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Kinetic approach to condensation: Diatomic gases with dipolar molecules
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We derive a kinetic equation for rarefied diatomic gases whose molecules have a permanent dipole moment.
Estimating typical parameters of such gases, we show that quantum effects cannot be neglected when describing
the rotation of molecules, which we thus approximate by quantum rotators. The intermolecular potential is
assumed to involve an unspecified short-range repulsive component and a long-range dipole-dipole Coulomb
interaction. In the kinetic equation derived, the former and the latter give rise, respectively, to the collision integral
and a self-consistent electric field generated collectively by the dipoles (as in the Vlasov model of plasma). It turns
out that the characteristic period of the molecules’ rotation is much shorter than the time scale of the collective
electric force and the latter is much shorter than the time scale of the collision integral, which allows us to average
the kinetic equation over rotation. In the averaged model, collisions and interaction with the collective field affect
only those rotational levels of the molecules that satisfy certain conditions of synchronism. It is then shown that
the derived model does not describe condensation; i.e., permanent dipoles of molecules cannot exert the level of
intermolecular attraction necessary for condensation. It is argued that an adequate model of condensation must
include the temporary dipoles that molecules induce on each other during interaction, and that this model must
be quantum, not classical.
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I. INTRODUCTION

There are several approaches to modeling condensation
(gas-liquid phase transition), but none has so far been able
to relate the condensation temperature and other macro-
scopic characteristics to the parameters of the molecules (see
Refs. [1,2] and references therein). In the present paper, we
attempt to advance the kinetic approach to condensation.

This approach dates back to the 1960s [3–6], with its
further development associated, at least partly, with the so-
called Enskog-Vlasov model proposed in Ref. [7] and used
in numerous other papers, e.g., Refs. [8–12] . This model
assumes that the intermolecular potential can be separated
into a repulsive “core” and attractive “tail,” responsible for
collisions and van der Waals forces, respectively. Using a
similar, but simpler, BGK-Vlasov model, Ref. [13] showed
that, for a given density of the gas, a threshold temperature
T = Tc exists, such that gas states with T < Tc are unstable,
with Tc being the condensation temperature. Note that, in both
models, the long-range (van der Waals) attraction was modeled
by a “phenomenological” radially symmetric force field.

There is a time, however, for any theory involving phe-
nomenological elements, to have these replaced with physics-
based models. Accordingly, the nonspecific van der Waals
potential in the kinetic theory of condensation should sooner
or later be replaced with a proper model of the dipole-dipole
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Coulomb interaction (DDCI), which aligns the gas molecules
and, thus, causes intermolecular attraction.

There exist two mechanisms of the DDCI, described by
Keesom’s and London’s models [14]. They differ in how they
treat the molecule’s dipolar moment: the former considers it a
known characteristic of the gas, whereas the latter assumes it
to be induced in the course of the molecules’ interaction and,
thus, depend on the distance between them. For symmetric
molecules, such as those of O2 or N2, the permanent dipole
moment is zero, but otherwise it is likely to be greater
than the induced one—especially, for diluted gases, where
intermolecular distances are large and the induced dipoles are,
thus, weak.

Note, however, estimates show that the quantum of ro-
tational energy is comparable to kBTc (where kB is the
Boltzmann constant). Thus, the classical approach (used in
most papers on the Enskog/BGK-Vlasov models) is simply
not accurate enough for gas-liquid phase transitions, so
one has to use the quantum description of the molecule
rotation.

The present paper examines the role of the Keesom force
in condensation of gases (with dipolar molecules). We assume
that the intermolecular force can be separated into a short-
range repulsive component (due to the molecules “crushing”
each other’s electron clouds) and long-range electric dipole-
dipole interaction. The former will be taken into account
through the collision integral, whereas the latter will be
described under the so-called “self-consistent field” approx-
imation, as in the Vlasov model of plasma (see Refs. [15,16]).
To simplify the problem, we consider diatomic molecules and
use the approximation of solid rotators, in which case the
dependence of the psi function on the molecule’s orientation
can be found explicitly.
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TABLE I. The parameters of hydrogen chloride (HCl) and carbon monoxide (CO), according to Refs. [18–20]. m, I , and d are the mass,
moment of inertia, and dipole moment of the molecule. T and c are the condensation temperature and concentration of molecules for pressure
of 1 atm.

m (kg) I (kg m2) d (C m) T (K) c (m−3)

HCl 6.0545 × 10−26 2.6425 × 10−47 3.44 × 10−30 188 3.90 × 1025

CO 4.6528 × 10−26 1.4478 × 10−46 4.07 × 10−31 82 8.95 × 1025

This paper has the following structure: In Sec. II, we
elaborate why the Boltzmann collision integral (which does
not describe liquids) can in principle be used to calculate the
condensation temperature of a gas. In Sec. II we formulate the
problem in terms of the multiparticle density matrix, and in
Sec. III derive a Boltzmann-Vlasov kinetic equation for the
singlet density matrix. In Sec. IV we estimate the terms in the
equation derived and show that the characteristic period of
the molecules’ rotation is much shorter than the time scales of
the other effects, which enables us to simplify our model by
averaging it over rotation. In Secs. V and VI, the collisionless
and full versions of the model are explored, respectively. In
Sec. VII, we discuss the shortcomings of the model proposed
and ways to improve it.

II. FORMULATION

Consider a gas with temperature T and concentration c,
consisting of molecules with mass m and dipole moment d.
The molecules are approximated by solid rotators and assumed
to be diatomic, so one of their three principal momenta of
inertia is small, whereas the other two are equal and denoted
by I . Note that the rotational energy levels of such molecules
are given by

EL = h̄2

2I
L(L + 1), (1)

where L � 0 is the level number [17].
Note that the standard approach to kinetics (used in this

paper) can describe only the onset of condensation, when the
gas is still rarefied—which should be sufficient for calculating
the condensation temperature. This aspect of our model, as
well as ways of describing the whole phase transition, will be
discussed later in Sec. VII.

A. The governing parameters

The kinetics of a diatomic gas is governed by three
nondimensional parameters,

γ = IkBT

h̄2 , ε = cd2I

ε0h̄
2 , α = cI 3/2

m3/2
, (2)

where ε0 is the vacuum permittivity and h̄ is the Planck
constant. The physical meaning of parameters (2) is as follows:

(1) γ is the ratio of the molecule’s thermal energy to
the energy gap between the zeroth and first rotational levels
[according to Eq. (1), this gap is h̄2/I ].

(2) ε is the ratio of the electric energy to h̄2/I (note that
the collective electric field is ∼ cd/ε0; hence, the energy of a
dipole is ∼ cd2/ε0).

(3) α can be interpreted in two different ways. First,
observe that R ∼ (I/m)1/2 is the molecule’s size; hence, α

can be interpreted as the volume share of the molecules.
Note also that the kinetic approach is valid only if α � 1.
Second, observe that the mean free path is ∼ 1/cR2 and the
translational velocity and angular velocity are ∼ (kBT /m)1/2

and ∼ (kBT /I )1/2, respectively; given these estimates, α

represents the ratio of the frequency of collisions to that of
molecules’ rotation.

To clarify the relative importance of the effects involved, we
have estimated γ , ε, and α for HCl and CO. The parameters of
their respective molecules and their condensation temperatures
and concentrations (both at a pressure of 1 atm ) are presented
in Table I.

For these values, Eqs. (2) yield

γHCl ≈ 6.2, γCO ≈ 14.7, (3)

εHCl ≈ 0.12, εCO ≈ 2.2 × 10−2, (4)

αHCl ≈ 3.6 × 10−7, αCO ≈ 1.6 × 10−5. (5)

Estimate (3) and Eqs. (1)–(2) show that the rotational level
approximately matching the condensation temperature is
LHCl = 3 and LCO = 5. These values are not large enough to
justify the classical treatment of rotation. Estimates (4), in turn,
suggest that the rotation of the molecules is more important
than their dipole-dipole interaction. Finally, estimates (5) can
be viewed as validation of the kinetic approach (as α � 1),
whereas the fact that α � ε suggests that collisions are less
important than the van der Waals forces.

B. The multiparticle governing equations

Consider N molecules enclosed in a domain of volume V .
The position of the nth molecule is determined by its Cartesian
position vector rn. Its orientation, in turn, is determined by
the set χn = θn,φn, where θn ∈ [0,π ] is the angle between
the molecule’s axis and the z axis and φn ∈ [0,2π ] is the
angle between the projection of the molecule’s axis onto
the (x,y) plane and the x axis. To characterize the state of
the whole system, we shall use the density matrix in the
coordinate representation, ρ(r′,χ ′,r′′,χ ′′,t), where t is the
time, and

r = r1,r2, . . . ,rN, χ = χ1,χ2, . . . ,χN .

