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Local-stability analysis of a low-dissipation heat engine working at maximum power output
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In this paper we address the stability of a low-dissipation (LD) heat engine (HE) under maximum power
conditions. The LD system dynamics are analyzed in terms of the contact times between the engine and the
external heat reservoirs, which determine the amount of heat exchanged by the system. We study two different
scenarios that secure the existence of a single stable steady state. In these scenarios, contact times dynamics are
governed by restitutive forces that are linear functions of either the heat amounts exchanged per cycle, or the
corresponding heat fluxes. In the first case, according to our results, preferably locating the system irreversibility
sources at the hot-reservoir coupling improves the system stability and increases its efficiency. On the other hand,
reducing the thermal gradient increases the system efficiency but deteriorates its stability properties, because
the restitutive forces are smaller. Additionally, it is possible to compare the relaxation times with the total cycle
time and obtain some constraints upon the system dynamics. In the second case, where the restitutive forces
are assumed to be linear functions of the heat fluxes, we find that although the partial contact time presents a
locally stable stationary value, the total cycle time does not; instead, there exists an infinite collection of steady
values located in the neighborhood of the fixed point, along a one-dimensional manifold. Finally, the role of
dissipation asymmetries on the efficiency, the stability, and the ratio of the total cycle time to the relaxation time
is emphasized.
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I. INTRODUCTION

Since its appearance in 1975, in the seminal work of Curzon
and Ahlborn (CA) [1,2], the Carnot-like endoreversible heat-
engine model has been extensively studied. Extensions to
address different heat transfer laws, operation regimes, and
further modifications, have also been incorporated, yielding
more realistic models with a good qualitative description of
real-life devices. In addition to the optimization of operation
regimes, an interesting question has to do with the capability of
these systems to return to an stationary state after experiencing
a perturbation. In 2001, Santillán et al. [3] introduced the
local-stability analysis of endoreversible heat engines. Since
then, the stability of different types of endoreversible engines
has been studied. Not only their performance in a variety of
operating regimes has been tackled [4–8], but also economic
improvements have been discussed [9–11]. The stability
of heat pumps, refrigerators, and generalized heat engines
has been analyzed as well [8,12–21], complementing other
possibilities, all of them within the endoreversible framework.
Additionally, global stability has been analyzed in a few cases
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[22,23], in which conditions for global asymptotic stability
were found. An important point to note in all these works
is the use of a Carnot-like heat device models [1], with heat
conduction laws explicitly defined in terms of temperature
differences and appropriate conductances to account for the
coupling of the working fluid with the external baths.

A significant conceptual development in the field of finite-
time analysis of heat devices is the so-called low-dissipation
model; originally introduced by Esposito et al. [24] for heat
engines, and later extended by De Tomás et al. for refrigerator
engines [25]. This model is a departure from a baseline Carnot
cycle that considers the existence of dissipations along the
isothermal processes. These dissipations are assumed to be
proportional to some dissipative coefficients that enclose the
intrinsic properties of the device, and are inversely proportional
to the time duration of the corresponding isothermal processes.
LD models usually regard the adiabatic processes as instanta-
neous [24–26]. However, models in which the time of adiabatic
processes are taken into account have also been developed [27].
In all cases, the reversible regime is recovered in the limit
of infinite contact times. In fact, the dissipative term makes
the original LD model similar to the finite-time Brownian
heat-engine model proposed by Schmiedl and Seifert in the
optimal driving limit [28], and also equivalent to the minimally
nonlinear irreversible heat engine, as demonstrated by Izumida
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and Okuda in Ref. [29]. An important feature of LD models
is the possibility of obtaining upper and lower bounds for
the efficiency at maximum power without any information
regarding the specific-heat transfer mechanism. These limits
are obtained by constraining the asymmetry of the dissipative
coefficients. Additionally, in the symmetric dissipation case,
the Curzon-Ahlborn efficiency, ηCA = 1 − √

τ is recovered,
with τ ≡ Tc/Th being the cold-to-hot bath temperature
ratio [2].

