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Similarity of ensembles of trajectories of reversible and irreversible growth processes
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Models of bacterial growth tend to be “irreversible,” allowing for the number of bacteria in a colony to
increase but not to decrease. By contrast, models of molecular self-assembly are usually “reversible,” allowing
for the addition and removal of particles to a structure. Such processes differ in a fundamental way because
only reversible processes possess an equilibrium. Here we show at the mean-field level that dynamic trajectories
of reversible and irreversible growth processes are similar in that both feel the influence of attractors, at which
growth proceeds without limit but the intensive properties of the system are invariant. Attractors of both processes
undergo nonequilibrium phase transitions as model parameters are varied, suggesting a unified way of describing
typical properties of reversible and irreversible growth. We also establish a connection at the mean-field level
between an irreversible model of growth (the magnetic Eden model) and the equilibrium Ising model, supporting
the findings made by other authors using numerical simulations.
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I. INTRODUCTION

Physical growth processes can be reversible, allowing for
the number of particles present in a system to increase and
decrease, or irreversible, allowing only for an increase of
particle number. For example, bacterial colony growth is
usually considered to be irreversible because bacteria multiply
but do not disappear [1,2]. By contrast, models of molecular
self-assembly are usually reversible, allowing for particle
attachment and detachment [3–6]. The two types of processes
are fundamentally different in that reversible processes possess
an equilibrium at which growth ceases, while irreversible
processes do not. Usually one of these processes is chosen
to model a particular physical system, and so comparison
between the two is rarely made. Here we compare reversible
and irreversible stochastic growth processes in a mean-field
(space-independent) setting. We show that despite their differ-
ences in respect to equilibrium, the two types of processes can
display similar behavior when growth is allowed to proceed
without limit. Specifically, ensembles of dynamic trajectories
are governed by attractors in phase space at which the averaged
properties of the system, scaled by system size, are invariant.
These attractors undergo nonequilibrium phase transitions as
model parameters are varied. Qualitatively similar behavior
is seen in lattice models of both types of processes, which
display phase transitions [7–9]. The present work shows at the
mean-field level that the collective properties of these transi-
tions can be similar, even though the rates of the processes
differ, suggesting a unified way of describing reversible and
irreversible growth processes. For one particular irreversible
process, i.e., a mean-field version of the magnetic Eden model
(MEM) [1,7,8], we also show that its nonequilibrium phase
behavior, at the level of the typical behavior of ensembles of
trajectories, is that of the mean-field equilibrium Ising model.
This finding provides additional evidence for a “nontrivial
correspondence between the MEM for the irreversible growth
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of spins and the equilibrium Ising model” (in distinct spatial
dimensions) conjectured by other authors on the basis of
numerical simulations [7,8].

II. MODELING REVERSIBLE
AND IRREVERSIBLE GROWTH

We consider reversible and irreversible stochastic growth
processes in the simplest limit, ignoring spatial degrees of
freedom and resolving only the numbers of particles in the
system. By “reversible” we mean simply that particles may
enter and leave the system, and we intentionally do not require
that rates are derived from the principle of detailed balance.
We consider the growth of a system composed of two types of
particles, labeled “red” and “blue.” The state of the system is
defined at any instant by the number of red particles r and blue
particles b it contains or, equivalently, by the system’s “size”
N ≡ b + r and “magnetization” m ≡ (b − r)/(b + r). We add
blue particles to the system with rate λb, and red particles with
rate λr. We remove blue and red particles from the system
with respective rates γ b and γr. For an irreversible process,
these latter two rates are zero. We allow rates to depend on the
instantaneous magnetization of the system, but not (directly)
on its size. We impose this requirement in order to model a
notional growth process in which rates of particle addition
and removal to a structure scale with the size of the interface
between the structure and its environment. We then assume
the limit of a large structure whose interfacial area does not
change appreciably during the growth process, and we divide
addition and removal rates by the (constant) surface area in
order to obtain the rates stated above.