We assume the following normalizing condition:∫∫
ρ(r,χ,r,χ,t) dr dχ = NN, (6)
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where the integration is implied to be over the whole domain
of r and χ , and

dr =
∏
n

drn, dχ =
∏
n

dχn, dχn = sin θndθndφn.

As follows from the multiparticle Schrödinger equation,
ρ(r′,χ ′,r′′,χ ′′,t) satisfies

h̄
∂ρ(r′,χ ′,r′′,χ ′′,t)

∂t

+ i[Ĥ (r′,χ ′) − Ĥ (r′′,χ ′′)]ρ(r′,χ ′,r′′,χ ′′,t) = 0. (7)

The Hamiltonian in Eq. (7) is given by

Ĥ (r,χ ) =
∑

n

K̂n + P, (8)

where the kinetic energy of the nth molecule is

K̂n = − h̄2

2m
∇2

n

− h̄2

2I

(
1

sin θn

∂

∂θn

sin θn

∂

∂θn

+ 1

sin2 θn

∂2

∂φ2
n

)
, (9)

and ∇2
n is the Laplace operator with respect to rn.

To introduce the potential energy P , observe that the dipole
moment of the nth molecule is

dn = d

⎡
⎣sin θn cos φn

sin θn sin φn

cos θn

⎤
⎦ (10)

and let

P = 1

2

′∑
n′,n′′

{
U (rn′ − rn′′ ,χn′ ,χn′′ ) − 1

4πε0

×
[

3(rn′′ − rn′ ) · dn′ (rn′′ − rn′ ) · dn′′

|rn′′ − rn′ |5 − dn′ · dn′′

|rn′′ − rn′ |3
]}

,

(11)

where U (rn′ − rn′′ ,χn′ ,χn′′ ) is a short-range repulsive pairwise
potential (undetermined at this stage), the term in the square
brackets describes the dipole-dipole interaction between the
n′th and n′′th molecules, and the prime near the summation
sign implies that the term with n′ = n′′ is skipped. Unlike the
case of symmetric molecules, U depends on rn′ − rn′′ and not
just on |rn′ − rn′′ | due to the importance of the direction of
rn′ − rn′′ relative to those of the molecules’ axes.

Observe that the dipole-dipole part of potential (11) may
diverge in the limit of large systems,

N → ∞, V → ∞, N/V = const.

Indeed, since the expression in the square brackets in (11)
decays ∼ |rn′′ − rn′ |−3 as |rn′′ − rn′ | → ∞, the contribution of
remotely located dipoles to the potential energy at any given rn

may diverge (depending on how the remotely located dipoles
are oriented in space). This effectively means that the dipole-
dipole interaction is long range and, thus, cannot be treated
the same way as the short-range potential U (the latter will be
accounted for by the collision integral).

In this paper, the dipole-dipole interaction is described
under the approximation of self-consistent field, used previ-
ously to avoid a similar divergence in ionized plasma (see
Refs. [15,16]). It consists in introducing an electric field
E(rc,t) generated collectively by dipoles at a point rc, and
replacing the potential energy (11) with

P = 1

2

′∑
n′,n′′U (rn′ − rn′′ ,χn′ ,χn′′ ) −

∑
n

E(rn,t) · dn. (12)

Assuming that the thermal motion of the molecules is
nonrelativistic, one can describe the electric field by

E(rc,t) = −∇c�(rc,t), (13)

∇2�(rc,t) = 1

ε0
∇c · D(rc,t), (14)

D(rc,t) = N−N
∑

n

∫∫
dnρ(rn,χn,rn,χn,t)

× δ(rn − rc) dr dχ, (15)

where �(rc,t) and D(rc,t) are the collective potential and
density of the dipole moment.

Given a suitable initial condition [satisfying normalization
(6)], Eqs. (7)–(10) and (12)–(15) fully determine the evolution
of the density matrix.

III. THE KINETIC EQUATION

A. The derivation

Following the usual routine of deriving a kinetic equation
from the corresponding dynamic one (e.g., [21]), we introduce
the singlet density matrix ρ(1)(r′

1,χ
′
1,r

′′
1,χ

′′
1 ,t) by setting in the

full density matrix

r′
n = r′′

n = rn, χ ′
n = χ ′′

n = χn if n = 2 . . . N,

and integrating it with respect to the variables without primes.
Carrying out the same procedure with Eq. (7) and taking into
account (8)–(9) and (12), one obtains

h̄
∂ρ(1)(r′

1,χ
′
1,r

′′
1,χ

′′
1 ,t)

∂t
+ i(K̂ ′

1 − K̂ ′′
1 )ρ(1)(r′

1,χ
′
1,r

′′
1,χ

′′
1 ,t)

− i[E(r′
1,t) · d1(χ ′

1) − E(r′′
1,t) · d1(χ ′′

1 )]ρ(1)(r′
1,χ

′
1,r

′′
1,χ

′′
1 ,t)

= St(r′
1,χ

′
1,r

′′
1,χ

′′
1 ,t), (16)

where the collision integral St(r′
1,χ

′
1,r

′′
1,χ

′′
1 ,t) involves the

short-range intermolecular potential U and the pair density
matrix (to be discussed later). Equation (15), in turn, becomes

D(rc,t) =
∫

d1(χ1) ρ(1)(rc,χ1,rc,χ1,t) dχ1, (17)

whereas Eqs. (13)–(14) remain the same as before.
It is convenient to rewrite Eq. (16) in the representation of

the eigenfunctions of the rotational part of K̂1 [i.e., the second
term of expression (9)]. Omitting the subscript 1, one can write
these eigenfunctions in the form [17]

AJ (θ,φ) = AJ (θ )
eiMφ

(2π )1/2 . (18)
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Here J = L,M is the set including the level number L � 0
and the magnetic number M ∈ [−L,L], and

AJ (θ ) =
[

(2L + 1)(L − M)!

2(L + M)!

]1/2

P M
L (cos θ ), (19)

where P M
L is the associated Legendre function. Note that

1

2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ

)
AJ (χ )

= −L(L + 1)

2
AJ (χ ), (20)∫

AJ ′ (χ ) A∗
J ′′ (χ ) dχ = δJ ′,J ′′ , (21)

where δJ ′,J ′′ is the product of two Kronecker deltas, δL′,L′′ and
δM ′,M ′′ .

Now, let

ρ(1)(r′
1,χ

′
1,r

′′
1,χ

′′
1 ,t) =

∑
J ′

1,J
′′
1

ρ
(1)
J ′

1,J
′′
1
(r′

1,r
′′
1,t)AJ ′

1
(χ ′

1) A∗
J ′′

1
(χ ′′

1 ),

(22)

where ρ
(1)
J ′

1,J
′′
1
(r′

1,r
′′
1,t) will be referred to as the A representation

of the singlet density matrix.
Taking into account Eqs. (9)–(10) and (20)–(22), one can

rewrite Eqs. (16)–(17) in the form (the superscript (1) omitted)

h̄
∂ρJ ′

1,J
′′
1
(r′

1,r
′′
1,t)

∂t
− i

{
h̄2

2m

(∇′2
1 − ∇′′2

1

) − h̄2

2I
[L′

1(L′
1 + 1) − L′′

1(L′′
1 + 1)]

}
ρJ ′

1,J
′′
1
(r′

1,r
′′
1,t)

− i
∑
J1

[E(r′
1,t) · dJ1,J

′
1
ρJ1,J

′′
1
(r′

1,r
′′
1,t) − E(r′′

1,t) · dJ ′′
1 ,J1 ρJ ′

1,J1 (r′
1,r

′′
1,t)] = StJ ′

1,J
′′
1
(r′

1,r
′′
1,t), (23)

D(rc,t) =
∑
J ′

1,J
′′
1

dJ ′
1,J

′′
1
ρJ ′

1,J
′′
1
(rc,rc,t), (24)

where StJ ′
1,J

′′
1
(r′

1,r
′′
1,t) is the A representation of the collision integral, and

dJ ′
1,J

′′
1

=
∫

d1(χ1) AJ ′
1
(χ1) A∗

J ′′
1
(χ1) dχ1 (25)

is the A representation of the dipole moment. Recalling (10) and (18)–(19), one can reduce (25) to

dJ ′
1,J

′′
1

= d

⎡
⎢⎣

1
2

(
δM ′

1,M
′′
1 +1 + δM ′

1,M
′′
1 −1

)
SJ ′

1,J
′′
1

1
2 i

(
δM ′

1,M
′′
1 +1 − δM ′

1,M
′′
1 −1

)
SJ ′

1,J
′′
1

δM ′
1,M

′′
1
CJ ′

1,J
′′
1

⎤
⎥⎦, (26)

where

SJ ′
1,J

′′
1

=
∫ π

0
sin θ AJ ′

1
(θ ) AJ ′′

1
(θ ) sin θ dθ, (27)

CJ ′
1,J

′′
1

=
∫ π

0
cos θ AJ ′

1
(θ ) AJ ′′

1
(θ ) sin θ dθ. (28)

Since the equations we shall work with are fairly bulky, it is important to use concise, yet systematic, notation. As always in
kinetic theory, the collision integral is “local”; thus, we shall replace r1 with r (as there will be no r2, r3, etc.). We still retain p1

and J1, as needed to distinguish the two molecules participating in a binary collision in the collision integral. However, we shall
replace the dummy subscripts J ′

1 and J ′′
1 in Eq. (24) with J ′ and J ′′.