The extension of the local-stability-analysis framework of
CA-like to LD models is not trivial. In all these kinds of models,
some physical parameters are controlled in order to optimize
the system performance. Examples of control parameters
include working bath temperatures and contact times with
external temperature reservoirs. However, in real life the values
of control parameters are oftentimes indirectly regulated
by design parameters such as system size, conductivity of
thermal resistors, heat capacity of thermal baths, shape of
potential energy landscapes, etc. In this regard, Santillán et al.
[3] showed that the intermediate working bath temperatures
of a Curzon-Ahlborn-Novikov engine (i.e., the parameters
controlling the engine operation regime) are regulated by
design parameters via an ordinary differential equations (ODE)
system accounting for heat-flux balance. Furthermore, the
engine optimal working temperatures are stable stationary
solutions of the referred ODE system. Since intermediate
working temperatures are not defined in the low-dissipation
model proposed by Esposito et al. [24] due to the lack of
any heat transfer laws, we assume in this work that a similar
argument can be used for low-dissipation models regarding
the contact times with heat reservoirs. That is, the system
control parameters (contact times with heat reservoirs) are
dynamic variables governed via a dynamic system by design
parameters. We further expect that this dynamic system has
a single stable stationary state, corresponding to the control
parameter values that optimize the performance of the low-
dissipation model. In summary, design parameter values would
determine the steady value of control parameters (and so the
system thermodynamic performance characteristics), as well
as the stability of this stationary state. Thus, an interesting
question is to investigate the correlation between stationary
thermodynamic features and their dynamic stability.

To further justify the assumption that the contact times with
heat reservoirs (whose sum equals the engine period) can be
regarded as dynamic variables controlled by design param-
eters, we refer the reader to a specific example, namely, the
β-type Stirling engine model introduced by Reséndiz-Antonio
and Santillán [30]. This is a detailed model that considers in
a simple way all the thermodynamic and mechanic details of
such an engine, and serves as a basis to study the engine
performance. In particular Reséndiz-Antonio and Santillán
were able to demonstrate that the engine period is a dynamic
variable that has a single stable steady state, and that the
period stationary value and stability are determined by design
parameters such as bath temperature ratio, thermodynamic
characteristics of the working substance, moment of inertia of
the fly wheel, friction coefficient, etc. The demonstration is
based on the work-energy theorem:

Ki+1 + Ki = W − fi,

where Ki denotes the flywheel kinetic energy during the
ith cycle, W is the engine thermodynamic work per cycle,
and fi represents energy loss due to friction during the ith
cycle. Clearly, a stationary period is reached when W = fi .
Furthermore, this steady state is stable because if the engine
period is too short (long), and thus the engine speed exceeds
(is below) its corresponding stationary value, then the energy
loss due to friction would be larger (smaller) than the engine
work, and the kinetic energy would decrease in the next cycle,
increasing (decreasing) the duration of the following period.

The objective of the present work is to study the stability
properties of a LD engine, as well as the influence of
dissipation symmetry (or asymmetry) on the system relaxation
times and efficiency, in the maximum power regime, which is
obtained from by optimizing the contact times with external
heat baths [24]. The effects of dissipation asymmetry on the
system entropy production, efficiency, and power output have
been studied in Ref. [31], offering different scenarios regarding
possible advantages that dissipation asymmetries may offer
when switching from one operation regime to another [31].
In the present work we show that dissipation asymmetries
may also play a relevant role in the stability of these kind of
devices, and discuss how this could be an important aspect
to consider, along with energetic characteristics, for a suitable
design of heat devices. Finally, we study the relation between
the system relaxation and total cycle times, and discuss its
relevance.

The paper is organized as follows. In Sec. II we summarize
the power-output optimization of Esposito’s LD heat-engine
model [24]. In Sec. III we present the stability analysis of
an LD engine when the contact-time restitutive forces depend
on the amounts of exchanged heat. In Sec. IV we present the
stability analysis of an LD heat engine when the contact-time
restitutive forces depend on heat fluxes. Finally, in Sec. V we
present some concluding remarks.

