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Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions
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We introduce a quantum Monte Carlo method at finite temperature for interacting fermionic models in the
canonical ensemble, where the conservation of the particle number is enforced. Although general thermodynamic
arguments ensure the equivalence of the canonical and the grand-canonical ensembles in the thermodynamic
limit, their approach to the infinite-volume limit is distinctively different. Observables computed in the canonical
ensemble generically display a finite-size correction proportional to the inverse volume, whereas in the grand-
canonical ensemble the approach is exponential in the ratio of the linear size over the correlation length. We
verify these predictions by quantum Monte Carlo simulations of the Hubbard model in one and two dimensions
in the grand-canonical and the canonical ensemble. We prove an exact formula for the finite-size part of the free
energy density, energy density and other observables in the canonical ensemble and relate this correction to a
susceptibility computed in the corresponding grand-canonical ensemble. This result is confirmed by an exact
computation of the one-dimensional classical Ising model in the canonical ensemble, which for classical models
corresponds to the so-called fixed-magnetization ensemble. Our method is useful for simulating finite systems
which are not coupled to a particle bath, such as in nuclear or cold atom physics.
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I. INTRODUCTION

One of the central tenet of statistical mechanics is the
notion of statistical ensembles. In thermal equilibrium, a
system can be described by different statistical ensembles:
the microcanonical, the canonical, and the grand-canonical
ensemble. In the thermodynamic limit, and in the presence of
short-ranged interactions, bulk properties do not generically
depend on the choice of the ensemble. Such a property is
known as ensemble equivalence.1 In particular, a textbook
argument for the equivalence between the canonical and the
grand-canonical ensembles consists in the following observa-
tion. In the grand-canonical ensemble the particle number as
well as the energy are sharp in the thermodynamic limit, i.e.,
their relative fluctuation vanishes in the thermodynamic limit.
This stems from the fact that the specific heat,

CV = d〈Ĥ 〉
dT

= kBβ2(〈Ĥ 2〉 − 〈Ĥ 〉2), (1)

and the charge susceptibility

�c = d〈N̂〉
dμ

= β(〈N̂2〉 − 〈N̂〉2), (2)

are extensive quantities that measure energy and particle-
number fluctuations. In Eqs. (1) and (2) Ĥ is the Hamiltonian
of the system, N̂ the particle-number operator, β = 1/kBT the
inverse temperature in units of the Boltzmann constant kB , and
μ the chemical potential. Thus,

lim
N→∞

√
(〈Ĥ 2〉 − 〈Ĥ 〉2)

〈Ĥ 〉 = lim
N→∞

√
(〈N̂2〉 − 〈N̂〉2)

〈N̂〉 = 0 (3)
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1Nevertheless, systems with long-ranged interactions exhibit viola-

tion of the ensemble equivalence [1,2].

and the selection of the ensemble is merely a matter of
convenience. Nonetheless, in many cases the choice of
ensemble is dictated by the physical properties of the system
under study. In fact, while the canonical ensemble requires
the presence of a heat bath which fixes the temperature,
the grand-canonical ensemble additionally needs a particle
reservoir which allows to fix the chemical potential. Systems
which lack such a particle bath, like those found in nuclear
physics or in cold atoms, require a description in terms of
the canonical ensemble. Moreover, in the case of mesoscopic
systems with a finite particle number, a reliable comparison
with experimental data needs a theoretical computation based
on the canonical ensemble. In this context, we mention
that, unlike the finite-temperature auxiliary field quantum
Monte Carlo (QMC) method considered here, the so-called
projective auxiliary field QMC, which targets the ground
state of fermionic models, is a method which is intrinsically
formulated within the canonical ensemble [3].

The aim of this paper is twofold. On one hand we will in-
troduce a QMC method for fermionic models in the canonical
ensemble, consisting in a simple formulation of the auxiliary
field QMC method which enforces the conservation of the
particle number. Our approach differs from that adopted in
Ref. [4] and supplements the Hamiltonian that we simulate in
the grand-canonical ensemble by the long-ranged interaction
term

λ(N̂ − N )2, (4)

such that in the infinite-λ limit charge fluctuations are
suppressed and the canonical ensemble is recovered. This
type of interaction is easily incorporated in the auxiliary field
QMC, especially in the formulation provided in Ref. [5]. The
advantage of such an approach is that λ can be dynamically
chosen. For instance, at low temperatures the charge suscep-
tibility can vanish due to finite size or correlation-induced
charge gaps. In this case λ can be set to a very small number,
or even to zero since both canonical and grand-canonical
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ensembles yield identical results. At high temperatures, where
the grand-canonical ensemble exhibits significantly large
charge fluctuations, bigger values of λ are required to impose
the constraint.

The second motivation of the paper is to look into finite-
size corrections both in the canonical and grand-canonical
ensembles, which we study in quantum and classical lattice
models.

Concerning classical models on a lattice, it should be noted
that in the literature the canonical ensemble is often defined
by the usual partition function sum, where one considers all
the configurations without any constraint. In the case of the
standard Ising model, this corresponds to the usual partition
function:

Zgc(h) =
∑

{Sk=±1}
exp

⎧⎨
⎩βJ

∑
〈ij〉

SiSj + h
∑

i

Si

⎫⎬
⎭. (5)

However, through the mapping to the lattice gas, the mag-
netization of the model corresponds to the particle number,
which in the ensemble of Eq. (5) is allowed to fluctuate. In
order to provide a more meaningful comparison to quantum
models, we refer to the lattice gas language and define the
grand-canonical ensemble as the one where the magnetization
is not fixed; in Eq. (5) we have anticipated this definition,
such that the subscript gc refers the grand-canonical ensemble.
Conversely, we define the canonical ensemble as the ensemble
where the magnetization is fixed, so that the corresponding
partition function of the Ising model is

Zcan(h,m) =
∑

{Sk=±1}
exp

⎧⎨
⎩βJ

∑
〈ij〉

SiSj + h
∑

i

Si

⎫⎬
⎭

· δ

(
m,

1

V

∑
i

Si

)
, (6)

where the constraint is enforced by employing the Kronecker
delta function δ(m,n). In the literature, the ensemble of Eq. (6)
is often referred to as the fixed-magnetization ensemble. In
three dimensions, the Ising model at fixed magnetization has
been investigated by means of Monte Carlo (MC) simulations
in Ref. [6], using the geometric cluster algorithm [7,8].