Next, we introduce the Wigner distribution

fJ ′
1,J

′′
1
(p1,r,t) = 1

(2πh̄)3

∫
ρJ ′

1,J
′′
1
(r + 1

2 r1,r − 1

2
r1,t) exp

(
− ip1 · r1

h̄

)
dr1,

and rewrite Eqs. (23)–(24) in the form

h̄

(
∂

∂t
+ 1

m
p1 · ∇

)
fJ ′

1,J
′′
1
(p1,r,t) + ih̄2

2I
[L′

1(L′
1 + 1) − L′′

1(L′′
1 + 1)]fJ ′

1,J
′′
1
(p1,r,t)

− i

∫ ∑
J1

E(pc,t) ·
[

dJ1,J
′
1
fJ1,J

′′
1

(
p1 + 1

2
pc,r,t

)
− dJ ′′

1 ,J1 fJ ′
1,J1

(
p1 − 1

2
pc,r,t

)]
exp

(
ipc · r

h̄

)
dpc = StJ ′

1,J
′′
1
(p1,r,t), (29)

D(rc,t) =
∫ ∑

J ′,J ′′
dJ ′,J ′′ fJ ′,J ′′ (p1,rc,t) dp1, (30)
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where

E(pc,t) = (2πh̄)−3
∫

E(rc,t) exp

(
− ipc · rc

h̄

)
drc

is the Fourier transform of the collective electric field. Using Eqs. (13)–(14) and (30), one obtains

E(pc,t) = −(2πh̄)−3 pc

ε0|pc|2
∫∫ ∑

J ′,J ′′
pc · dJ ′,J ′′fJ ′,J ′′ (p1,rc,t) exp

(
− ipc · rc

h̄

)
dp1drc. (31)

Subject to a specific expression for the collision integral StJ ′
1,J

′′
1
(p1,r,t), Eqs. (29) and (31) determine the evolution of fJ ′

1,J
′′
1
(p1,r,t)

and E(pc,t).
When presenting the expression for StJ ′

1,J
′′
1
(p1,r,t), we shall take advantage of the results of Ref. [21] for electrically neutral

molecules, obtained under the assumption that the density matrix is diagonal in L (in our problem, the nondiagonal terms are
physically important and, thus, should be retained). Despite the two models being different, the two derivations are similar, so
we present here the final result only (and refer detail-minded readers to Ref. [21]):

StJ ′
1,J

′′
1
(p1,r,t)= i(2πh̄)3

∫∫∫ ∑
J2,J

′
i1,J

′
i2,J

′′
i1,J

′′
i2

T
pi1,pi2,J

′
i1,J

′
i2

p1,p2,J
′
1,J2

T
pi1,pi2,J

′′
i1,J

′′
i2∗

p1,p2,J
′′
1 ,J2

fJ ′
i1,J

′′
i1

(pi1,r,t) fJ ′
i2,J

′′
i2

(pi2,r,t)δ(p1 + p2 − pi1 − pi2)

×
[

1

EJ ′
i1,J

′
i2

(pi1,pi2) − EJ ′
1,J2 (p1,p2) + i0

− 1

EJ ′′
i1,J

′′
i2

(pi1,pi2) − EJ ′′
1 ,J2 (p1,p2) − i0

]
dpi1dpi2dp2

− i(2πh̄)3
∫ ∑

J2,Ji1,Ji2

[
T

p1,p2,Ji1,Ji2

p1,p2,J
′
1,J2

fJi1,J
′′
1
(p1,r,t) fJi2,J2 (p2,r,t) − T

p1,p2,Ji1,Ji2∗
p1,p2,J

′′
1 ,J2

fJ ′
1,Ji1 (p1,r,t) fJ2,Ji2 (p2,r,t)

]
dp2.

(32)

Here δ(p) is the Dirac delta function, the so-called T matrix T
pi1,pi2,Ji1,Ji2

p1,p2,J1,J2
describes stationary scattering of two particles which

are initially in pure states (pi1,Ji1) and (pi2,Ji2), and

EJ1,J2 (p1,p2) = 1

2m

(|p1|2 + |p2|2
) + h̄2

2I
[L1(L1 + 1) + L2(L2 + 1)] (33)

is the combined energy of the particles. The T matrix satisfies the rotation-modified version of the Lippmann-Schwinger equation,

T
pi1,pi2,Ji1,Ji2

p1,p2,J1,J2
= UJi1,J1,Ji2,J2 (p1 − pi1) +

∫∫ ∑
J ′

1,J
′
2

UJ ′
1,J1,J

′
2,J2 (p1 − p′

1)
T

pi1,pi2,Ji1,Ji2

p′
1,p

′
2,J

′
1,J

′
2

δ(p′
1 + p′

2 − p1 − p2)

EJi1,Ji2 (pi1,pi2) − EJ ′
1,J

′
2
(p′

1,p
′
2) + i0

dp′
1dp′

2, (34)

where it is implied that p1 + p2 = pi1 + pi2, and

UJ ′
1,J

′′
1 ,J ′

2,J
′′
2
(p) = (2πh̄)−3

∫ [∫∫
U (r,χ1,χ2) AJ ′

1
(χ1) A∗

J ′′
1
(χ1) AJ ′

2
(χ2) A∗

J ′′
2
(χ2) dχ1dχ2

]
exp

(
− ip · r

h̄

)
dr (35)

is the Fourier transform of the A representation of the short-range potential U . In what follows, we shall need a rotation-modified
version of the so-called optical theorem,

T
p1,p2,J

′′
1 ,J ′′

2

p1,p2,J
′
1,J

′
2

− T
p1,p2,J

′
1,J

′
2∗

p1,p2,J
′′
1 ,J ′′

2
=

∑
Ji1,Ji2

∫∫ [
1

EJi1,Ji2 (pi1,pi2) − EJ ′
1,J

′
2
(p1,p2) + i0

− 1

EJi1,Ji2 (pi1,pi2) − EJ ′′
1 ,J ′′

2
(p1,p2) − i0

]

× T
pi1,pi2,Ji1,Ji2

p1,p2,J
′
1,J

′
2

T
pi1,pi2,Ji1,Ji2∗

p1,p2,J
′′
1 ,J ′′

2
δ(p1 + p2 − pi1 − pi2) dpi1dpi2. (36)

Equation (36) follows from the relationship between the T
matrix and S matrix,

S
pi1,pi2,Ji1,Ji2
p1,p2,J1,J2

= δJ1,Ji1 δJ2,Ji2 δ(p1 − pi1) δ(p2 − pi2)

+ T
pi1,pi2,Ji1,Ji2

p1,p2,J1,J2
δ(p1 + p2 − pi1 − pi2)

Epi1,pi2,Ji1,Ji2 − Ep1,p2,J1,J2 + i0
,

and the unitarity of the latter.
For nonrotating particles, more information on the

Lippmann-Schwinger equation, S matrix, and optical theorem
can be found in Refs. [22,23].

B. Discussion

(1) To understand the structure of the kinetic Eq. (29), note
that the gas molecules are in mixed states with respect to
rotation; i.e., all of their levels are excited. Even though the
oscillations of the levels are random, there is a certain degree
of correlation between them. Accordingly, the distribution
fJ ′

1,J
′′
1
(p1,r,t) represents the correlation coefficient for levels

J ′
1 and J ′′

1 of a particle with momentum p1, located at a time t

at a point r.
(2) Observe that the first term in the collision integral (32) is

quadratic in the T matrix, whereas the second and third terms
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are linear. The former describes the following type of binary
collisions:

pi1

∼∼∼∼

p1

pi2 p2,

where p1 is the momentum of the molecules whose distribution
plays the role of the unknown in the kinetic Eq. (29). The
second and third terms jointly describe binary collisions of the
kind

p1

∼∼∼∼

p2

⇒ two molecules
with unspecified momenta

The latter kind of collision makes the molecules migrate from
the region near the point p1 to other regions of the momentum
space, whereas the former kind makes them migrate in the
opposite direction. Note that, unlike the collision integral for
isotropic scattering, expression (32) cannot be written in a
form where the two terms appear on equal bases (both linear
or both quadratic in the T matrix).

