random dynamics for which the choice of a
discrete-time parametrization (the iteration time n) makes it
possible to define a strictly Markovian process in M4, where
space and time variables are treated on equal footing by
defining the space-time displacements (Ah,τh). The example
of STD processes does not contradict the Dudley-Hakim
condition, as the extension with respect to a continuous-time
variable of STD processes, associated with the concept of hy-
perbolic homogenization [33], leads to non-strictly Markovian
processes in (x,t) analogous to Poisson-Kac and generalized
Poisson-Kac processes.

E. Observation 5: Skewed structure of the transformation

Given a stochastic process characterized by bounded
propagation velocity less than c, let v and D be its effective
(long-term) transport properties in a reference frame �, and v′
and D′ the corresponding quantities measured in �′, moving
with respect to � with constant velocity w along the x1 axis.
Here D and D′ are the diffusivity tensors in the two reference
frames.

As regards the effective velocity, the transformation from v
to v′ is the classical velocity transformation of special relativity

v′ = Vw[v] (135)
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for a relative velocity w. For the tensor diffusivity the
transformation expressed by Eqs. (126) and (127) can be
compactly indicated as

D′ = Dw[D,v]. (136)

Observe the skew-product structure of Eq. (136) in which the
transformation for the diffusivity tensors depends on v. In a
more compact form, Eqs. (135) and (136) can be summarized
by the complete transformation of the effective transport
parameters (v,D),

(v′,D′) = Tw[(v,D)]. (137)

Obviously,

T0 = I , T −1
w = T−w, (138)

where I denotes the identity operator. Furthermore, the skew
product nature of Eq. (137) implies

D−w[Dw[D,v],Vw[v]] = D ∀v ∈ (−c,c)3. (139)

XI. CONCLUSION

The purely kinematic investigation of stochastic processes
in the Minkowski space-time opens up interesting perspectives
in the analysis of the relativistic implications of stochasticity
and determinism. Using Poisson-Kac processes first and STD
dynamics subsequently, the relativistic transformation of the

tensor diffusivity has been derived. The relativistic concept of
tensor diffusivity is essentially an emergent physical property
that makes sense in the long-term large-distance limit [46].
Particularly interesting are the conceptual implications involv-
ing the meaning of stochasticity in a relativistic framework,
which in some sense is frame dependent, i.e., it depends on
the observer’s velocity.

Two main observations should be pointed out. The first is
the relativistic invariance of a quantity having the dimension
of an action, for a particle of rest mass m0 moving of purely
diffusive motion, i.e., in the case where the effective convective
contributions are vanishing. Further analysis will clarify
whether this is just a nice coincidence or it admits more funda-
mental quantum mechanical implications associated with the
definition of the Planck constant h. The second observation
is the fading of diffusivities measured in inertial systems �′
moving with a relative velocity w approaching that of light,
i.e., limw→c D′

h,k(w) = 0. For an observer in �′, all the effects
associated with stochasticity (e.g. irreversibility and dissipa-
tion) are suppressed for w → c. In this framework, the concept
of light velocity seems to acquire a different thermodynamic
meaning as the threshold velocity at which external stochastic
irreversible processes lose their dissipative nature and ap-
proach a strictly deterministic dynamics. The extension of this
purely kinematic analysis of stochastic processes within the
Riemannian space-time of general relativity is left for future
work.
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