In this work, we study the approach to the thermodynamic
limit in the presence of a finite mass gap or, in the language of
statistical physics, with a finite exponential correlation length.
Generically for short-ranged Hamiltonians, on a finite volume
with periodic boundary conditions and in the grand-canonical
ensemble, the various observables are expected to show a
finite-size correction which is proportional to exp(−L/ξ ),
where L is the linear size of the system and ξ is the exponential
correlation length (or inverse mass gap). This expectation has
been confirmed by explicit field theory calculations, both in the
continuum [9,10] and on a lattice [11]; early numerical studies
confirmed these prediction [12]. An exponential approach to
the thermodynamic limit is also verified, e.g., in the well-
known solution of the one-dimensional Ising model, as well as
in generic one-dimensional O(N )-invariant spin models [13].
Nevertheless, it should be noted that, in the grand-canonical
ensemble, some specific observables can exhibit a leading

finite-size correction proportional to a power law of the system
size. This is the case of the most common definition of
the second-moment correlation length on a lattice, where
finite-size corrections ∝ 1/L2 are due to the discretization
of momenta on a finite lattice; see, e.g., the corresponding
discussion in Ref. [14] and Appendix A of Ref. [15]. We also
remark that, in the presence of nontranslationally invariant
boundary conditions, finite-size corrections polynomial in
the inverse lattice size 1/L arise naturally, being related
to subleading terms in the free energy; for instance, open
boundary conditions result in the presence of a surface free
energy which is depressed by a factor 1/L with respect to the
bulk one and gives rise to finite-size corrections ∝ 1/L for
bulk observables.

Conversely, in the canonical ensemble the prediction of
exponentially decaying finite-size corrections fails, since the
constraint introduces a long-ranged interaction, such that
fluctuations in spatially separated regions (as measured by
the correlation length) are not independent. Such a long-
ranged (weak) correlation modifies also the high-temperature
expansion of a model [16] and results in a slower approach
to the thermodynamic limit of various observables, so that
the leading finite-size correction is proportional to the inverse
volume V . Several important properties of the free energy in
the canonical ensemble have been, in fact, discussed in the
literature, although under a different perspective and notation.
In quantum field theory, the so-called constrained effective
potential Ueff , introduced in the context of scalar field theories
in Ref. [17], is defined as

e−V Ueff (m,V ) =
∫

[Dϕ]e−S[ϕ]δ

(
m − 1

V

∫
ddxϕ(x)

)
, (7)

where S[ϕ] is the action of the theory and the right-hand side
of Eq. (7) is a constrained path-integral over the field
configurations where the volume-average value of ϕ is fixed
to m. In the language of statistical physics, the right-hand
side of Eq. (7) is precisely a constrained partition function
sum at fixed magnetization, i.e., the partition function in
the canonical ensemble. Hence, Ueff(m,V ) is the free energy
per volume and kBT in the canonical ensemble. A detailed
analysis of the constrained effective potential has shown that
it admits an infinite-volume limit Ueff(m,V → ∞) which
coincides with the usual effective potential �(m) of the theory
[18]. Moreover, as argued in Ref. [10], Ueff(m,V ) exhibits
finite-size corrections which are polynomial in 1/V . This is
because, as a consequence of the definition in Eq. (7), the
grand-canonical average of any function of the magnetization
m is equivalent to an average over an effective probability
measure ∝ exp{−V Ueff(m,V )}, which for V → ∞ can be
evaluated by a saddle-point expansion, resulting in a series
in 1/V . On the other hand, the grand-canonical average
converges exponentially to the limit V → ∞. This is possible
only if Ueff(m,V ) displays finite-size corrections polynomial in
1/V , which exactly cancel the expansion in 1/V originating
from the saddle-point evaluation [10]. A renormalized loop
expansion for a φ4 theory on the lattice has confirmed the
existence of finite-size corrections ∝ 1/V [19].

In this context, a recent study verified the existence of
finite-size corrections ∝ 1/V in the canonical ensemble, and,
conversely, of exponentially decaying finite-size corrections in
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the grand-canonical ensemble [16]. In this paper we provide
an exact formula for the leading finite-size corrections in
the canonical ensemble of the free energy density, energy
density and other observables. While our analysis is restricted
to the case of a finite correlation length, we mention that
the introduction of a constraint to a nonordering parameter
results in the so-called Fisher renormalization, leading to a
modification of the singularities associated with a critical
point, such that the critical exponents differ from those
observed in the corresponding unconstrained system [20,21].
The choice of ensemble is also relevant to the so-called critical
Casimir force [22], whose behavior in the canonical ensemble
has been recently investigated within mean-field theory and
MC simulations [23].

This paper is organized as follows. In Sec. II we illustrate
the QMC method that we use to generate numerical data
for fermionic models in the canonical ensemble. In Sec. III
we provide an exact determination of the leading finite-size
corrections in the canonical ensemble. In Sec. IV we study
the finite-size corrections of the Hubbard model in one and
two dimensions. In Sec. V we summarize our results. In the
Appendix we provide an exact solution of the one-dimensional
classical Ising model in the canonical ensemble to the leading
order in 1/V , which confirms the general result of Sec. III.

II. CANONICAL AUXILIARY FIELD METHODS

A. General formulation

In this section we review various methods to achieve canon-
ical auxiliary field QMC simulations at finite temperature. We
will consider a Hamiltonian of the form

Ĥ = T̂ + V̂ , T̂ ≡
∑
x,y

ĉ†xTx,y ĉy,

V̂ ≡
∑

k

Uk(V̂ (k) + αk)2, V̂ (k) ≡
∑
x,y

ĉ†xV
(k)
x,y ĉy, (8)

that can be readily implemented in the ALF package [5].
Here x is a super-index encoding orbital and spin degrees
of freedom, ĉ

†
x are fermion creation operators, V (k) and T

are Hermitian matrices, and Uk , αk real numbers. To simplify
the notation, in the following we assume that the chemical
potential term μN̂ , with N̂ ≡ ∑

x ĉ
†
x ĉx , has been adsorbed

into the Hamiltonian Ĥ . Using the Trotter decomposition
with Lτ�τ = β, and a discrete version of the Hubbard-
Stratonovich (HS) transformation,

e�τλÂ2 =
∑

l=±1,±2

γ (l)e
√

�τλη(l)Â + O(�τ 4) , (9)

with γ (±1)=1+√
6/3, η(±1)=±

√
2(3−√

6), and γ (±2)=
1 − √

6/3, η(±2) = ±
√

2(3 + √
6), one can approximate the

imaginary time propagator e−βĤ as

e−βĤ =
∑
{lk,τ }

eS0{lk,τ }
Lτ∏

τ=1

e−�τT̂
∏
k

e
√−�τUkη(lk,τ )V̂ (k)