C. Properties of SJ ′,J ′′ and CJ ′,J ′′

The coefficients SJ ′,J ′′ and CJ ′,J ′′ , defined by Eqs. (27)–(28)
and (19), play an important role in the kinetics of diatomic
gases with dipolar molecules; in particular, they appear in
expression (26) for the A representation of the dipole moment.
In what follows, we shall need certain identities involving
SJ ′,J ′′ and CJ ′,J ′′ .

First, one can prove (see Appendix A) that

δM ′,M ′′ CJ ′,J ′′ = 0 if L′ �= L′′ ± 1, (37)

δM ′,M ′′+1 SJ ′,J ′′ = 0 if L′ �= L′′ ± 1. (38)

Note that, due to the symmetry of SJ ′,J ′′ with the respect to the
interchange J ′ ↔ J ′′, Eq. (38) entails

δM ′,M ′′−1 SJ ′,J ′′ = 0 if L′ �= L′′ ± 1. (39)

Physically, identities (37)–(39) imply that the dipole moment
of a molecule is due to correlations between neighboring
rotational levels.

Second, we have established that

1

4

∑
M ′,M ′′

(δM ′,M ′′+1 + δM ′,M ′′−1)S2
J ′,J ′′ =

∑
M ′,M ′′

δM ′,M ′′C2
J ′,J ′′ .

(40)

∑
M ′,M ′′

δM ′,M ′′C2
J ′,J ′′ = 1

6
(L′′δL′′,L′+1 + L′δL′,L′′+1). (41)

Unfortunately, these identities do not have a simple proof, so
we could only verify them numerically (for L � 500).

Admittedly, even though we feel that identities (40)–(41)
have been ascertained beyond reasonable doubt, we would
still prefer to have them proved mathematically. This difficult
task, however, will be worth the effort only once all the
physical aspects of the proposed kinetic equation have been
explored.

IV. AVERAGING OVER ROTATION

A. Preliminary estimates

Note that the second term on the left-hand side of Eq. (29)
describes the kinematic effect of rotation, whereas the third one
describes the force exerted on the molecules by their collective
field. Together with the collisions, these are the three effects
governing the gas.

As shown in Sec. II,

collective field

rotation
∼ ε,

collisions

rotation
∼ α,

where ε and α are given by (2). Since estimates (4) and (5)
suggest that ε,α � 1, the effect of rotation dominates the other
two effects.

B. The analysis

Given the domination of rotation in Eq. (29), let

fJ ′
1,J

′′
1
(p1,r,t) = f

(new)
J ′

1,J
′′
1

(p1,r,t) exp

(
− ih̄

2I
�J ′

1,J
′′
1
t

)
, (42)

StJ ′
1,J

′′
1
(p1,r,t) = St(new)

J ′
1,J

′′
1
(p1,r,t) exp

(
− ih̄

2I
�J ′

1,J
′′
1
t

)
, (43)

E(pc,t) =
∑
J ′,J ′′

E(new)
J ′,J ′′ (pc,t) exp

(
− ih̄

2I
�J ′,J ′′ t

)
, (44)

where

�J ′
1,J

′′
1

= L′
1(L′

1 + 1) − L′′
1(L′′

1 + 1). (45)

The exponential oscillatory factors in Eqs. (42)–(44) describe
(fast) rotation of the molecules, whereas the dependence
of the (new) functions on t is slow [∼ O(ε−1,α−1)]. Sub-
stituting (42)–(44) into (29), (31)–(32) and averaging these
over the exponential oscillations, one obtains (subscript (new)

omitted)

h̄

(
∂

∂t
+ 1

m
p1 · ∇

)
fJ ′

1,J
′′
1
(p1,r,t) − i

∫ ∑
J1,J ′,J ′′

EJ ′,J ′′ (pc,t) · [
δ�J ′ ,J ′′ +�J1 ,J ′′

1
,�J ′

1 ,J ′′
1

dJ1,J
′
1
fJ1,J

′′
1
(p1 + 1

2 pc,r,t)

− δ�J ′ ,J ′′ +�J ′
1 ,J1

, �J ′
1,J ′′

1
dJ ′′

1 ,J1 fJ ′
1,J1 (p1 − 1

2 pc,r,t)
]

exp

(
ipc · r

h̄

)
dpc = StJ ′

1,J
′′
1
(p1,r,t), (46)

EJ ′,J ′′ (pc,t) = − 1

(2πh̄)3

pc

ε0|pc|2
∫∫

pc · dJ ′,J ′′ fJ ′,J ′′ (p1,rc,t) exp

(
− ipc · rc

h̄

)
dp1drc, (47)
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StJ ′
1,J

′′
1
(p1,r,t) = i(2πh̄)3

∫∫ ∫ ∑
J2,J

′
i1,J

′
i2,J

′′
i1,J

′′
i2

T
pi1,pi2,J

′
i1,J

′
i2

p1,p2,J
′
1,J2

T
pi1,pi2,J

′′
i1,J

′′
i2∗

p1,p2,J
′′
1 ,J2

× δ�J ′
i1 ,J ′′

i1
+�J ′

i2 ,J ′′
i2

, �J ′
1,J ′′

1
fJ ′

i1,J
′′
i1

(pi1,r,t) fJ ′
i2,J

′′
i2

(pi2,r,t) δ(p1 + p2 − pi1 − pi2)

×
[

1

EJ ′
i1,J

′
i2

(pi1,pi2) − EJ ′
1,J2 (p1,p2) + i0

− 1

EJ ′′
i1,J

′′
i2

(pi1,pi2) − EJ ′′
1 ,J2 (p1,p2) − i0

]
dpi1dpi2dp2

− i(2πh̄)3
∫ ∑

J2,Ji1,Ji2

[
T

p1,p2,Ji1,Ji2

p1,p2,J
′
1,J2

δ�Ji1 ,J ′′
1
+�Ji2 ,J2 , �J ′

1,J ′′
1
fJi1,J

′′
1
(p1,r,t) fJi2,J2 (p2,r,t)

− T
p1,p2,Ji1,Ji2∗

p1,p2,J
′′
1 ,J2

δ�J ′
1,Ji1

+�J2 ,Ji2 , �J ′
1 ,J ′′

1
fJ ′

1,Ji1 (p1,r,t) fJ2,Ji2 (p2,r,t)
]
dp2, (48)

where the underlined terms appeared due to the averaging. To further simplify Eq. (48), observe that, as follows from (45),

δ�Ji1 ,J ′′
1
+�Ji2 ,J2 , �J ′

1,J ′′
1

= δ�Ji1 ,J ′
1
,�J2 ,Ji2

, δ�J ′
1,Ji1

+�J2 ,Ji2 , �J ′
1 ,J ′′

1
= δ�Ji1 ,J ′′

1
,�J2 ,Ji2

,

if �J ′
i1,J

′′
i1

+ �J ′
i2,J

′′
i2

= �J ′
1,J

′′
1
, then EJ ′

i1,J
′
i2

(pi1,pi2) − EJ ′
1,J2 (p1,p2) = EJ ′′

i1,J
′′
i2

(pi1,pi2) − EJ ′′
1 ,J2 (p1,p2).

Rearranging (48) and taking into account the identity

1

a + i0
− 1

a − i0
= −2πi δ(a), (49)

one obtains

StJ ′
1,J

′′
1
(p1,r,t) = π (2πh̄)3

∫∫ ∫ ∑
J2,J

′
i1,J

′
i2,J

′′
i1,J

′′
i2

T
pi1,pi2,J

′
i1,J

′
i2

p1,p2,J
′
1,J2

T
pi1,pi2,J

′′
i1,J

′′
i2∗

p1,p2,J
′′
1 ,J2

δ�J ′
i1 ,J ′′

i1
+�J ′

i2 ,J ′′
i2

, �J ′
1,J ′′

1
fJ ′

i1,J
′′
i1

(pi1,r,t) fJ ′
i2,J

′′
i2

(pi2,r,t)

× δ(p1 + p2 − pi1 − pi2)
[
δ(Epi1,pi2,J

′′
i1,J

′′
i2

− Ep1,p2,J
′′
1 ,J2 ) + δ(Epi1,pi2,J

′
i1,J

′
i2

− Ep1,p2,J
′
1,J2 )

]
dpi1dpi2dp2

−i(2πh̄)3
∫ ∑

J2,Ji1,Ji2

[
T

p1,p2,Ji1,Ji2

p1,p2,J
′
1,J2

δ�Ji1 ,J ′
1
, �J2 ,Ji2

fJi1,J
′′
1
(p1,r,t) fJi2,J2 (p2,r,t)

−T
p1,p2,Ji1,Ji2∗

p1,p2,J
′′
1 ,J2

δ�Ji1 ,J ′′
1
,�J2 ,Ji2

fJ ′
1,Ji1 (p1,r,t) fJ2,Ji2 (p2,r,t)

]
dp2. (50)

To simplify Eq. (46), observe that

δ�J ′ ,J ′′ +�J1 ,J ′′
1
, �J ′

1,J ′′
1

�= 0 only if L′(L′ + 1
) + L1(L1 + 1) = L′′(L′′ + 1

) + L′
1

(
L′

1 + 1
)
, (51)

and recall that dJ1,J
′
1

involves SJ1,J
′
1

and CJ1,J
′
1
; hence, given (37)–(39),

dJ1,J
′
1
�= 0 only if L1 = L′

1 ± 1. (52)

Combining (51) and (52), one can show that

δ�J ′ ,J ′′ +�J1 ,J ′′
1
, �J ′

1,J ′′
1

dJ1,J
′
1
= δL1,L′′ δL′,L′

1
dJ1,J

′
1
.