II. MAXIMUM POWER IN LOW-DISSIPATION SCHEME

The starting point of the LD model [24] is a Carnot engine
whose cycling period is very long to guarantee reversible
operation conditions. Under these considerations, the system
entropy changes due to the heat amounts exchanged with the
hot (Qh) and cold (Qc) reservoirs are given by �S = Qh/Th

and −�S = Qc/Tc, where Th and Tc are the hot and cold
reservoir temperatures, respectively. Next, a finite-time cycle
in which the system has been taken away from reversible
operation (see Fig. 1) is considered. If th and tc, respectively,
denote the contact times with the hot and cold reservoirs, the
above relations become:

Qh = Th�S

(
1 − �h

�Sth

)
,

Qc = Tc�S

(
−1 − �c

�Stc

)
. (1)

In these last expressions �S is the engine quasistatic
entropy change during the hot isothermal process [29], while
�h and �c are the dissipative coefficients for isothermal
processes at Th and Tc, respectively. Since adiabatic processes
are assumed to be instantaneous, the power output of this
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FIG. 1. Scheme of a low-dissipation heat engine.

engine is

P = −W

tc + th
= Qh + Qc

tc + th
. (2)

In this scheme, the natural optimization parameters are th
and tc. The contact times corresponding to the maximum power
output regime are

t∗h = 2�h

�S(1 − τ )
(1 +

√
τ�),

t∗c = 2τ��h

�S(1 − τ )

(
1 +

√
1

τ�

)
, (3)

where � ≡ �c/�h and τ = Tc/Th. Notice that these two
expressions are monotonically increasing functions of the
temperature ratio τ .

From Eqs. (1) and (3) the efficiency at maximum power,
ηMP , is

ηMP = (1 − τ )(1 + √
τ�)

(1 + √
�)2 + τ (1 − �)

, (4)

which is a monotonically decreasing function of �, with lower
and upper bounds given by

ηC

2
� ηMP � ηC

2 − ηC

. (5)

These lower and upper bounds are correspondingly reached in
the limits � → ∞ and � → 0. In the symmetric case: � = 1
(�c = �h), the well-known CA efficiency ηCA is recovered.

III. STABILITY ANALYSIS BASED ON THE HEAT
AMOUNTS EXCHANGED PER CYCLE WITH

THERMAL BATHS

As previously discussed, since heat exchange mechanisms
are not explicitly considered in the LD formalism, writing
down the differential equations that govern the engine vari-
ables’ dynamics is impossible without further assumptions.
Hence, we propose that the contact times th and tc are not
constant but dynamic variables, whose stability is ensured
by proper generalized restitutive forces. We suppose that if
the contact time with one of the thermal baths is too long
(short) during a cycle, then the corresponding heat exchange
would be larger (smaller) than the stationary value. Thus, the

stability of the steady state of th and tc would be guaranteed
if they are subject to restitutive forces that are functions of the
corresponding heat exchanges or heat fluxes. In this section
we explore the former case, and the latter case is addressed in
Sec. IV.

From Eqs. (1), we rewrite the heat exchanges per cycle as
follows:

Qc = −Thτ�S

(
1 + �h�

�Stc

)
, (6)

Qh = Th�S

(
1 − �h

�Sth

)
. (7)

We define the following normalized (dimensionless) variables,
which take into account the relative size of the dissipative terms
with respect to the baseline reversible situation:

t̃c = �S

�h

tc, t̃h = �S

�h

th, Q̃c = Qc

Th�S
, Q̃h = Qh

Th�S
. (8)

From the above definitions, Eqs. (6) and (7) become:

Q̃c = −τ

(
1 + �

t̃c

)
, (9)

Q̃h =
(

1 − 1

t̃h

)
. (10)

The normalized contact times at maximum power conditions
are

t̃c
∗ = 2τ�

1 − τ

(
1 + 1√

τ�

)
, (11)

t̃h
∗ = 2

1 − τ
(1 +

√
τ�). (12)

We propose that the dynamics of t̃c and t̃h are governed by
an ordinary differential equation (ODE) system of the form:

dt̃c

dt
= f (Q̃c(t̃c,t̃h)), (13)

dt̃h

dt
= g(Q̃h(t̃c,t̃h)). (14)

In order to guarantee the stability of the stationary contact-
time values, f and g must be monotonically decreasing
functions that satisfy: f (Q̃c(t̃c

∗
,t̃h

∗)) = g(Q̃h(t̃c
∗
,t̃h

∗)) = 0.
The simplest way to achieve these requirements is by assuming
that the dynamic system governing the dynamics of t̃c and t̃h
is as follows:

dt̃c

dt
= A(Q̃c(t̃c

∗
,t̃h

∗) − Q̃c(t̃c,t̃h)), (15)

dt̃h

dt
= B(Q̃h(t̃c

∗
,t̃h

∗) − Q̃h(t̃c,t̃h)), (16)

with A and B constant.
From the way it was constructed, the dynamical system in

Eqs. (15) and (16) has a single steady state given by tc = t̃c
∗

and th = t̃h
∗. As it is well known, the local stability of this

steady state is determined by the eigenvalues and eigenvectors
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FIG. 2. (a) Plot of relaxation times versus � for three different values of ηC (see Eqs. (28) and (29)). (b) Plot of relaxation times versus
ηC for different values of �.