+ i�τR̂ + O(�τ 2). (10)

Here S0{lk,τ } = ∑
lk,τ

ln (γ (lk,τ )) + √−�τUkη(lk,τ )αk . It is
easy to show that the contribution of the anti-Hermitian opera-

tor iR̂ to the expectation value of an Hermitian oberservable is
purely imaginary, so that the discretization error ∝ �τ can be
filtered out, leading to a Trotter error ∝ �τ 2. The systematic
error involved in this discrete HS transformation is of a higher
order than the one encountered in the Trotter decomposition so
that it can be regarded as good as exact. At this point, one can
integrate out the fermions so as to obtain the grand-canonical
partition function:

Zgc = Tr{e−βĤ } =
∑
{lk,τ }

eS0{lk,τ } det[1 + U (lk,τ )] (11)

with

U (lk,τ ) =
Lτ∏

τ=1

e−�τT
∏
k

e
√−�τUkη(lk,τ )V (k)

. (12)

Using the Leibniz formula for determinants, one can show
that:

det(1 + U )

= 1 +
Ns∑

N=1

∑
xN>xN−1>···>x1

det

⎡
⎢⎢⎣

Ux1,x1 . . . Ux1,xN

...
. . .

...

UxN ,x1 · · · UxN ,xN

⎤
⎥⎥⎦

= 1 +
∑

x

Ux,x +
∑
x2>x1

det

[
Ux1,x1 Ux1,x2

Ux2,x1 Ux2,x2

]
+ · · · . (13)

Here Ns corresponds to the number of single-particle states,
and one can readily see that each term of the sum corresponds
to the canonical trace of N single-particle states. Thereby, the
canonical partition function Zcan(N ) is given by:

Zcan(N ) = dN

dzN

∑
{lk,τ }

eS0{lk,τ } det (1 + zU (lk,τ ))

∣∣∣∣
z=0

. (14)

A numerical implementation of the above equation reads:

Zcan(N ) = 1

Ns

Ns∑
m=1

∑
{lk,τ }

eS0{lk,τ }e−iφmN det[1 + eiφmU (lk,τ )],

(15)

where φm = 2πm/Ns . An equivalent way to show the above
result is to note that the total particle number N̂ commutes
with the Hamiltonian such that:

Zcan(N ) = Tr[δN̂,Ne−βĤ ]

= 1

Ns

Ns∑
m=1

e−iφmNTr[eiφmN̂ e−βĤ ]. (16)

By applying a Trotter decomposition and HS transformation
to the right-hand side of Eq. (16), one can reproduce Eq. (15).
Implementations of canonical simulations using the above re-
sults have been proposed in Refs. [24,25]. In these approaches,
the discrete Fourier transformation is computed exactly at
each MC step. For the method to be successful, the chemical
potential has to be chosen such that the average particle number
is peaked around the desired value.
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B. Constraint of the particle-number fluctuations

Here we follow a slightly different approach and modify
the Hamiltonian as

Ĥ (λ) = Ĥ + Ĥλ,

Ĥλ ≡ λ(N̂ − N0)2, (17)

such that

Zcan(N0) = lim
λ→∞

Tr[e−βĤ (λ)]. (18)

As discussed above, in Eqs. (17) and (18) the Hamiltonian Ĥ

implicitly depends on the chemical potential μ, which needs
to be tuned such that 〈N̂〉 = N0. In practice, this is done by
computing 〈N̂〉 as a function of μ, for a suitable interval in μ,
by means of auxiliary field QMC and then fixing μ such that
the equation 〈N̂〉 = N0 is satisfied within the desired statistical
accuracy; at half-filling one has exactly μ = 0.

Since Ĥ conserves the particle number, one can foresee
rapid convergence in λ because particle-number sectors with
N̂ = N 	= N0 have a statistical weight suppressed by a factor
e−λβ(N−N0)2

. The latter also shows that the relevant parameter
for the convergence is βλ rather than λ itself. The additional
term is a perfect square term which is easily implemented
within the ALF code [5]. Since (N̂ − N0)

2
effectively cor-

responds to a long-ranged interaction, one may face the issue
that the acceptance rate of a single HS flip becomes excessively
small on large lattices. To circumvent this problem we have
used the following decomposition:

e−βĤ =
Lτ∏

τ=1

⎡
⎣e−�τT̂ e−�τV̂ e

− �τ
nλ

Ĥλ · · · e− �τ
nλ

Ĥλ︸ ︷︷ ︸
nλ-times

⎤
⎦. (19)

Thereby, we need nλ fields per time slice to impose the
constraint. For each field, the coupling constant is effectively
suppressed by a factor nλ, thus allowing to control the
acceptance of the QMC algorithm.

In order to test the efficiency of our QMC method in
the canonical ensemble, we computed the uniform intensive
charge susceptibility χc, defined as

χc ≡ β

V
(〈N̂2〉 − 〈N̂〉2). (20)

Note that compared with the extensive definition in Eq. (2),
here the susceptibility is divided by the system volume V .
In Fig. 1 we show χc for the one-dimensional (1D) Hubbard
model as a function of βλ and nλ. As shown in Fig. 1(a), χc

decays gradually from a finite value to zero on increasing
βλ. The threshold in λ for which χc converges to zero
corresponds to the canonical ensemble. A comparison of the
results for lattice sizes L = 4, 8, and 16 suggests that the
charge fluctuations are easier to suppress for larger system
sizes. The dependence of χc on nλ defined in Eq. (19) is shown
in Fig. 1(b), which illustrates the increased Trotter error for
larger values of βλ.