Rearranging in a similar fashion δ�J ′,J ′′ +�J ′
1 ,J1

,�J ′
1 ,J ′′

1
dJ ′′

1 ,J1 , one can rewrite (46) in the form

h̄

(
∂

∂t
+ 1

m
p1 · ∇

)
fJ ′

1,J
′′
1
(p1,r,t) − i

∫ ∑
J1,J ′,J ′′

EJ ′,J ′′ (pc,t) ·
[
δL1,L′′ δL′,L′

1
dJ1,J

′
1
fJ1,J

′′
1

(
p1 + 1

2
pc,r,t

)

−δL1,L′ δL′′,L′′
1

dJ ′′
1 ,J1 fJ ′

1,J1

(
p1 − 1

2
pc,r,t

)]
exp

(
ipc · r

h̄

)
dpc = StJ ′

1,J
′′
1
(p1,r,t). (53)

Equations (53), (47), and (50) fully determine the evolution of fJ ′
1,J

′′
1
(p1,r,t) and EJ ′,J ′′ (pc,t).

C. Discussion

(1) The Kronecker deltas which have appeared in the
governing equations due to the averaging eliminate the
“nonsynchronized” exchanges between the rotational levels of
the molecules during collisions, and when they interact with

the collective field. The fact that nonsynchronized interactions
are negligible is well known in the theory of weakly nonlinear
waves (e.g., Refs. [24–26]).

(2) The governing equations (53), (47), (50) admit a spa-
tially homogeneous, time-independent solution corresponding
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to the state of thermodynamic equilibrium. To find it, assume
that the density matrix is diagonal in J , with the diagonal terms
being independent of M , i.e.,

fJ ′
1,J

′′
1
(p1,r,t) = δJ ′

1,J
′′
1
f̄L′

1
(p1). (54)

Substituting (54) into expression (47) for the electric field and
recalling condition (52), one obtains

EJ ′,J ′′ (pc,t) = 0.

Generally, a gas described by a diagonal density matrix has
zero macroscopic dipole moment and, thus, cannot generate
an electric field [this would still be the case even if f , given
by (54), were not spatially uniform].

Substituting (54) into the collision integral (50), one can
rearrange it using the optical theorem (36) and identity (49)
and then show that the kinetic equation (53) (with zero E) is
satisfied by

f̄L(p) = c

(2πmkBT )3/2B(γ )

× exp

[
−m−1|p|2 + I−1h̄2L(L + 1)

2kBT

]
. (55)

Here c and T are the concentration of molecules and
temperature, γ is given by (2), and

B(γ ) =
∑

L

(2L + 1) exp

[
−L(L + 1)

2γ

]
(56)

is a normalizing factor, such that∫ ∑
J

f̄L(p) dp = c.

Solution (54), (55)–(56) will be referred to as the Boltzmann
equilibrium distribution.

(3) To compare our kinetic equation to that of Ref. [21], let
d = 0 (i.e., consider electrically neutral molecules) and set

fJ ′
1,J

′′
1
(p1,r,t) = δL′

1,L
′′
1
fL′

1,M
′
1,M

′′
1
(p1,r,t); (57)

i.e., assume that the density matrix is diagonal in L (but not in
M). Given ansatz (57), Eqs. (53) and (50) reduce to Eq. (69)
of Ref. [21].

V. CAN THE COLLISION INTEGRAL BE OMITTED?

Recall that, in the kinetic equation (53), the collision
integral and collective term are O(α) and O(ε), respectively.
Given that α � ε, one would be tempted to neglect the
collision integral altogether.

In what follows, we shall use the collisionless version of the
kinetic equation (53) to examine the Boltzmann equilibrium
solution for stability. If an instability is found, it would imply
that condensation can occur without collisions.

The calculation outlined above and presented below will
also highlight the differences between the classical and
quantum models of condensation, as well as those between
the averaged and nonaveraged kinetic equations. To make the
latter aspect more instructive, we start from the nonaveraged
equations (29) and (31), and carry out the averaging at the very
end of the calculation.

A. The analysis

Seek a solution in the form

fJ ′
1,J

′′
1
(p1,r,t) = δJ ′

1,J
′′
1
f̄L′

1
(p1) + f̃J ′

1,J
′′
1
(p1,r,t), (58)

where the Boltzmann distribution f̄L′
1
(p1) is given by (55)–(56)

and f̃J ′
1,J

′′
1
(p1,r,t) is a small perturbation. Substituting (58) into

(29), omitting the collision integral, linearizing the resulting
equation, and replacing p1 with p, we obtain

h̄

(
∂

∂t
+ 1

m
p · ∇

)
f̃J ′

1,J
′′
1
(p,r,t) + ih̄2

2I
�J ′

1,J
′′
2
f̃J ′

1,J
′′
1
(p,r,t)

= i

∫ ∑
J1

Ẽ(pc,t) ·
[

dJ1,J
′
1
δJ1,J

′′
1
f̄L′′

1

(
p + 1

2
pc

)
− dJ ′′

1 ,J1 δJ ′
1,J1 f̄L′

1

(
p − 1

2
pc

)]
exp

(
ipc · r

h̄

)
dpc, (59)

where

Ẽ(pc,t) = −(2πh̄)−3 pc

ε0|pc|2
∫∫ ∑

J ′,J ′′
pc · dJ ′,J ′′ f̃J ′,J ′′ (p,rc,t) exp

(
− ipc · rc

h̄

)
dp drc, (60)

and dJ ′,J ′′ and �J ′
1,J

′′
2

are given by Eqs. (26) and (45), respectively. Let the dependence of the solution on r and t be harmonic.
For Ẽ(pc,t)—which is the Fourier transform of a real function—this implies

Ẽ(pc,t) = Ẽ0[e−iωt δ(pc − h̄k) + eiωt δ(pc + h̄k)], (61)

where ω and k are the disturbance’s frequency and wave number, and Ẽ0 is an undetermined vector constant. Substitution of (61)
into (59) yields

f̃J ′
1,J

′′
1
(p,r,t) = Ẽ0 · dJ ′′

1 ,J ′
1

h̄

[
f̄L′′

1

(
p − 1

2 h̄k
) − f̄L′

1

(
p + 1

2 h̄k
)

1
m

k · p − ω + h̄
2I

�J ′
1,J

′′
1

ei(k·r−ωt) − f̄L′′
1

(
p − 1

2 h̄k
) − f̄L′

1

(
p + 1

2 h̄k
)

1
m

k · p − ω − h̄
2I

�J ′
1,J

′′
1

e−i(k·r−ωt)

]
. (62)

Substituting this expression and (61) into Eq. (60), one obtains

Ẽ0 = k

ε0|k|2
∫ ∑

J ′,J ′′

Ẽ0 · dJ ′′,J ′ k · dJ ′,J ′′

1
m

k · p − ω + h̄
2I

�J ′,J ′′

[
f̄L′

(
p − 1

2
h̄k

)
− f̄L′′

(
p + 1

2
h̄k

)]
dp. (63)
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Evidently, Ẽ0 is parallel to k; hence, setting Ẽ0 = constant ×k in Eq. (63), taking into account definition (26) of dJ ′,J ′′ , and
letting k = (kx,ky,kz), one obtains

d2

ε0h̄|k|2
∫ ∑

J ′,J ′′

[
1

4

(
δM ′,M ′′+1 S2

J ′,J ′′ + δM ′,M ′′−1 S2
J ′,J ′′

)(
k2
x + k2

y

) + δM ′,M ′′C2
J ′,J ′′ k

2
z

]
f̄L′

(
p + 1

2 h̄k
) − f̄L′′

(
p − 1

2 h̄k
)

1
m

k · p − ω + h̄
2I

�L′,L′′
dp = 1,

(64)

where SJ ′,J ′′ and CJ ′,J ′′ are given by (27) and (28). The dispersion relation (64) determines ω. Note that, due to isotropy of the
gas, it may involve k only as |k| or k · p—which is indeed the case subject to identity (40). Substituting (40) and (41) into (64),
we obtain

d2

6ε0h̄

∫ ∑
L

L

[
f̄L−1

(
p − 1

2 h̄k
) − f̄L

(
p + 1

2 h̄k
)

ω − m−1k · p + I−1h̄L
− f̄L−1

(
p + 1

2 h̄k
) − f̄L

(
p − 1

2 h̄k
)

ω − m−1k · p − I−1h̄L

]
dp = 1. (65)

This is the simplest form of the dispersion relation which can
be obtained without averaging over rotation. However, it is
still unclear whether Eq. (65) has unstable solutions, i.e., such
that Im ω > 0.