of the corresponding Jacobian matrix [32]:

J = −
⎡⎣A∂Q̃c

∂t̃c

∣∣
t̃c

∗
,t̃h

∗ A∂Q̃c

∂t̃h

∣∣
t̃c

∗
,t̃h

∗

B ∂Q̃h

∂t̃c

∣∣
t̃c

∗
,t̃h

∗ B ∂Q̃h

∂t̃h

∣∣
t̃c

∗
,t̃h

∗

⎤⎦. (17)

It is straightforward to prove after some algebra that the
resulting matrix is

J = −
[−Aξ (τ,�) 0

0 −Bξ (τ,�)

]
, (18)

where

ξ (τ,�) =
(

1 − τ

2(
√

�τ + 1)

)2

. (19)

Given that J is diagonal, its eigenvalues are simply

λ1 = −Aξ (τ,�), λ2 = −Bξ (τ,�). (20)

Furthermore, since ξ (τ,�) is a positive definite function, both
λ1 and λ2 are real and negative. This means, on one hand,
that the system steady state is stable, but this is not surprising
because it follows from the proposed dynamical system for t̃c
and t̃h [Eqs. (15) and (16)]. On the other hand, it is possible to
define relaxation times as

t1,2 ≡ − 1

λ1,2
, (21)

which provide useful insights on the system-stability strength.
It follows after a little algebra that

t1 = A−1

(
2(

√
�τ + 1)

1 − τ

)2

, (22)

t2 = B−1

(
2(

√
�τ + 1)

1 − τ

)2

. (23)

In the limit of infinite thermal gradients between the thermal
reservoirs, that is τ → 0, the relaxation times tend to the
following values,

t1(τ → 0) = 4

A
, t2(τ → 0) = 4

B
, (24)

which are independent of the symmetry or asymmetry of the
dissipative coefficients. Meanwhile, when there is thermal
equilibrium between heat reservoirs (τ = 1),

lim
τ→1

t1,2 → ∞. (25)

This happens because no restitutive force can bring back
the system to the steady state due to thermal equilibrium. For
any other value of τ , both relaxation times are monotonically
increasing functions of �. Thus, they reach their lower bound
in the limit where all dissipations are produced while the
system is in contact with the hot reservoir (� → 0):

t1(� = 0) = 4

A(1 − τ )2
, t2(� = 0) = 4

B(1 − τ )2
. (26)

In the opposite situation, when dissipations occur mostly
while the system is in contact with the cold reservoir, both
relaxation times diverge:

lim
�→∞

t1,2 → ∞. (27)

The steady-state relaxation times can also be written in terms
of ηC = 1 − τ and �:

t1 = A−1

(
2(

√
�(1 − ηC) + 1)

ηC

)2

, (28)

t2 = B−1

(
2(

√
�(1 − ηC) + 1)

ηC

)2

. (29)

According to Eqs. (28) and (29), the limit values for t1 and t2
are

lim
ηC→0

t1,2 = ∞, t1(ηC = 1) = 4

A
, t2(ηC = 1) = 4

B
, (30)

and

t1(� = 0) = 4

Aη2
C

, t2(� = 0) = 4

Bη2
C

, lim
�→∞

t1,2 = ∞.

(31)
The dependence of the relaxation times on � and ηC is

illustrated in Fig. 2. Observe that t1,2 are respectively inversely
proportional to A and B. This is an expected behavior from
the dynamic equations (15) and (16). As a matter of fact,
parameters A and B should have information regarding the
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system design, size, etc. However, given the generality of
low-dissipation models, this is not apparent. Notice as well that
both relaxation times are monotonically decreasing functions
of ηC . This implies that the larger the thermal gradient between
the external reservoirs, the stronger the steady-state stability.
This behavior is contrary to that described in the original paper
on the stability of a Curzon-Ahlborn engine [3]. Evidently, this
means that the formalism here proposed for the LD-model dy-
namics is not equivalent to that imposed by the heat-conducting
laws onto the Curzon-Ahlborn model. Nonetheless, further
work is necessary to fully understand this discrepancy. The
relaxation-time dependence on � is also interesting. It basi-
cally states that � must be made as small as possible in order to
enhance the engine stability. When contrasted with the result
in Ref. [24] regarding the system efficiency:

ηC

2
= lim

�→∞
η < lim

�→0
η = ηC

2 − ηC

. (32)

We can see that decreasing the entropy production along the
cold part of the cycle (i.e., decreasing �) not only enhances
the system stability but also increases its efficiency, a desirable
property while designing heat devices.

Heat engines commonly perform a cyclic processes in a
continuous way. Thus, it is desirable that the system returns to
the steady state within a cycle period. This can be used as a
constraint for coefficients A and B. From Eqs. (11) and (12),
the total cycle time at maximum power is

t̃∗tot = t̃c
∗ + t̃h

∗ = 2

ηC

(1 +
√

(1 − ηC)�)2. (33)

On the other hand, from Eqs. (22) and (23), the total relaxation
time is

trelax = t1 + t2

= 2

ηC

(1 +
√

(1 − ηC)�)22

(
A−1 + B−1

ηC

)
= 2

(
A−1 + B−1

ηC

)̃
t∗tot. (34)

z= 2 / 5
z= 2 / 10
z= 2 / 15
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∗
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t re
la
x

(×
10

)

FIG. 3. Comparison of three relaxation times with the total cycle
time at the maximum power steady state. For this plot we have used
τ = 2/5, in order to fulfill the requirement in Eq. (35) z = A−1 +
B−1 < 3/10.

(a)

(b)

FIG. 4. (a) Quiver plot of the velocity vector field given by the
ODE system in (15)–(16), and (b) phase-space trajectories computed
by numerically solving the same equations. The parameter values
used for these plots are: A = B = 1, � = 1, and τ = 0.5. The system
fixed point corresponding to these parameter values is represented
with a red dot.

Hence, in order to have t̃∗tot > trelax, A and B must fulfill the
following relation:

A−1 + B−1 <
ηC

2
� 1

2
. (35)

A comparison of cycle and relaxation times in different
scenarios can be appreciated in Fig. 3. There, we can see
two different cases where the condition in Eq. (35) is
fulfilled and one case where it is not. As z ≡ A−1 + B−1

diminishes, the difference between the relaxation time and the
characteristic total operation time is more noticeable. Also,
as dissipations due to contact with the cold reservoir become
more relevant (� � 1), the difference between both times
is more pronounced. As mentioned before, we found that
decreasing the value of � improves the system efficiency
and stability, but also increases the relaxation times (making
them closer to the cycle time), which might not be a desirable
property.

All previous analyses are strictly valid in an infinitesimal
neighborhood around the steady state. To test whether our
results can be extended further, we numerically explored
the system behavior by varying initial conditions. In Fig. 4
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we show the velocity vector field of the ODE system in
(15)–(16), plotted as a quiver plot on the corresponding
phase space, as well as numerically computed phase-space
trajectories. Although these plots correspond to specific values
of parameters A, B, �, and τ , their qualitative characteristics
maintain when such parameter values are changed. Observe
that the system fixed point is globally stable, thus extending
the results of the former local stability analysis.

IV. STABILITY ANALYSIS BASED ON THE HEAT FLUXES
FROM THERMAL BATHS

In this section we study an equivalent description of
the LD model, in which the optimization variables are the
characteristic total time and the partial contact time with the
cold reservoir. To this end, we introduce the following set of
dimensionless variables [33]:

�̃c = �c/�T , α ≡ tc/(tc + th), t̃ = �S

�T

(tc + th), (36)

with �T = �h + �c. In terms of these variables, the corre-
sponding dimensionless heat fluxes are given by

˙̃Qc ≡ Qc

t̃Tc�S
= −

(
1 + �̃c

α̃t

)
1

t̃
, (37)

˙̃Qh ≡ Qh

t̃Tc�S
=

(
1 − 1 − �̃c

(1 − α)̃t

)
1

τ t̃
, (38)

while the dimensionless power output is

P̃ = ˙̃Qc + ˙̃Qh. (39)

In this case the values of the variable that maximize P̃ are [33]

α∗ = 1

1 +
√

1−�̃c

τ �̃c

, (40)

t̃∗ = 2

1 − τ
(
√

τ�̃c +
√

1 − �̃c)2. (41)

Gonzalez-Ayala et al. [34] have shown that this set of
optimal states can yield efficiency-power curves similar to
those arising from Curzon-Ahlborn-like endoreversible heat
engines, and from irreversible heat engines, depending on the
time constraints imposed on the system. Open parabolic curves
are obtained when the partial contact time is fixed to α = α∗,
while closed looped curves are achieved when the total time
is constrained to t̃ = t̃∗.