Figure 2 shows the decay of charge susceptibility χc as a
function of λ in the two-dimensional (2D) Hubbard model, for
U = 4.0, L = 4 and several inverse temperatures β = 0.5, 2.0,
and 5.0. Inspection of Fig. 2 reveals that in the grand-canonical
ensemble the β = 2.0 case exhibits charge fluctuations larger

 0
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χ c

βλ 

(a)
L=4
L=8

L=16

 0

 0.01

 0.02

 0.03
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1 2 4 10
χ c

nλ 

(b) βλ=5.0
βλ=10.0

FIG. 1. βλ and nλ dependence of χc for the 1D Hubbard model
at U = 4.0 and β = 0.5. (a) χc as a function of βλ for L = 4, 8, and
16. For each βλ we have taken the parameter nλ large enough as to
effectively suppress the discretization error in the decomposition of
the constraint. (b) χc as a function of nλ for L = 8 and two values
of λ.

than the β = 0.5 case, thereby requiring a larger value of βλ

to realize the canonical ensemble.

III. FINITE-SIZE CORRECTIONS IN THE CANONICAL
ENSEMBLE: EXACT RESULTS

In this section, by exploiting the relation between the canon-
ical and the grand-canonical free energy, we determine the
leading finite-size correction of the free energy in the canonical

0

 0.03

 0.06

 0.09

 0.12

0 0.3 2 8 32

χ c

βλ

β=0.5
β=2.0
β=5.0

FIG. 2. λ dependence of χc for the 2D Hubbard model at U = 4.0,
L = 4, and β = 0.5, 2.0, and 5.0.
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ensemble and relate it to a susceptibility. To be concrete, we
consider a quantum model on a lattice, where in the canonical
ensemble the number of particles is fixed, and we prove that
on a finite volume V

Fcan(n0,V ) − Fgc(V )

= 1

2V
ln (2πV ) + 1

2V
ln

(
χc

β

)
+ O

(
1

V 2

)
, (21)

where Fcan(n0,V ) and Fgc(V ) are the free energies per volume
V and in units of kBT in the canonical and grand-canonical
ensembles, respectively, and χc is the charge susceptibility
(in the grand-canonical ensemble), defined in Eq. (20);
the filling fraction n0 in Fcan(n0,V ) is fixed to the corre-
sponding expectation value in the grand-canonical ensemble.
Equation (21) provides the leading additional contribution to
the free energy density due to the particle-number constraint.
As discussed towards the end of this section, Eq. (21)
allows also to determine the leading finite-size correction
of observables in the canonical ensemble if, as expected,
finite-size corrections in the grand-canonical ensemble decay
faster than 1/V .

In order to prove Eq. (21), we observe that the free energy
density Fcan(n,V ) can be related to a path-integral formulation
of the canonical partition function as

e−V Fcan(n,V ) =
∫

[D�]e−S[�]δ

(
n,

1

V
N̂ (�)

)
, (22)

where � indicates collectively the fields entering in the path
integral, S[�] is the action of the model, N̂ (�) is the ex-
pression of the total number operator N̂ in terms of the
fields �, and n is the intensive filling fraction, which is
fixed in the canonical ensemble. In Eq. (22), S[�], as well
as Fcan(n,V ), additionally depend on the temperature and
coupling constants, inessential for the present discussion. On
a lattice, N̂ is the sum of single-site and single-species number
operators N̂ (x), N̂ = ∑

x N̂ (x), therefore n can only take
discrete values, separated by an interval of 1/V . By summing
over the allowed values of n, we obtain the grand-canonical
free energy density Fgc(V )

e−V Fgc(V ) =
nmax∑

n=nmin

e−V Fcan(n,V ), (23)

where, as before, we have ignored the dependence of Fgc(V )
on the various coupling constants, and nmin, nmax indicate the
minimum and maximum number of particles per volume that
the model can host; usually nmin = 0, while nmax depend on the
number and type of particle species. For V → ∞ the sum in
Eq. (23) can be approximated by the Euler-Maclaurin formula
as

e−V Fgc(V ) = V

[ ∫ nmax

nmin

dn e−V Fcan(n,V )

+ e−V Fcan(nmin,V ) + e−V Fcan(nmax,V )

2V
+ O

(
e−cV

V

)]
,

(24)

where the next-to-leading term in the Euler-Maclaurin formula
is ∝ (1/V 2)∂(e−V Fcan )/∂n computed at the end points, hence
it is of order e−cV /V . In the limit V → ∞, the integral on the

right-hand side of Eq. (24) is dominated by the minimum n0 of
Fcan(n,V ). If n0 is an interior point2 of the integration interval
[nmin,nmax], by using the saddle-point method we obtain

e−V Fgc(V )/V

=e−V Fcan(n0,V ) ·
[

2π

V (∂2Fcan/∂n2)(n0,V )

]1/2[
1+O

(
1

V

)]

+ e−V Fcan(nmin,V ) + e−V Fcan(nmax,V )

2V
+ O

(
e−cV

V

)
, (25)

where the factor 1 + O(1/V ) represents the next-to-
leading term in the saddle-point expansion. The second
term on the right-hand side of Eq. (24) is depressed
by a factor ∝ exp{−V [Fcan(nmin,V ) − Fcan(n0,V )]}/V 1/2 +
exp{−V [Fcan(nmax,V ) − Fcan(n0,V )]}/V 1/2 with respect to
the first term, therefore, since n0 is the minimum of Fcan(n,V ),
it is subleading with respect to the first factor. Moreover, the
convergence of the integral in Eq. (24) requires the last term on
the right-hand side of Eq. (25) to be subleading with respect to
the first factor. Thus, by factorizing the first term on the right-
hand side of Eq. (25) and taking the logarithm, the last two
terms give a contribution of order ln(1 + exp{−cV }/V 1/2) ∼
exp{−cV }/V 1/2, which is negligible with respect to the
correction of order 1/V originating from the next-to-leading
term of the saddle-point expansion. On taking the logarithm
on both sides of Eq. (25) we find

Fgc(V ) = Fcan(n0,V ) − 1

V
ln V − 1

2V
ln

(
2π

V

)

+ 1

2V
ln

[
∂2Fcan

∂n2
(n0,V )

]
+ O

(
1

V 2

)
, (26)

where subleading exponential corrections have been neglected.
The second and third terms ∝ ln V on the right-hand side
of Eq. (26) represent an entropic contribution which is due
to the larger configurational space of the grand-canonical
ensemble as compared to the canonical one. In particular, the
first constant originates from the discretization of the allowed
values of n [see the discussion after Eq. (22)] and is absent in
continuous models. The saddle-point position n0 appearing in
the previous equations corresponds precisely to the grand-
canonical expectation value of 〈N̂/V 〉gc. This is because,
using Eqs. (22) and (23), one can write 〈N̂/V 〉gce