B. The limit of fast rotation

It is convenient to nondimensionalize the dispersion relation
by letting

ω = h̄

I
ωnd, k = (mkBT )1/2

h̄
knd,

p = (mkBT )1/2pnd,

f̄L(p) = c

(mkBT )3/2 [f̄L(pnd )]nd .

Rewriting (65) and (55) in terms of the nondimensional
variables and omitting the subscript nd , one obtains

ε

6

∫ ∑
L

L

[
f̄L−1

(
p − 1

2 k
) − f̄L

(
p + 1

2 k
)

ω − γ k · p − L

− f̄L−1
(
p + 1

2 k
) − f̄L

(
p − 1

2 k
)

ω − γ k · p + L

]
dp = 1, (66)

f̄L(p) = 1

(2π )3/2B(γ )
exp

[
−|p|2

2
− L(L + 1)

2γ

]
, (67)

where ε and γ are defined by (2), and B(γ ) by (56).
According to our estimates, ε � 1, which appears to

suggest that the left-hand side of Eq. (66) is much smaller
than the right-hand side. The only way to “equalize” them is
to assume

ω = L0 + εω′, k = εk′, (68)

where L0 is a fixed integer and ω′,|k′| ∼ 1. This assumption
constitutes the approximation of fast rotation in application
to the dispersion equation (66). Physically, (68) states that the
disturbance is close to resonance with the L0th rotational level.

Substituting (68) into (66) and omitting small terms, one
obtains

L0

6

∫
f̄L0−1

(
p − 1

2 k′) − f̄L0

(
p + 1

2 k′)
ω′ − γ k′·p dp = 1. (69)

This dispersion relation could have also been derived, without
extra approximations, from the rotation-averaged equations
(53), (50).

Now the dispersion relation has become relatively simple,
and one can readily prove that it does not have complex
solutions (see Appendix B). We conclude that phase transitions
cannot occur in the model without collisions.

Equation (69) still has a real solution, but only for infinitely
long disturbances,

ω′ = L0 e−L2
0/2γ

3B(γ )
sinh

L0

2γ
for k′ = 0. (70)

Finally, if ω′ is real and k′ �= 0, the integral in the dispersion
relation (69) diverges when

ω′ − γ k′ · p = 0, (71)

making (69) meaningless. We conclude that the problem does
not have a discrete spectrum in this case.

It has a continuous spectrum, however, for which ω′
is not a solution of a dispersion equation, but a free pa-
rameter admitting arbitrary real values. The corresponding
disturbances—still described by (62)—have singularities at

1

m
k · p − ω ± h̄

2I
�J ′

1,J
′′
1

= 0,

which is the dimensional equivalent of (71). Since these
disturbances are stable (Im ω = 0), they cannot initiate a phase
transition and are of no interest to us.

C. The classical limit

The classical limit should be carried out by letting h̄ → 0.
At the same time, all quantum numbers should be assumed to
be large and replaced with continuous variables.

Changing accordingly

L → l = h̄L,
∑
L

→ 1

h̄

∫
dl,

one can deduce from (55)–(56) that

f̄L(p) ∼ h̄2F (l,p) as h̄ → 0,

where

F (l,p) ∼ c

2(kBT )5/2(2πm)3/2I
exp

(
−m−1|p|2 + I−1l2

2kBT

)
.

(72)
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In turn, the h̄ → 0 limit of Eq. (65) yields

d2

6ε0

∫∫
l

{
1

ω − m−1p · k + I−1l

[
−∂F (l,p)

∂l
− k · ∂F (l,p)

∂p

]

− 1

ω − m−1p · k −I−1l

[
∂F (l,p)

∂l
− k · ∂F (l,p)

∂p

]}
dl dp =1.

(73)

Next, nondimensionalize the problem by letting

ω =
(

kBT

I

)1/2

ωnd, k =
(

I

m

)1/2

knd, (74)

l = (IkBT )1/2lnd , p = (mkBT )1/2pnd,

F (l,p) = c

m3/2I 1/2(kBT )2 [F (lnd ,pnd )]nd,

and Eqs. (73) and (72) become (subscripts nd omitted)

μ

3

∫∫ [
−(ω − k · p)

∂F (l,p)

∂l
+ l k · ∂F (l,p)

∂p

]

× l

(ω − k · p)2 − l2
dl dp = 1, (75)

F (l,p) = 1

2(2π )3/2 exp

(
−|p|2 + l2

2

)
,

where

μ = cd2

ε0kBT
. (76)

It is instructive to estimate μ for the examples of HCl and CO:
substituting these gases’ parameters from Table I into (76),
one obtains

μHCl ≈ 2.0 × 10−2, μCO ≈ 1.5 × 10−3;

i.e., μ � 1.
Thus, the quantum and classical dispersion relations, (66)

and (75), share an important feature—namely, their left-hand
sides involve a small parameter. In the former case, one can
eliminate ε by assuming (68), i.e., a resonance between the
disturbance and one of the rotational levels. Such an option,
however, is not available in the latter case, due to the continuity
of the rotational variable l. We conclude that, since μ is small,
Eq. (73) does not have solutions.1

VI. THE EFFECT OF COLLISIONS

As we have seen in the previous section, the collision
integral cannot be neglected. It is still small, however, and
can be taken into account as a perturbation. It is relatively
easy to derive a collision-modified version of the quantum
dispersion relation (66), but it is much more difficult to analyze

1Observe that (74) implies that the wave number k is nondimen-
sionalized by the molecule’s size. Since the kinetic approach is valid
only for much larger scales, we can assume that k is small and, thus,
omit it from the dispersion equation (75). It can then be proved that
the resulting equation does not have a solution for any μ, regardless
of its value.

its solutions, due to the sheer size of the expression for St and
the fact that it involves the T matrix for which we do not have
an explicit expression.

Instead, one can use the variational approach, treating the
Boltzmann equilibrium distribution as the critical point of
the entropy functional and checking whether this point is a
maximum (stability) or a saddle (instability), for mass and
energy preserving disturbances. This argument proved to be
effective for the classical BGK-Vlasov model without rotation
[13], and it can also be used for the problem at hand, where
the mass and energy functionals are easy to derive, and the
entropy functional is the same as that proposed in Ref. [27] for
the case of quantum rotating molecules in an external field.2

In fact, the present case is much simpler than the one
examined in Ref. [13], and we do not even need the expression
for entropy of Ref. [27].

Regardless of the structure of the entropy functional,
instability is possible only if some disturbances can grow
without changing the energy of the base state. It turns out,
however, that no such disturbances exist in the problem at hand,
as they all increase the energy of the Boltzmann equilibrium
distribution—making it, as a result, stable.

To show this, introduce the energy functional as a sum of
the kinetic (thermal) energy EK , that of the electric field, EE ,
and that of the dipole-field interaction, ED ,

E = EK + EE + ED. (77)

Since we are interested in the change of E due to a disturbance,
we subtract the energy of the base state from the net energy
and thus obtain

EK =
∫∫ ∑

J,J

[
1

2m
|p|2 + h̄2

2I
L(L + 1)

]

× [fJ,J (p,r,t) − f̄L(p)]dp dr,

where f̄L(p) is the Boltzmann equilibrium solution (55).
Keeping in mind that spatially homogeneous distributions—
including the equilibrium one—do not generate electric fields,
we have

EE = 1

8π

∫
|E(r,t)|2dr, (78)

ED = −
∫

E(r,t) ·
∑
J ′,J ′′

∫
dJ ′,J ′′ fJ ′,J ′′ (p,r,t) dp dr, (79)

where dJ ′,J ′′ is the molecule’s dipole moment in the A
representation, given by (26). Using Eqs. (53), (47), and (50),
one can show that

dE
dt

= 0;

i.e., E is, as expected, a conserved quantity.

2The Vlasov term of our equation differs slightly from the field term
of the equation of Ref. [27], but we have checked that the former also
preserves the entropy and, thus, the H theorem of Ref. [27] remains
intact.
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We confine ourselves to disturbances such that∫
fJ ′,J ′′ (p,r,t) dr = 0, (80)

which include harmonic disturbances and, thus, form a
sufficiently wide set for a stability study. Separating then the
base state f̄L(p) from the disturbance f̃J ′,J ′′ (p,r,t) [as in (58)],
one can verify that the linearity of EK in f̃ and (80) imply

EK = 0.