We study this class of growth processes using a continuous-
time Monte Carlo protocol [10]. To interpret these simulations,
we derive a set of analytic expressions for averages over
dynamic trajectories, in the limit of vanishing particle-number
fluctuations (see Appendices A–C). Under these conditions,
the net rates of the addition of blue and red particles are
�b(m) = λb − γ b and �r(m) = λr − γr. The time evolution of
system size is Ṅ = �b + �r. The requirement for equilibrium,
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by which we mean a zero-growth-rate stationary solution,
is �b(m0) = 0 = �r(m0), where m0 is the magnetization of
the system in equilibrium. These relations can be satisfied
by a reversible process but not an irreversible one, except in
the trivial limit of zero addition rate. Thus only a reversible
process has an equilibrium for which Ṅ = 0 = ṁ. However,
both types of processes admit a steady-state growth regime for
which Ṅ > 0 and ṁ = 0. The time evolution of magnetization
is ṁ = N−1[�b − �r − m(�b + �r)], which vanishes for m =
m� such that

m� = �b(m�) − �r(m�)

�b(m�) + �r(m�)
. (1)

Thus there exist nullclines, at which ṁ = 0, in the space
of dynamic growth trajectories. The existence of such null-
clines requires only that net rates of particle addition are
positive, whether or not removal rates vanish, and so can
be displayed by reversible and irreversible processes. We
shall show that these nullclines can be attractors, stable
with respect to perturbations, and so constitute fixed lines to
which dynamic trajectories flow. Furthermore, these attractors
undergo nonequilibrium phase transitions as model parameters
are varied.

We now specialize the discussion to two models that might
be regarded as reversibly and irreversibly growing versions of
the mean-field Ising model. The irreversible stochastic process
we consider is a space-independent version of the magnetic
Eden model [1,7,8], closely related to a model studied in
Ref. [11]. The addition of red and blue particles occurs
with rates that are Arrhenius-like in the energy of interaction
between a single particle and the system, λr = 1

2e−mJ−h and
λb = 1

2emJ+h. Here, J is the interparticle coupling and h is
a magnetic field (we set m = 0 when N = 0). We allow no
particle removals, setting γ b = γr = 0. There is therefore no
equilibrium. The analytic evolution equations, averaged over
trajectories, read Ṅ = cosh(mJ + h) and

ṁ = N−1[sinh(mJ + h) − m cosh(mJ + h)], (2)

and admit the nullcline

m� = tanh(m�J + h). (3)

This equation is equivalent to the well-known mean-field ex-
pression for Ising model thermodynamics [12,13]. For h = 0,
Eqs. (2) and (3) indicate that the nullcline m� = 0 is an attractor
for J � Jc = 1 and a repeller for J > 1. For J > 1, two
symmetric attractors emerge as m�± ∼ ±(J − 1)1/2. In other
words, these equations describe a continuous phase transition
of dynamic trajectories that are “unmagnetized” for J < 1 and
“magnetized” for J > 1, via a critical point at J = 1. Thus, at
the mean-field level, typical nonequilibrium trajectories of the
magnetic Eden model possess phase behavior identical to that
of the equilibrium Ising model [14]. This result provides an
analytic connection between models, supporting the findings
of Refs. [7,8], which demonstrated a numerical equivalence
between phase transitions, in distinct spatial dimensions,
of Eden and Ising models (see also [2]). This result also
appears to be consistent with general arguments suggesting
that probabilistic irreversible cellular automata with Ising-like
symmetry lie in the universality class of the equilibrium Ising
model [15] (see also [6,16]).
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FIG. 1. Phase diagrams of the stable dynamic attractors of the (a)
reversible and (b) irreversible models of growth, for h = 0. U and
M indicate unmagnetized and magnetized regions, respectively, with
the latter admitting two stable attractors. The solid line in (a) and
dotted line in (b) denote continuous phase transitions. To the left of
the dotted line in (a), we have no growth.

The reversible model we consider is the stochastic process
whose fluctuation-free limit is described in Refs. [9,17].
We assume constant rates of particle addition, λb = pc and
λr = (1 − p)c, where c is a notional “solution” concentration
and p is the fraction of particles in solution that are blue. To
make contact with Ising model nomenclature, we introduce
the magnetic field h via p ≡ eh/(2 cosh h). Unbinding rates
are Arrhenius-like, appropriate for particles escaping from a
structure via thermal fluctuations, and are γ b = 1

2e−mJ (1 + m)
and γr = 1

2emJ (1 − m) (supplemented by the restriction that
particle numbers cannot be negative). Note that these rates
are intentionally not designed to satisfy detailed balance with
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FIG. 2. Dynamic growth trajectories in the space of magnetiza-
tion m and system size N for reversible (top) and irreversible (bottom)
models. We show trajectories (a),(b) in the magnetized regime, with
attractors marked as dotted lines, and (c),(d) at a dynamic critical
point, where the attractor lies at zero magnetization. Parameters: (a)
J = 2.5 and c = 2, (b) J = 1.25, (c) J = 2 and c = 2, (d) J = 1.
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respect to a particular energy function; however, the process
still possesses an equilibrium. The fluctuation-free evolution
equations are Ṅ = c − cosh(mJ ) + m sinh(mJ ) and

ṁ = N−1[(1 − m2) sinh(mJ ) − c(m − tanh h)]. (4)

Equilibrium is achieved when c2
0 = (1 − m2

0) cosh2 h, with

m0 = tanh(m0J + h). (5)

Thus the equilibrium phase behavior of this model is identical
to the nonequilibrium phase behavior (3) of the irreversible
model, and to the equilibrium phase behavior of the mean-field
Ising model.