−V Fgc(V ) =∑nmax
n=nmin

ne−V Fcan(n,V ). Along the same line of reasoning as
above, one finds that, as expected also from thermodynamic
considerations, limV →∞〈N̂/V 〉gc = n0. Thus, the quantity
Fcan(n0,V ) on the right-hand side of Eq. (26) is precisely
the free energy density with a particle number fixed to its
expectation value in the grand-canonical ensemble, i.e., the
thermodynamic quantity which is meaningful to compare with
the grand-canonical free energy density. The fluctuation of the
particle number, which determines the charge susceptibility χc

defined in Eq. (20), can be related to the finite-size correction

2The case of multiple saddle points, or a saddle point at an end point
requires a separate analysis.
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on the right-hand side of Eq. (26). By using Eq. (22), Eq. (23),
and the definition of Eq. (20), one obtains

χc =

nmax∑
n=nmin

β

V
(nV − n0V )2e−V Fcan(n,V )

nmax∑
n=nmin

e−V Fcan(n,V )

. (27)

The right-hand side of Eq. (27) can be evaluated for V → ∞
using a saddle-point expansion as above, resulting in

χc =
V →∞

β

(∂2Fcan/∂n2)(n0,V )
. (28)

Finally, inserting Eq. (28) into Eq. (26), we obtain Eq. (21).
If finite-size corrections of Fgc(V ) decay faster than 1/V

(indeed, as discussed in Sec. I, we expect exponentially
decaying finite-size corrections), we can replace Fgc(V ) on the
left-hand side of Eq. (21) with its ensemble-independent ther-
modynamic limit F (V = ∞) = Fgc(V = ∞) = Fcan(n0,V =
∞), such that the leading finite-size corrections in Fcan(n0,V )
are

Fcan(n0,V )−F (V = ∞)

= 1

2V
ln (2πV ) + 1

2V
ln

(
χc

β

)
+ O

(
1

V 2

)
. (29)

From Eq. (29) we can, e.g., determine the leading finite-size
correction of the energy density in the canonical ensemble by
taking the derivative with respect to β:

Ecan(V ) − E(V = ∞) = ∂(χc/β)/∂β

2V (χc/β)
. (30)

It is useful to remark that the charge susceptibility χc appearing
in Eqs. (21) and (27)–(30) is computed in the grand-canonical
ensemble. Since χc has a finite thermodynamic limit and
exponentially decaying finite-size corrections, it does not give
rise to a further algebraic volume dependence. Equation (30)
can be generalized to other local observables and correlations
thereof. To this end, one can supplement the action of the
model with an external source term

S[�] → S[�] − h
∑

x

∫
dτO(x,τ ), (31)

where the sum extends to the lattice sites and O(x,τ ) is a local
observable, to be expressed in terms of the fields � entering in
the path integral of Eq. (22). Such an addition corresponds
to the insertion of external lines in the Feynman diagram
expansion, and hence one expects, in line with the analysis of
Ref. [10], that in the presence of a finite mass gap correlations
including O(x,τ ) are characterized by exponentially decaying
finite-size corrections. Under the substitution of Eq. (31), the
charge susceptibility χc entering in Eqs. (21) and (29) acquires
a dependence on the external field h. Differentations of the
free energy density with respect to h provide the analogous of
Eq. (30) for the finite-size corrections of the volume-average
and susceptibility of O:

O ≡ 1

βV

∑
x

∫
dτ 〈O(x,τ )〉h=0,

Ocan(V ) − O(V = ∞) = − ∂χc(h)/∂h|h=0

2βV χc(h = 0)
, (32)

χO ≡ 1

βV

∑
x,x ′

∫
dτdτ ′[〈O(x,τ )O(x ′,τ ′)〉h=0

− 〈O(x,τ )〉〈O(x ′,τ ′)〉h=0],

χO,can(V ) − χO(V = ∞)

= (∂χc(h)/∂h|h=0)2 − χc(h = 0)∂2χc(h)/∂h2|h=0

2βV χc(h = 0)2
, (33)

where we emphasize that the expectation values of O(x,τ ) are
computed in absence of the external field h. In particular, in a
spinful model Eq. (33) implies a leading finite-size correction
∝ 1/V of the spin susceptibility in the canonical ensemble.
We remark that the derivatives of χc(h) appearing in Eqs. (32)
and (33) can be in principle directly computed by sampling a
suitable observable, thus avoiding a numerical differentiation.

The results of Eqs. (21), (29), (30), (32), and (33) can
be easily generalized to other correlations by considering a
considering a space- and imaginary time-dependent source
h(x,τ ) in Eq. (31), or to other types of constrained models,
along the same line of reasoning.

IV. FERMIONIC SIMULATIONS
IN THE CANONICAL ENSEMBLE

We performed QMC simulation of the SU (2) Hubbard
model in both the grand-canonical and canonical ensemble.
The Hamiltonian of the Hubbard model is defined as:

Ĥ = −t
∑

〈i, j〉,σ
ĉ
†
i,σ ĉ j ,σ + U

∑
i

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)

−μ
∑

i

(n̂i,↑ + n̂i,↓), (34)

where n̂i,σ ≡ ĉ
†
i,σ ĉi,σ . The canonical ensemble is realized by

adding the constraint given in Eq. (17). For such a modified
Hamiltonian, the total number of particles converges quickly
to N0 on increasing βλ.

Here we simulated both ensembles on a 1D lattice, as well
as on the 2D square lattice at finite temperature, both of which
are known to be disordered. We mainly considered the models
at half filling (N0 = Ns/2, with Ns = 2Ld ) with zero chemical
potential μ = 0 and carried out some test calculations for the
two-dimensional doped Hubbard model. In all simulations we
fixed t = 1 and U = 4.0. Our basic MC observables are as
follows:

(1) Energy density3:

E = 1

Ld

〈
−t

∑
〈i, j〉,σ

ĉ
†
i,σ ĉ j ,σ + U

∑
i

n̂i,↑n̂i,↓

〉
. (35)

(2) Uniform spin susceptibility:

χs = β

Ld

∑
i, j

〈Ŝi Ŝ j 〉. (36)

3Up to an inessential, filling-dependent, additive constant, E

corresponds to the energy part on the right-hand side of Eq. (34).
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FIG. 3. Finite-size data of the energy density E for the 1D
Hubbard model in the grand-canonical and canonical ensembles, at
β = 0.5 and half-filling. The red line is a linear fit of the canonical
ensemble data to Ecan(L) = E(L → ∞) + a/L, with E(L → ∞) =
0.1771(2) and a = −0.738(4), where the minimum lattice size
taken into account is Lmin = 16; the dashed green line linking the
grand-canonical data is a guide to the eye.