To develop a dynamical system for this normalization
scheme we assumed that the system dynamic variables are
α and t̃ , and that the corresponding restitutive forces are
functions of ˙̃Qc and P̃ , respectively. The reason for this is
that, t̃ being the total cycle time, it is reasonable to assume that
its dynamics depend on the engine power output, rather than
on the partial heat fluxes. Following the development in the
previous section we propose an ODE system given by:

dα

dt
= C( ˙̃Qc(α∗ ,̃t∗) − ˙̃Qc(α,̃t )), (42)

dt̃

dt
= D(P̃ (α∗ ,̃t∗) − P̃ (α,̃t )), (43)

with C and D constant. The local stability of the above-
given steady state is determined by the following Jacobian
matrix [32]:

J = −
⎡⎣C

∂ ˙̃Qc

∂α

∣∣
α∗ ,̃t∗ C

∂ ˙̃Qc

∂t̃

∣∣
α∗ ,̃t∗

D ∂P̃
∂α

∣∣
α∗ ,̃t∗ D ∂P̃

∂t̃

∣∣
α∗ ,̃t∗

⎤⎦. (44)

After performing the corresponding algebra, this matrix
becomes

J = −
[
C

∂ ˙̃Qc

∂α

∣∣
α∗ ,̃t∗ C

∂ ˙̃Qc

∂t̃

∣∣
α∗ ,̃t∗

0 0

]
. (45)

Observe that J has a null row. This happens because, in
the maximum power regime,

∂P̃

∂α

∣∣∣∣
α∗ ,̃t∗

= ∂P̃

∂t̃

∣∣∣∣
α∗ ,̃t∗

= 0.
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FIG. 5. (a) Plot of relaxation times versus �̃c for three different values of ηC . (b) Plot of relaxation times versus ηC for three different values
of �̃c.
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The above result further implies that the linearized dynamical
system becomes

dα

dt
= C

∂ ˙̃Qc

∂α

∣∣∣∣
α∗ ,̃t∗

α + C
∂ ˙̃Qc

∂t̃

∣∣∣∣
α∗ ,̃t∗

t̃ , (46)

dt̃

dt
= 0, (47)

and thus, t̃ is constant for any perturbation, while the general
solution for α is of the form α(t) = c1e

λ1t + c2e
λ2t . On the

other hand, due to the fact that the determinant of J is zero,
one of the eigenvalues equals zero, while the other is given by

λ = C
∂ ˙̃Qc

∂α

∣∣∣∣
α∗ ,̃t∗

.

From this, a relaxation time for α can be defined as

t1 = 4(1 − ηC)(1 − �̃c)(1 + √
(1 − ηC)�)2

η2
C C

, (48)

where � is as defined in Sec. III (� ≡ �c/�h). In Fig. 5,
t1 relaxation time is plotted as a function of �̃c and ηC . By
imposing the condition that the relaxation time must be smaller
than the total cycle time given by Eq. (41), we can constraint
the possible values of C to

C >
2(1 − ηC)

ηC

. (49)

The fact that one of the Jacobian eigenvalues is zero further
means that the system steady state is not isolated, but there
is an infinite set of fixed point. Nevertheless, of all such
fixed points, only α∗ ,̃t∗ corresponds to the maximum power
state.

To test to what extent the results above can be extended
beyond an infinitesimal neighborhood around the steady state,
we numerically explored the system dynamic behavior under
numerous different initial conditions. In Fig. 6 we show a
quiver plot for the velocity vector field corresponding the
ODE system in (42)–(43), together with the corresponding
numerically computed phase-space trajectories. Although
these plots were computed with a specific set of parameter
values, their qualitative characteristics remain unaltered when
the parameter values are modified. There, we can see that only
a small subset of initial conditions lead to trajectories (blue
lines) that converge to the neighborhood of the steady state.
From all other initial conditions, the trajectories converge to
the α̇ = 0 nullcline, and then they slowly diverge to α → 0
and t̃ → ∞ along this nullcline. This means that the engine
eventually stops cycling and remains in contact with the hot
thermal bath.