Persistently growing trajectories admit the nullcline

c(m� − tanh h) = (1 − m2
�) sinh(m�J ). (6)

This nullcline is different in detail to that of the irreversible
model, given by Eq. (3). However, (6) and (4) describe, for J <√

6, a similar nonequilibrium continuous phase transition be-
tween unmagnetized and magnetized trajectories. The “mag-
netic” critical exponent is 1/2, as for the irreversible case, i.e.,

magnetization emerges for J > Jc as m�± ∼ ±(J − Jc)1/2,
where Jc = c is the critical point of the reversible process.

In Fig. 1, we show the nonequilibrium phase diagrams
derived from (2), (3), (4), and (6). These diagrams indicate
the nature of the dynamic attractors m� in a space of model
parameters: in regions U and M, the stable attractors possess
zero and nonzero magnetization, respectively. Both models
exhibit phase transitions at which the nature of the attractors
changes qualitatively.

Numerical simulations accommodating particle-number
fluctuations confirm these analytic expectations and provide
additional insight into the nature of phase transitions of en-
sembles of trajectories. We began simulations (in general) with
no particles present and advanced time by an amount 1/(γr +
γ b + λr + λb) following every Monte Carlo move. In Fig. 2,
we show that dynamic trajectories feel the influence of the
dynamic attractors predicted analytically. In the magnetized
region, trajectories “flow” to one of the two stable magnetized
attractors, while at the critical point, the stable attractor is
unmagnetized. Individual trajectories fluctuate increasingly
slowly in m space as N increases (because, for large N ,
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FIG. 3. Trajectory-to-trajectory (a),(b) averages and (c),(d) variance of magnetization taken over ensembles of 105 trajectories, at various
values of J , for (a),(c) reversible (c = 2) and (b),(d) irreversible growth. The two types of processes display similar phase transitions at the
level of trajectory averages. Numerical simulations are overlaid on the analytic results (a) (6) and (b) (3). In (a), we also show the results of
simulations done in the presence of a system size constraint, overlaid on (5) (see Fig. 4).
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fluctuations of particle number change magnetization by an
amount ∝ N−1) and so, e.g., the likelihood of a magnetized
trajectory spontaneously reversing its magnetization becomes
vanishingly small (see Ref. [11]). However, ensembles of
trajectories show behavior that is characteristic of a phase
transition. In Figs. 3(a) and 3(b), we show averages of |m(t)|
over 105 dynamic trajectories generated at several different
values of J . We define averages of an observable A(t) as
〈A(t)〉 ≡ K−1 ∑K

i=1 Ai(t), where Ai(t) is the value of A(t)
for the ith of K trajectories. Trajectory averages evolve, as
t increases, toward the attractor. This evolution is generally
slow because the mobility of individual trajectories is low:
ignoring fluctuations, we expect small departures 〈δm(t)〉 from
the attractor to decay—above, at, and just below the critical
point—as t−q , (ln t)−1/2, and t2q , respectively, where q =
1 − J for the irreversible process and q = (c − J )/(c − 1)
for the reversible one.

Trajectory-to-trajectory fluctuations, which are neglected
by our analytic expressions, also show behavior charac-
teristic of a phase transition. In Figs. 3(c) and 3(d), we
show the trajectory-to-trajectory fluctuations of magnetization,
χ ≡ 〈N (t)〉(〈m2(t)〉 − 〈|m(t)|〉2) [the quantity var(|M|)/〈N〉,
where M = mN , behaves similarly]. For both models, χ

displays at the critical point a peak that increases in height
with average system size as 〈N (t)〉0.82(1) over the time interval
shown [see inset to Fig. 3(b)]. While individual trajectories
flow to stable attractors as time increases, thereby causing
var(|m|) to decrease with time, the same trajectories also
acquire more particles, and the combination 〈N〉 var(|m|)
increases with time over the interval simulated. Such “sharp-
ening” of a phase transition with increasing time is reminiscent
of behavior seen in glassy models that display phase transitions
in space-time [18]. In a forthcoming work, we will describe in
more detail the long-time behavior of these models, including
the behavior of atypical dynamic trajectories.