A. 1D model

The QMC simulations of the one-dimensional Hubbard
model are performed in both the grand-canonical and canonical
ensembles at inverse temperature β = 0.5, system sizes L = 4,
8, 12, 16, 20, 24, 28, 32, 40, 48, 64, 72, 80, and at half-filling. A
comparison of the size effect for the energy density E(L) and
for the uniform spin susceptibility χs(L) in the two ensembles
is shown in Figs. 3 and 4, respectively. We observe that in the
grand-canonical ensemble both E and χs converge quickly to
the thermodynamic limit for small system sizes. This indicates
a small correlation length ξ at this temperature.

On the other hand, except for the smallest system sizes,
in the canonical ensemble both observables exhibit a linear-
like behavior as a function of 1/L. A fit of energy density in
the canonical ensemble Ecan(L) to Ecan(L) = E(L → ∞) +
aL−1 exhibits a good χ2/DOF (DOF denotes the number
of degrees of freedom), when the data for the small sizes
are discarded; the extrapolated value E(L → ∞) matches the
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FIG. 4. Same as Fig. 3 for the spin susceptibility χs . The red line
is the linear fit of the canonical ensemble data to χs,can(L) = χs(L →
∞) + a/L, with χs(L → ∞) = 0.3177(1) and a = 0.135(1), where
the minimum lattice size taken into account is Lmin = 12.
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FIG. 5. Same as Fig. 3 for the 2D Hubbard model. The red line is a
linear fit of the canonical ensemble data to Ecan(L) = E(L → ∞) +
a/L2, with E(L → ∞) = −0.1387(1) and a = −0.714(2), where
the minimum lattice size taken into account is Lmin = 6.

grand-canonical result. Similar considerations hold for a fit of
the spin susceptibility in the canonical ensemble χs,can(L) to
χs,can(L) = χs(L → ∞) + aL−1.

Moreover, a fit of Ecan(L) to E(L → ∞) + aL−d , leaving
d as a free parameter, gives d = 1.05(2) when the smallest
lattice size taken into account for the fit is Lmin = 16. An
equivalent fit for χs(L) gives d = 1.04(2), when Lmin = 12.
This confirms that finite-size corrections of observables in the
canonical ensemble are ∝ 1/L.

B. 2D model

We simulated the Hubbard model on the square lattice for
both ensembles at β = 0.5 and β = 2.0, lattice sizes L = 4,
6, 8, 10, 12, 14, 16, and at half-filling.

Figures 5 and 6 show the size behavior of E and χs for the
two ensembles at β = 0.5. The observed tiny size dependence
of the observables in the grand-canonical ensemble suggests
that the correlation length ξ is smaller than the minimum lattice
size L = 4. On the other hand, in the canonical ensemble
the energy density E and the spin susceptibility χs show a
linear-like behavior as function of 1/L2.

For a more quantitative check of the finite-size cor-
rection in the canonical ensemble, we fitted Ecan(L) to
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 0.292
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FIG. 6. Same as Fig. 5 for the spin susceptibility χs . The red line
is a linear fit of the canonical ensemble data to χs,can(L) = χs(L →
∞) + a/L2, with χs(L → ∞) = 0.2867(1) and a = 0.104(1), where
the minimum lattice size taken into account is Lmin = 6.
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FIG. 7. Same as Fig. 5 for β = 2.0. The green line is the
exponential fit of the grand-canonical ensemble data with minimum
size Lmin = 6 and parameters E(L → ∞) = −0.717075, b = 36,
and c = 0.67 (see main text).

Ecan(L) = E(L → ∞) + aL−1 + bL−2 + cL−3 and χs,can(L)
to an equivalent Ansatz, leaving a,b and c as free parameters.
Fit results for both observables show a good χ2/DOF when
Lmin = 6, and the coefficient a vanishes within error bars,
whereas b acquires a finite value. On the other hand, a fit
of Ecan(L) to Ecan(L) = E(L → ∞) + bL−d , leaving b and
d as free parameters, and of χs(L) to an equivalent Ansatz,
gives d = 2.05(3) and d = 1.9(1) for E and χs , respectively,
when Lmin = 6. In line with the discussions of Sec. III, these
fit results confirm that the leading finite-size correction in the
canonical ensemble is ∝ 1/L2.

We also simulated the 2D Hubbard model at a lower temper-
ature β = 2.0. A corresponding comparison of the finite-size
energy density for the grand-canonical and canonical ensemble
is shown in Fig. 7. Generically, finite-size corrections in the
canonical ensemble are expected to be temperature dependent.
On the other hand, the exponential correction characterized by
the correlation length in the grand-canonical ensemble may
start to be relevant at a lower temperature, because of an
increased correlation length.

The data shown in Fig. 7 exhibit a visible decay of
the energy density in the grand-canonical ensemble Egc, on
increasing the system size. As a guide to the eye, we fitted Egc

to Egc(L) = E(L → ∞) + b · e−L/c. The finite-size values of
E in the canonical ensemble show a nonmonotonic behavior
between L = 4 and 6, which might be due to a combination
of various sources of finite-size corrections, such as the one
∝ 1/V originating from the particle-number constraint, the
one related to the correlation length, and the residual correction
term due to the regular part of the free energy. Nevertheless,
a finite-size dependence ∝ 1/L2 can be clearly observed in
Fig. 7 for L > 6, with a smaller slope compared to the β = 0.5
case (compare with Fig. 5).