In Ref. [34], Gonzalez-Anaya et al. studied the role of time
constraints in obtaining closed and open power-vs.-efficiency
curves in the LD model. They found that constraining α =
α∗ leads to open parabolic curves such as those of Carnot-
like heat engine models with no heat leak. Interestingly, in
all previous dynamic studies of endoreversible heat engines
without heat leaks, the obtained steady states have been found
to be stable. On the other hand, by imposing a fixed total
operation time t̃ = t̃∗ one obtains closed looped curves similar
to those resulting from the introduction of a heat leak. The

(a)

(b)

FIG. 6. (a) Quiver plot of the velocity vector field given by the
ODE system in (42)–(43), and (b) numerically computed phase-space
trajectories for the same ODE system. The parameter values used for
these plots are: C = D = 1, and �̃c = τ = 0.5. The system fixed
point corresponding to these parameter values is represented with a
red dot. In (b), the trajectories converging to the neighborhood of the
steady state are plotted in blue, while all other trajectories (which
eventually diverge to α = 0 and t̃ → ∞) are plotted in green.

existence of a heat leak fixes the engine time arrow because the
total entropy generation is positive (�STotal > 0), and means
that the reversible limit is no longer achievable (indeed, the
system becomes more irreversible as t̃ decreases). In view of
the present discussion, our results imply that, when the total
cycle time is perturbed (by means of heat-leak variations, for
example), the system studied in the present section would not
be able to spontaneously return to its original operation regime,
and it may stop cycling altogether.

V. CONCLUDING REMARKS

We have addressed the stability of a low-dissipation
system operating at maximum power output. To this end,
we considered two equivalent descriptions: one where the
optimization variables are the contact time with the hot and
cold reservoirs, and a second one where the optimization
variables are the partial contact time with the cold reservoir and
the total cycle time. In both cases the optimization variables
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are regarded as dynamic variables, governed by restitutive
forces. In the former case, the restitutive forces are assumed
to linearly depend on the amount of exchanged heat, while in
the latter case they are assumed to linearly depend on the heat
fluxes.

When tc and th are the dynamic variables, and the proposed
restitutive forces are functions of the corresponding amount
of exchanged heat per cycle (see Sec. III), it was possible
to find a stable state and characterize the system stability
in terms of its design characteristics: ηC and the dissipation
ratio � (that measures dissipation symmetry or asymmetry).
Furthermore, if dissipation mainly occurs while the engine is
in contact with the hot reservoir, both the efficiency and the
system stability are improved. Interestingly, this dissipation
asymmetry has shown to be relevant for the system energetics
(entropy production, efficiency, power output) and also plays
an important role while switching operations regimes. On
the other hand, when α and t̃ are the dynamic variables,
we found that α has a locally stable steady-state value, but
t̃ has not. Coincidentally, there is evidence suggesting that
fixing the total cycle time is equivalent (within the context of
Carnot-like engines) to introducing a heat leak into the system.
To our understanding, this suggests that the fixating the engine
cycle time would involve certain external control over the
device, which would affect the system irreversibility through
the total entropy generated per cycle, �Stotal, and so altering
these control mechanisms would irreversibly affect the cycle
time. By considering the relaxation times and comparing them

with the total cycle time one can impose some constraints
over the dynamics of the system in order for the stability
to be relevant when continuous cycling processes are carried
out.

We finally note that the low-dissipation model is related
with several physical systems, ranging from overdamped
Brownian heat engines [28,35,36] to two-level quantum
systems [37]. The extension of the macroscopic analysis here
presented to these mesoscopic and/or quantum systems could
be a further step in order to a better understanding of the
role played by the fluctuations and probability distributions,
not only for a particular operation regime but also of the
device as a heat engine. The cases of power constraints
such as in Refs. [38–42] or for stochastic heat engines at
maximum efficiency [43] (to mention a few) might offer
suitable applications on the road toward the understanding the
dynamical control and stability analysis for low-dissipation
heat devices.
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