In some limits, the two types of processes can be clearly
distinguished. All growth processes must eventually end. A
bacterial colony will run out of food, and a self-assembled
structure will come to equilibrium with its environment. In
this limit, the difference between reversible and irreversible
processes becomes apparent. In Fig. 4, we show dynamic
simulations of the reversible model carried out in the presence
of an additional rule that forbids any addition that would
cause the system to contain more than 103 particles. During
the growth phase, dynamic trajectories fall under the influence
of the dynamic attractor, but when the system size limit is
reached, trajectories evolve to an attractor similar to that of
the equilibrium one; see also the line labeled “constrained” in
Fig. 3(a). Trajectories of the irreversible model, in the presence
of a size constraint, simply cease to evolve. The behavior of
the reversible model gives insight into the behavior of the
lattice models of growth of Refs. [9,17]. These models obey
detailed balance and so must eventually evolve to equilibrium,
but during a period of growth they display nonequilibrium
behavior consistent with that of a persistently growing process.
The present results indicate that one can consider dynamic
trajectories of a reversible growth process to feel the ef-
fect of both nonequilibrium and equilibrium attractors, the
relative influence of which varies over the lifetime of the
trajectory.
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FIG. 4. The evolution of (a) 〈N〉 and (b) 〈|m|〉 for size-limited
reversible growth shows that trajectories fall under the influence of the
dynamic attractor while growth persists, and evolve to the equilibrium
attractor when the size constraint is reached. Lines denote averages
over 500 trajectories. Parameters: J = 1.5, c = 2. The line labeled
“constrained” in Fig. 3(a) shows the results of similarly constrained
simulations for several values of J .

III. CONCLUSIONS

We have shown at the mean-field level that reversible and
irreversible growth processes are similar in that both admit
attractors in the space of dynamical trajectories. At these at-
tractors, growth proceeds without limit, but averaged intensive
properties of the system are time invariant. Attractors, which
describe typical behavior of ensembles of dynamic trajectories,
can undergo similar nonequilibrium phase transitions. We have
also established a connection at the mean-field level between
an irreversible model of growth (the magnetic Eden model)
and the equilibrium Ising model, supporting the findings
made by other authors using numerical simulations. There
is sustained interest in nucleation and growth pathways of
molecular [19], active [20], and living [1] matter. Our results
indicate that certain qualitative properties of nonequilibrium
growth trajectories are insensitive to details of the microscopic
transition rates that produce them, suggesting a unified way of
describing growth processes of distinct microscopic entities.
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APPENDIX A: STOCHASTIC MODELS OF GROWTH

The stochastic processes described in the main text can be
described using a master equation. Consider the probability
P (r,b; t) that a system at time t contains r � 0 red and b �
0 blue particles. For brevity, we will write this probability
as P (r,b), with the time dependence of the function being
implicit. We add red particles to the system with rate λr(r,b)
and blue particles with rate λb(r,b), and remove red and blue
particles with respective rates γr(r,b) and γ b(r,b). The master
equation for this set of processes is

∂tP (r,b) = λb(r,b − 1)P (r,b − 1) − λb(r,b)P (r,b)

+ λr(r − 1,b)P (r − 1,b) − λr(r,b)P (r,b)

+ γ b(r,b + 1)P (r,b + 1) − γ b(r,b)P (r,b)

+ γr(r + 1,b)P (r + 1,b) − γr(r,b)P (r,b). (A1)

We set γ b(r,0) = 0 = γr(0,b) so that we cannot have a negative
number of particles of either color. By multiplying both sides of
(A1) by the arbitrary function U (r,b) and summing over b and
r , we obtain the evolution equation for the quantity U averaged
over dynamic trajectories, 〈U (r,b)〉 ≡ ∑∞

r,b=0 U (r,b)P (r,b):

∂t 〈U (r,b)〉 = 〈[U (r,b + 1) − U (r,b)]λb(r,b)〉
+ 〈[U (r + 1,b) − U (r,b)]λr(r,b)〉
+ 〈[U (r,b − 1) − U (r,b)]γ b(r,b)〉
+ 〈[U (r − 1,b) − U (r,b)]γr(r,b)〉. (A2)

Setting U (r,b) = b gives the rate of change of the mean
number of blue particles,