We note that the auxiliary field QMC for the grand-
canonical ensemble has a mild sign-problem under doping the
system away from half filling, provided that the temperature
is high enough. Here we also tested the efficiency of the
canonical ensemble QMC method under doping. To this end,
for every lattice size we tuned the chemical potential μ such
that the expectation value of the number of particles in the
grand-canonical ensemble matches the desired number N0
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FIG. 8. Finite-size data of MC average sign 〈sign〉 for the 2D
Hubbard model at β = 2.0 in the grand-canonical and canonical
ensemble, with a 3

8 -filling fraction and for lattice sizes up to L = 20.

of particles in the canonical ensemble. Subsequently, the
canonical ensemble is realized by introducing a Lagrange
multiplier, as discussed in Sec. II B. In order to test the
sign-problem, we also calculated the average sign during the
MC simulation:

〈sign〉 =
∑

C Re[e−S(C)]∑
C |Re[e−S(C)]| , (37)

where S(C) is the action for the MC configuration C, so that
the corresponding statistical weight is ∝ e−S(C). The sign is
not necessarily a real number (when the MC is sign-problem
free, S(C) is real and 〈sign〉 = 1). On the other hand, the
expectation value of observables can be computed via a
reweighting scheme only when 〈sign〉 is not too small. Figure 8
shows the average sign during MC of a doped 2D Hubbard
model at 3

8 filling, which in the grand-canonical ensemble
system does not exhibit a significant sign-problem at an inverse
temperature of β = 2.0. Quite remarkably, when the number
of particles is fixed in the canonical ensemble, the code still
exhibits an average sign higher than 0.97, for system sizes up
to L = 20. This confirms the feasibility of our QMC method
for the canonical ensemble, even under doping. Figure 9
shows the finite-size behavior of energy density of the two
ensembles at 3

8 filling. Similar to the results at half-filling,
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FIG. 9. Finite-size data of energy density E for the same case as
in Fig. 8.
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and in line with the analysis of Sec. III, the energy density in
the grand-canonical ensemble exhibits very small finite-size
corrections when L � 10, whereas in the canonical ensemble
we observe a finite-size correction approximately linear in
1/L2 for L � 12.

V. SUMMARY

In this paper we have introduced a method to simulate
fermionic models in the canonical ensemble. It consists in
an auxiliary field QMC simulation, where the Hamiltonian
is supplemented by an additional Lagrange multiplier, which
constraints the particle number. The method can implemented
using the ALF package for fermionic simulations [5]. In
general, we find that canonical simulations are more com-
putationally demanding than the corresponding ones in the
grand-canonical ensemble. Although in the presence of short-
ranged interactions the grand-canonical and the canonical
ensemble are equivalent in the thermodynamic limit, their
approach to the infinite-volume limit is distinctively different.
In the canonical ensemble the observables are generically
found to display a finite-size correction which is proportional
to the inverse volume. In Sec. III we prove an exact formula
for the leading finite-size correction of the free energy density,
the energy density, and other observables. Such a correction
is controlled by the charge susceptibility and is found to be
proportional to the inverse volume. This result is further sub-
stantiated by an exact calculation for the one-dimensional Ising
model reported in the Appendix. Our numerical simulations of
the Hubbard model reported in Sec. IV confirm the presence
of finite-size corrections proportional to the inverse volume
in the canonical ensemble. In line with previous theoretical
results, in the presence of a finite correlation length and
for periodic boundary conditions, observables computed in
the grand-canonical ensemble display a faster approach to
the thermodynamic limit, such that the leading finite-size
correction is exponential in the ratio of the linear size over
the correlation length.

Note added. We recently became aware of related research
presented in Ref. [26], which investigates the effect of a
constraint within statistical field theory.
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APPENDIX: ONE-DIMENSIONAL ISING MODEL
IN THE CANONICAL ENSEMBLE: EXACT RESULTS

In this Appendix we compute the leading finite-size correc-
tion of the free energy of the one-dimensional Ising model
in the canonical ensemble. Although we mainly consider

the antiferromagnetic Ising model, the results are also valid
for the ferromagnetic model. Employing periodic boundary
conditions, the Hamiltonian is

H = J

L∑
i=1

SiSi+1, Si = ±1, (A1)

where L is the number of sites and SL+1 ≡ S1. The partition
function Zcan in the canonical ensemble with fixed magnetiza-
tion M = 0 is given by

Zcan =
∑

{Sk=±1}
exp

{
−K

L∑
i=1

SiSi+1

}
δ

(
L∑

i=1

Si,0

)
, (A2)

where we have defined K ≡ βJ .
The constraint M = 0 can be expressed by using an integral

representation of the Kronecker delta function δ appearing in
Eq. (A2), such that

Zcan = 1

2π

∑
{Sk=±1}

∫ 2π

0
dμ exp

{
−K

L∑
i=1

SiSi+1 + iμ

L∑
i=1

Si

}
.

(A3)

Inspecting Eq. (A3), we observe that Zcan is obtained as the
integral over μ of the partition function for a one-dimensional
Ising model in an external imaginary field iμ. The trace
over the configuration space can be computed using standard
transfer-matrix techniques, yielding

Zcan = 1

2π

∫ 2π

0
dμ[λ+(μ)L + λ−(μ)L], (A4)

where the eigenvalues of the transfer matrix are

λ±(μ) = e−K [cos(μ) ±
√

e4K − sin(μ)2] (A5)

and λ±(μ) depends implicitly also on K . By noting that
λ±(μ + π ) = −λ∓(μ), Eq. (A4) can be cast in the form

Zcan = 1

2π

∫ π

0
dμ[λ+(μ)L + λ−(μ)L]

+ 1

2π

∫ π

0
dμ[( − λ+(μ))L + ( − λ−(μ))L]. (A6)

Equation (A6) shows that for L odd the partition function
vanishes exactly. This can be readily understood by the
impossibility of imposing the constraint

∑
i Si = 0 with an

odd number of spin variables Si , which take values ±1. In the
following we shall assume that L is even, such that the two
terms in Eq. (A6) are identical and we have

Zcan = 1

π

∫ π

0
dμ[λ+(μ)L + λ−(μ)L]. (A7)

For large L the integral of Eq. (A7) is dominated by the saddle
points of λ±(μ) which are solutions of

dλ±(μ)

dμ
= e−K

[
− sin(μ) ∓ sin(μ) cos(μ)√

e4K − sin(μ)2

]
= 0. (A8)

For both eigenvalues, Eq. (A8) has solutions for μ = 0 and
μ = π , which lie at the border of the integration domain
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in Eq. (A7). We observe that for K > 0 (antiferromagnetic
model), the eigenvalues are real. For K < 0 (ferromagnetic
model), λ±(μ) given in Eq. (A5) are real for |μ| < ε0 ≡
arcsin(e2K ) and |μ − π | < ε0, i.e., in an interval around the
saddle points. For this reason, without losing generality it is
convenient to shift the domain of integration in Eq. (A7)