Next, as follows from (78), the energy EE of the electric field
is evidently positive, so it only remains to determine the sign
of ED .

To do so, introduce the Fourier transform of f̃J ′,J ′′ (p,r,t),

f̃J ′,J ′′ (p,q,t)

= (2πh̄)−3
∫

f̃J ′,J ′′ (p,r,t) exp

(
− iq · r

h̄

)
dr. (81)

Using (79) and (58) to rearrange (31), one obtains the following
expression for the Fourier transform of the electric field:

E(q,t) = − q

ε0|q|2
∫ ∑

J ′,J ′′
q · dJ ′,J ′′ f̃J ′,J ′′ (p,q,t)dp. (82)

Substitution of (81)–(82) into (79) yields

ED =
∫∫ ∫ ∑

J ′
1,J

′′
1 ,J ′

2,J
′′
2

q · dJ ′
1,J

′′
1

q · d∗
J ′

2,J
′′
2

ε0|q|2

× f̃J ′
1,J

′′
1
(p1,q,t) f̃ ∗

J ′
2,J

′′
2
(p2,q,t) dp1dp2dq, (83)

where we have used the obvious properties of symmetry,

dJ ′,J ′′ = d∗
J ′′,J ′ , f̃J ′,J ′′ (p,q,t) = f̃ ∗

J ′′,J ′ (p, − q,t).

Expression (83) is evidently positive—hence, the whole net
energy of the disturbance is positive—which means that the
base state is stable.

VII. HOW CAN THE PROPOSED MODEL BE IMPROVED?

As shown in the previous section, the Boltzmann equilib-
rium distribution is stable. Thus, our model does not describe
condensation, and we need to work out which one of its
components should be modified so that the modified version
does a better job.

Generally, a kinetic model of condensation involves two
components: a collision integral and a Vlasov term. In our case,
the former is of the Boltzmann kind and, thus, is inapplicable
to liquids, which casts doubt on its use for studying gas-liquid
phase transitions. We have argued, however, that condensation
begins while the gas is still rarefied; hence, the Boltzmann
collision integral can still be used for detecting the possibility
of condensation and calculating the condensation parameters.
This seems to suggest that it is the Vlasov term that needs to
be modified, whereas the collision integral can be left as is,
and in the next subsection we present an example putting this
conclusion beyond reasonable doubt.

A. Can the Boltzmann collision integral be used
to describe condensation?

Consider a gas of nonrotating classical molecules, de-
scribed by the distribution function f (v,r,t), and let the
pairwise intermolecular force have a monopole potential
�(r − r′). We assume that � is attractive and � → 0 as
r → ∞, which implies that �(r) < 0 for all r.

The Boltzmann-Vlasov model for this case can be written
in the form

∂f

∂t
+ v · ∇f + 1

m
F · ∂f

∂v
= St , (84)

where the specific form of the (Boltzmann) collision integral
St can be found in any textbook, and

F(r,t) = −∇
∫∫

f (v,r′,t) �(r − r′) dv dr′. (85)

Set (84) and (85) admits the standard equilibrium solution

fB = m3/2c

(2πkBT )3/2 exp

(
−m|v|2

2kBT

)
, (86)

where, as before, c is the molecule concentration and T , the
temperature.

Assuming that the gas is enclosed in a container of volume
V , one can readily verify that Eqs. (84) and (85) conserve the
mass M and energy E ,

M = m

∫∫
f (v,r,t) dv dr,

E = m

2

∫∫
|v|2f (v,r,t) dv dr +

∫∫∫∫
f (v′,r′,t)

× f (v,r,t) �(r − r′) dv′dr′dv dr, (87)

where the integration with respect to r and r′ is over the volume
V . One can also prove an H theorem for (84) and (85), with
the standard (Boltzmann) expression for the entropy,

S = −
∫

f (v,r,t) ln f (v,r,t) dv dr. (88)

Despite the fact that the Boltzmann-Vlasov equations (84)
and (85) and the BGK-Vlasov equations of Ref. [13] involve
different forms of the collision integrals, the actual expressions
for the mass, energy, and entropy in the two models are exactly
the same. This means that the stability criterion derived in
Sec. IV of Ref. [13] for the latter model applies to the former
as well; i.e., the equilibrium distribution (86) is stable within
Eqs. (84) and (85) if and only if

c�0 � kBT , (89)

where

�0 = −
∫

�(r) dr.

Physically, criterion (89) states that instability occurs if the
density of the energy of intermolecular interaction exceeds the
thermal energy.

To ensure that the instability corresponds to the onset of
condensation, we shall derive the equation of state (EOS) of
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FIG. 1. A comparison of the equation of state (94) (dotted line) and that of the van der Waals gas, Eq. (95) (solid line), for ηB = 3.3375
and ηW = 4.6171. The black dot corresponds to the case of equality in criterion (89). The dashed line shows the state equation of the ideal gas,
p = 1/V .

the gas described by (84) and (85) and compare it to that of
the van der Waals gas.

To do so, we calculate the equilibrium values of the internal
energy and entropy, i.e., substitute (86) into (87) and (88).
Letting c = N/V where N is the total number of molecules
and assuming that the size of the container is much larger than
the spatial scale of �(r), we obtain

E = N

2

(
3kBT − N�0

V

)
, (90)

S = N

[
ln

(2πkBT )3/2V

m3/2N
+ 3

2

]
. (91)

To derive the EOS, we use the standard formula

p = −
(

∂E
∂V

)
S,N=const

,

which yields

pB = NkBT

V
− N2�0

2V 2
, (92)

where we have changed p → pB to distinguish (92) from a
similar expression for the pressure pW of a van der Waals gas.
The latter can be written in the form

pW = NkBT

V − Nb
− N2a

V 2
, (93)

where a and b are gas specific constants. Note that the first
terms on the right-hand sides of (92) and (93) represent the
pressure of an ideal gas.

To compare expressions (92) and (93), we introduce the
following nondimensional variables:

(pB)nd = b pB

kBT
, (pW )nd = b pW

kBT
, Vnd = V

Nb
,

and rewrite (92) and (93) in the form

pB = 1

V
− ηB

V 2
, (94)

pW = 1

V − 1
− ηW

V 2
, (95)

where

ηB = �0

2kBT b
, ηW = a

bkBT
.

The functions pB(V ) and pW (V ) are plotted in Fig. 1, for a
pair of values of ηB and ηW chosen using two conditions:

(1) ηW corresponds to water at T = 100 ◦C;
(2) ηB is such that the local maxima of EOS (92) and EOS

(93) coincide (which mimics a situation where they are fitted
to the same set of experimental data).

One can see that, in the ideal gas limit (p � 1, V � 1), the
two curves in Fig. 1 virtually coincide. If p slowly increases,
with V slowly decreasing, the curves remain close, but only
until they reach the local maximum. After that, even an
infinitesimal pressure increase turns the van der Waals gas
into a liquid with the same p, but a considerably smaller V

[we assume here that condensation does not begin until p(V )
is at its maximum]. The gas described by (92) does not have a
stable steady state to tend to, so its further behavior is unclear,
but it is also unimportant, as the Boltzmann-Vlasov model
(84) and (85) should only be used for detecting the point of
condensation and not calculating the further evolution. Note
also that both equations of state (92) and (93) involve a range
of negative pressure (see Fig. 1), reflecting the fact that they
have been obtained using semiphenomenological models.

In conclusion, we emphasize the following important
points:

(1) The stability criterion (89) agrees with the Maxwell
principle, according to which only those states occur in reality
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that satisfy the condition(
∂p

∂V

)
T ,N=const

� 0.

Indeed, if the Maxwell principle is applied to EOS (92), the
resulting condition coincides with (89). Thus, the “growing”
part of the dotted curve in Fig. 1 can be viewed as either
unstable or physically meaningless, according to criterion (89)
or the Maxwell principle, respectively.

(2) If the Boltzmann collision integral in Eq. (84) is
replaced with the Enskog integral [7,28], the internal energy
expression (90) remains the same, but the entropy expression
(91) changes [8]. As a result, EOS (92) will be of a van
der Waals type, i.e., will take into account the finite size
of the gas molecules [parametrized by the correction b

in EOS (93)]. It should be emphasized that, in the gas
(small density) limit, the Enskog and Boltzmann integrals are
asymptotically equivalent; hence, they yield approximately the
same parameters of condensation.

(3) We have also derived the EOS for the gas described by
our original model (quantum rotators with a dipole moment
plus the Boltzmann collision integral), and it has turned out
to coincide with the ideal gas EOS. This somewhat trivial
result is due to the fact that, in the state of equilibrium, the
dipoles’ orientations are equipartitioned; hence, the dipoles
neither generate macroscopic electric field nor interact with it
even if it were generated.