∂t 〈b〉 = 〈λb(b,r)〉 − 〈γ b(b,r)〉. (A3)

The corresponding equation for red particles is

∂t 〈r〉 = 〈λr(b,r)〉 − 〈γr(b,r)〉. (A4)

We can obtain closed-form equations for rates of change
of particle number by making a mean-field approximation,
replacing averages over functions f of r and b with functions f

of the averages of r and b, i.e., writing 〈f (r,b)〉 = f (〈r〉,〈b〉).
To simplify notation, we then replace 〈r〉 → r and 〈b〉 → b,
so that (A3) and (A4) read

ḃ = λb(b,r) − γ b(b,r), (A5)

ṙ = λr(b,r) − γr(b,r). (A6)

The size of the system is N = r + b, and so its growth rate is

Ṅ = ṙ + ḃ

= λb + λr − γ b − γr. (A7)

In equilibrium, we must have the vanishing of (A5) and (A6),
giving

λb = γ b (A8)

and

λr = γr. (A9)

The rate of change of magnetization m ≡ (b − r)/(b + r) is

ṁ = 1

N
[ḃ − ṙ − m(ḃ + ṙ)]

= 1

N
[λb − λr − γ b + γr − m(λb + λr − γr − γ b)].

(A10)

The condition ṁ = 0 implies

m� = λb − λr − γ b + γr

λb + λr − γr − γ b
, (A11)

in which all rates are understood to be evaluated at m = m�.

APPENDIX B: IRREVERSIBLE MODEL OF GROWTH

The irreversible model described in the main text allows
no particle removal, γ b(r,b) = 0 = γr(r,b). Blue particles are
added with an Arrhenius-like rate that assumes Ising-like
interaction energies between red and blue particles with
coupling J and magnetic field h (we take kBT = 1),

λb(b,r) = 1

2
exp

{
J

1 + m

2
− J

1 − m

2
+ h

}

= 1

2
emJ+h. (B1)

Here the spatial mean-field approximation is apparent, i.e.,
particles “feel” only the average magnetization of the whole
system. We have absorbed the particle coordination number,
assumed to be constant, into J . Similarly, red particles are
added to the system with rate

λr(b,r) = 1

2
exp

{
J

1 − m

2
− J

1 + m

2
− h

}

= 1

2
e−mJ−h. (B2)

The averaged growth rate (A7) is

Ṅ = cosh(mJ + h). (B3)

The averaged time evolution of the system’s magnetization,
given by (A10), is

ṁ = N−1[sinh(mJ + h) − m cosh(mJ + h)]. (B4)

This vanishes for

m� = tanh(m�J + h). (B5)

Equations (B4) and (B5) are Eqs. (2) and (3) of the main
text.

The temporal evolution to the attractor (B5) differs in
different regimes of parameter space. Consider the case of
vanishing magnetic field. For a small departure δm from
the attractor, m(t) = m� + δm(t), we have from (B3) N ≈
cosh(m�J )t . Inserting this result into (B4) and using (B5)
gives

∂t δm ≈ −1

t
{δm cosh(Jδm) + [m2

� + m�δm − 1] sinh(Jδm)}.
(B6)
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Expanding this equation in powers of δm gives

∂tδm ≈ 1

t

{
[J (1 − m2

�) − 1]δm − Jm�(δm)2

+ J 2

6
[J (1 − m2

�) − 3](δm)3

}
. (B7)

In the unmagnetized region (J < 1), we have m� = 0, and so
∂t δm ≈ (J − 1)δm/t . Thus temporal relaxation to the attractor
is algebraic, with a continuously varying exponent: δm ∼ tJ−1.
In the magnetized region (J > 1,m� �= 0), relaxation to the
steady state is also algebraic, δm ∼ tJ (1−m2

�)−1. Close to the
critical point, where J ≈ 1, we have from (B5) that m2

� ≈
3(J − 1)/J 3, and so δm ∼ t2(1−J ) to leading order in J − 1.
Thus the (moduli of) exponents on either side of the critical
point are distinct. At the critical point, we have J = 1 and
m� = 0, in which case the first two terms on the right-hand
side of (B7) vanish. We then have ∂tδm ∝ −(δm)3/t , and so
δm ∼ (ln t)−1/2.