Zcan = 1

π

∫ π−ε0

−ε0

dμ[λ+(μ)L + λ−(μ)L], (A9)

where for K > 0 one can take, e.g., ε0 = π/2, such that the
single saddle point μ = 0 in the integration domain is an
interior point. In order to determine the finite-size correction
to the free energy, we need to compute the corrections around
the saddle point. To this end, it is important to observe that
for K > 0 (antiferromagnetic model) both eigenvalues λ±(μ)
have a maximum around μ = 0; however, since λ−(μ) < 0,
with L even the term λ−(μ)L in Eq. (A9) has a minimum at
μ = 0, whereas λ+(μ) > 0 and λ+(μ)L has a maximum. For
K < 0 (ferromagnetic model) λ±(μ) are real and positive in an
interval around μ = 0; however, while λ+(μ) has a maximum
at μ = 0, the other eigenvalue λ−(μ) has instead a minimum
around μ = 0. Therefore, for both cases K > 0 and K < 0 it
is not possible to separate Eq. (A9) into a sum of two integrals
to be evaluated for L → ∞, but it is necessary to consider the
behavior around μ = 0 of the sum of the two eigenvalues. To
do so, we write the integrand of Eq. (A9) as

λ+(μ)L + λ−(μ)L = exp{Lg(μ,L)},
g(μ,L) ≡ ln[(λ+(μ)L + λ−(μ)L)1/L]. (A10)

A second-order Taylor expansion of g(μ,L) around μ = 0
gives

g(μ,L) = ln[(λ+(0)L + λ−(0)L)1/L]

− e−2K (1 − tanh(K)L)

2(1 + tanh(K)L)
μ2 + o(μ2). (A11)

Equation (A11) shows that, indeed, g(μ,L) exhibits a maxi-
mum around μ = 0. Moreover, the coefficient in front of μ2

remains finite in the limit L → ∞. Inserting the expansion
of Eq. (A11) in Eq. (A10), and using the resulting expression
for λ+(μ)L + λ−(μ)L in Eq. (A9) we obtain, after a Gaussian
integration,

Zcan �
L→∞

1

π
[λ+(0)L + λ−(0)L] ·

[
2π (1 + tanh(K)L)e2K

(1 − tanh(K)L)L

]1/2

.

(A12)

The free energy per volume L, and in units of kBT , Fcan =
− ln Zcan/L is

Fcan �
L→∞

1

2L
ln

(
πL

2

)
− ln λ+(0) − K

L

− 1

L
ln

[
1 +

(
λ−(0)

λ+(0)

)L
]

− 1

2L
ln

(
1 + tanh(K)L

1 − tanh(K)L

)
. (A13)

Using Eq. (A5) and the known relation between the correlation
length ξ and the transfer-matrix eigenvalues

ξ = − 1

ln |λ−(0)/λ+(0)| = − 1

ln tanh |K| , (A14)

Eq. (A13) can be written as

Fcan �
L→∞

1

2L
ln

(
πL

2

)
− ln [2 cosh(K)]

− 1

L
ln(1 + e−L/ξ ) − 1

2L
ln

(
1 + e−L/ξ

1 − e−L/ξ

)
− K

L

� 1

2L
ln

(
πL

2

)
− ln [2 cosh(K)] − 2

L
e−L/ξ − K

L
,

(A15)

where in the last equality we have expanded for ξ/L � 1, us-
ing the fact that ξ is always finite. Equation (A15) agrees with
the general result of Eq. (29), where subleading exponential
finite-size corrections have been neglected. To confirm this,
we observe that, under the mapping to the lattice gas model,
the equivalent charge susceptibility χc (i.e., fluctuation of the
particle number per volume and multiplied by β) is given by
χc = χ/4, where χ is the usual spin susceptibility which, for
the one-dimensional Ising model, is χ = β exp{−2K}; on sub-
stituting χc → χ/4 = β exp{−2K}/4 in Eq. (29) we recover
Eq. (A15). Alternatively, one can repeat the calculations of
Sec. III, fixing in Eq. (22) the magnetization per volume m

instead of the filling fraction n. Then in the result of Eq. (29),
χc is replaced by the fluctuations of the magnetization, i.e.,
the usual spin susceptibility χ . Moreover, different than for
n, the allowed values for m are separated by an interval of
2/V . This results in a factor 1/2 in front of the right-hand
side of Eq. (24), which in turns gives rise to an additional
contribution −(ln 2)/V to the right-hand side of Eq. (29).
Taking into account this additional term, and substituting
χc → χ in Eq. (29) we recover Eq. (A15).

A comparison of Eq. (A15) with the corresponding result
for the grand-canonical ensemble

Fgc = − ln[2 cosh(K)] − 1

L
ln(1 + e−L/ξ )

�
L→∞

− ln[2 cosh(K)] − 1

L
e−L/ξ (A16)

shows that, besides an irrelevant L-dependent constant, the free
energy density in the canonical ensemble is affected by a finite
1/L correction to its thermodynamic limit − ln [2 cosh(K)],
which is absent in the grand-canonical ensemble. We also
notice that the constraint M = 0 alters the coefficient in front
of the subleading exponential correction exp{−L/ξ}. From
Eq. (A15) we can compute the energy density as

Ecan = ∂Fcan

∂β
= −J tanh(K)− J

L
+ O

(
e−L/ξ ,

1

L2

)
, (A17)

which exhibits a leading finite-size correction ∝ 1/L. Due to
the fact that χ/β is exactly exponential in the one-dimensional
Ising model, such a finite-size term is temperature independent
[see Eq. (29)].

As emphasized in the derivation of the results, Eq. (A15)
and Eq. (A17) are also valid for J < 0, K < 0, i.e., for a
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ferromagnetic model. We remark that it is not possible to
take the limit T → 0 in Eqs. (A15) and (A17) because the
calculation assumes a finite correlation length ξ . Indeed, for
T → 0 the coefficient of μ2 in Eq. (A11) either vanishes

(for the antiferromagnetic model) or diverges in L (for the
ferromagnetic model), rendering the saddle-point expansion
singular. In the ground state of the antiferromagnetic model
Ecan = −J , with no size dependence.
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