B. Keesom’s force versus London’s force

The example discussed in the previous subsection suggests
that the use of the Boltzmann collision integral is not the
reason why our model does not describe condensation; instead,
one should rather “blame” the model used for intermolecular
forces. One can conjecture that rapid rotation of molecules
with a fixed dipole moment (Keesom’s model) prevents them
from aligning along the electric field; hence, since they are not
aligned, they have an equal chance of being attracted to, or
repelled by, one another. Given that intermolecular attraction
is crucial for nucleation, it is not surprising that condensation
does not occur in the model examined.

This negative result, however, shows the way toward a
better description of condensation—one based on London’s
model, in which two molecules induce on each other temporary
dipoles. The induced dipoles may fluctuate due to rotation of
the molecules (unless these are symmetric, of course), but the
dipoles always remain aligned and, thus, cause attraction, not
repulsion. In principle, Keesom’s and London’s models can be
used together so that the molecules would have both permanent
and induced dipole moments.

VIII. CONCLUDING REMARKS

Thus, the main conclusion of this work is a negative one:
if the molecules have only fixed dipole moments (Keesom’s
model) condensation does not occur. The physical reasons for
that are discussed in Sec. VII B, where we also conjecture
that an adequate description of condensation should be based
on London’s model, where molecules attract each other by
inducing on each other temporary dipoles. Unlike permanent

(fixed) dipoles, temporary dipoles remain aligned despite the
rotation of molecules.

Another important conclusion is that, as argued in the
Introduction, an adequate model of condensation can only be
quantum, as classical models require the van der Waals (attrac-
tive) energy be comparable to the gas’s thermal energy, which
is much stronger than what is observed in the experiment.
Quantum models can be free from this shortcoming.

It remains to list the caveats and disclaimers which our
conclusions are subject to.

(1) Even though we have proved the stability of the
Boltzmann equilibrium distribution f̄L(p) within the quantum
kinetic equation derived, we have not examined how quickly
the solution converges to f̄L(p) (as has been done in Ref. [29]
for the classical kinetic equation without the Vlasov term).
Given the complexity of quantum kinetic equations, we feel
that this difficult task is worth carrying out only for the model
that does describe condensation.

(2) Nor have we discussed the numerous problems asso-
ciated with the transition from classical kinetic equations to
quantum ones (such as those discussed in Ref. [30]). Again,
given the complexity of the problem, one can afford to study
its subtle mathematical properties only after one is sure that
this model is relevant physically.
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APPENDIX A: PROOFS OF IDENTITIES (37) AND (38)

Recalling definitions (27)–(29) and (19) of SJ ′,J ′′ , CJ ′,J ′′ ,
and AJ (θ ), and letting cos θ = ξ , one can rewrite identities
(37)–(38) in terms of the associated Legendre functions,

∫ 1

−1
ξP M

L′ P
M
L′′ dξ = 0 if L′ �= L′′ ± 1, (A1)∫ 1

−1
(1 − ξ 2)1/2P M±1

L′ P M
L′′ dξ = 0 if L′ �= L′′ ± 1. (A2)

Note that P M
L satisfies the following equations [31]:

d

dξ

[
(1 − ξ 2)

dP M
L

dξ

]
− M2

1 − ξ 2
P M

L = −L(L + 1)P M
L , (A3)

P M
L (ξ ) = (1 − ξ 2)M/2 1

2LL!

dL+M

dξL+M
[(ξ 2 − 1)L], (A4)

from which one can readily deduce that

∫ 1

−1
P M

L′ P
M
L′′ dξ = 0 if L′ �= L′′, (A5)

P M
L (ξ ) ∼ (1 ± ξ )M/2 (±1)L+M (L + M)!

2M/2M! (L − M)!
as ξ → ±1.

(A6)

042125-13



E. S. BENILOV AND M. S. BENILOV PHYSICAL REVIEW E 96, 042125 (2017)

Now, consider∫ 1

−1

[
(1 − ξ 2)

dP M
L′

dξ
× (A3)L=L′′

+ (1 − ξ 2)
dP M

L′′

dξ
× (A3)L=L′

]
dξ.

Integrating the terms involving full derivatives and taking into
account the boundary condition (A6), one obtains

0 = −L′′(L′′ + 1)
∫ 1

−1
(1 − ξ 2)

dP M
L′

dξ
P M

L′′ dξ

−L′(L′ + 1)
∫ 1

−1
(1 − ξ 2)P M

L′
dP M

L′′

dξ
P M

L′ dξ. (A7)

This identity is the basis for proving both (A1) and (A2).

1. Identity (A1)

Taking into account the following recurrence relation [31]:

(1 − ξ 2)
dP M

L

dξ
= LξP M

L − (L + M)P M
L′′−1,

one can eliminate the derivatives in (A7) and, taking into
account the orthogonality condition (A5), obtain∫ 1

−1
ξP M

L′ P
M
L′′ dξ = 0 if L′ �= L′′ ± 1, L′ �= 0, L′′ �= 0.

To obtain (A1), it remains to prove that∫ 1

−1
ξP M

L P M
0 dξ = 0 if L � 2. (A8)

Recalling that, for L = 0, the only allowable value of M is
M = 0 and taking into account (A4), one can reduce (A8) to∫ 1

−1
ξ

dL

dξL
[(ξ 2 − 1)L]dξ = 0 if L � 2,

which is evidently true.

2. Identity (A2)

To prove (A2), one has to eliminate the derivatives in
identity (A7) using the following recurrence relation [31]:

(1 − ξ 2)
dP M

L

dξ
= −MξP M

L − (1 − ξ 2)1/2P M+1
L ,

and then do it again using another relation [31]:

(1 − ξ 2)
dP M+1

L

dξ
= (L + M + 1)(L − M)(1 − ξ 2)1/2P M

L

+MξP M+1
L .

After straightforward algebra, one obtains

L′′(L′′ + 1)B1 + L′(L′ + 1)B2 = 0 if L′ �= L′′ ± 1,

(A9)

L′′(L′′ + 1)(L′ + M + 1)(L′ − M)B1 + L′(L′ + 1)

× (L′′ + M + 1)(L′′ − M)B2 = 0 if L′ �= L′′ ± 1,

(A10)

where

B1 =
∫ 1

−1
(1 − ξ 2)1/2P M+1

L′ P M
L′′ dξ,

B2 =
∫ 1

−1
(1 − ξ 2)1/2P M

L′ P
M+1
L′′ dξ.

Treating (A9) and (A10) as a set of linear algebraic equations
for B1,2, one obtains for B1∫ 1

−1
(1 − ξ 2)1/2P M+1

L′ P M
L′′ dξ = 0

(A11)
if L′ �= L′′ ± 1, L′ �= L′′, L′ �= −L′′ − 1,

where the second and third restrictions on L′ follow from
the requirement that the determinant of the linear set (A9)
and (A10) not be zero. Since by definition L � 0, the third
restriction in (A11) is moot, as is the second one [due to the
fact that, if P M+1

L is even, then P M
L is odd, or vice versa, as

follows from (A4)]; hence∫ 1

−1
(1 − ξ 2)1/2P M+1

L P M
L dξ = 0.

Thus, the desired identity, (A2), follows from (A11).

APPENDIX B: NONEXISTENCE OF COMPLEX
SOLUTIONS OF EQUATION (69)

Given the isotropy of the problem, let k′ = (0,0,k′
z).

Substituting then (67) into (69), integrate the latter with respect
to px and py , and thus obtain (primes and the subscript z

omitted)

L0

3(2π )1/2B(γ )
exp

(
−k2

8
− L2

0

2γ

)

×
∫ 1

−1

sinh
(

pk

2 + L0
2γ

)
ω − γpk

exp

(
−p2

2

)
dp = 1. (B1)

Separating the real and imaginary parts of (B1), one obtains

I1(Re ω + L0) − I2 = 1, (B2)

I1 Im ω = 0, (B3)

where

I1 = L0

3(2π )1/2B(γ )
exp

(
−k2

8
− L2

0

2γ

)

×
∫ 1

−1

sinh
(

pk

2 + L0
2γ

)
(Re ω − γpk)2 + (Im ω)2

exp

(
−p2

2

)
dp,

I2 = γL0

6(2π )1/2B(γ )
exp

(
−k2

8
− L2

0

2γ

)

×
∫ 1

−1

k
2

(
p + L0

kγ

)
sinh

[
k
2

(
p + L0

kγ

)]
(Re ω − γpk)2 + (Im ω)2

exp

(
−p2

2

)
dp.

Since the integrand in I2 is evidently positive, it follows from
(B2) that

I1 = 1 + I2

Re ω + L0
�= 0,

and then it follows from (B3) that Im ω = 0, as required.
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