APPENDIX C: REVERSIBLE MODEL OF GROWTH

For the reversible model, we have constant rates of particle
addition, λb(r,b) = pc and λr(r,b) = (1 − p)c, where c is a
notional “solution” concentration and p is the fraction of
particles in solution that are blue. To make contact with Ising
model nomenclature, we introduce the magnetic field h via
p ≡ eh/(2 cosh h). Particle unbinding rates are Arrhenius-like,
appropriate for particles escaping from a structure via thermal
fluctuations (we take kBT = 1):

γ b(b,r) = 1 + m

2
exp

{
−εs

1 + m

2
− εd

1 − m

2

}

≡ 1 + m

2
e−
−m�, (C1)

where the magnetization of the system is again m ≡ (b −
r)/(b + r). We assume that blue particles possess energy of
interaction −εs with blue particles and −εd with red particles
(we have absorbed factors of coordination number, assumed to
be constant, into these energetic parameters). We have defined
the parameters 
 ≡ (εs + εd)/2 and � ≡ (εs − εd)/2. The
prefactor of the exponential ensures that blue particles leave
the system with a rate proportional to their relative abundance
in the system. For red particles, we choose the unbinding rate

γr(b,r) = 1 − m

2
exp

{
−εs

1 − m

2
− εd

1 + m

2

}

≡ 1 − m

2
e−
+m�. (C2)

Note that because m is not defined for r = b = 0, we
additionally require γ b(0,0) = 0 = γr(0,0).

Hence (A5) and (A6) become

ḃ = pc − 1 + m

2
e−
−m�, (C3)

ṙ = (1 − p)c − 1 − m

2
e−
+m�, (C4)

which, with p = 1/2, are Eqs. (1) of Ref. [9]. It is convenient
to rescale time and concentration

t → e
t (C5)

and

c → e−
c (C6)

to get the simpler equations

ḃ = pc − 1 + m

2
e−m�, (C7)

ṙ = (1 − p)c − 1 − m

2
em�. (C8)

The growth rate (A7) is

Ṅ = c − cosh(m�) + m sinh(m�). (C9)

In this model, there exists an equilibrium when rates of particle
addition and removal balance. The the associated equation of
state follows from (A8) and (A9), and is

m0 = tanh(m0� + h), (C10)

with the associated concentration

c2
0 = (

1 − m2
0

)
cosh2 h. (C11)

Note that the equilibrium concentration for h = 0 is the same
for red (m0 < 0) and blue (m0 > 0) solutions, i.e., c0 is
unchanged upon setting m0 → −m0.

The rate of magnetization evolution, given by Eq. (A10), is

ṁ = 1

N
[(1 − m2) sinh(m�) − c(m − tanh h)], (C12)

which vanishes when

c(m� − tanh h) = (1 − m2
�) sinh(m��). (C13)

In the main text, we assume an Ising-like hierarchy for the
interaction energies of this model, in which case � = J and

 = 0. With these choices, Eqs. (C10), (C12), and (C13) are
equations (5), (4), and (6) of the main text, respectively.

Analysis of (C13), for h = 0, gives rise to Fig. 1(a) of
the main text. The function on the right-hand side of (C13)
vanishes at m = 0 and at m = ±1, and has one turning point
for positive m and one for negative m. When � <

√
6, this

function takes its largest positive gradient � at the origin.
Therefore, it intersects the function cm on the left-hand side of
(C13) three times if c < � (with two non-negative solutions,
m±, stable to perturbations of m, and one, at m = 0, unstable)
and only once (at m = 0) if c > �. When c = �, all solutions
lie at m = 0. The solutions m± move smoothly away from m

as c is decreased below �, and do so as

m� ∼
(

6

�

� − c

6 − �2

)1/2

. (C14)

Thus at the point c = � (for h = 0 and � <
√

6), we have
a continuous nonequilibrium phase transition separating zero
and nonzero magnetization solutions to Eq. (C13).

For h = 0 and � �
√

6, we can have zero, three, or
five solutions to (C13), depending on the value of c, and,
respectively, zero, two, and three of those solutions are stable.
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As for the irreversible model, temporal relaxation to the
attractor m� varies by parameter regime. Expanding (C9) and
(C12) for m(t) = m� + δm(t) gives, for m� = 0,

∂tδm ≈ 1

t

{
� − c

c − 1
δm − �(6 − �2)

6(� − 1)
(δm)3

}
. (C15)

In the unmagnetized region c > �, we then have δm ∼ t
�−c
c−1 .

At criticality (� = c), we have δm ∼ (ln t)−1/2. Expanding
(C9) and (C12) for m(t) = m� + δm(t) and using (C14) reveals
that in the magnetized region, we have δm ∼ t

2(c−�)
c−1 .
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