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We define stochastic bridges as conditional distributions of stochastic paths that leave a specified point in
phase-space in the past and arrive at another one in the future. These can be defined relative to either forward
or backward stochastic differential equations and with the inclusion of arbitrary path-dependent weights. The
underlying stochastic equations are not the same except in linear cases. Accordingly, we generalize the theory
of stochastic bridges to include time-reversed and weighted stochastic processes. We show that the resulting
stochastic bridges are identical, whether derived from a forward or a backward time stochastic process. A
numerical algorithm is obtained to sample these distributions. This technique, which uses partial stochastic
equations, is robust and easily implemented. Examples are given, and comparisons are made to previous work.
In stochastic equations without a gradient drift, our results confirm an earlier conjecture, while generalizing this
to cases with path-dependent weights. An example of a two-dimensional stochastic equation with no potential
solution is analyzed and numerically solved. We show how this method can treat unexpectedly large excursions
occurring during a tunneling or escape event, in which a system escapes from one quasistable point to arrive at
another one at a later time.
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I. INTRODUCTION

What is the probability that a physical system will arrive
near a certain destination, knowing its initial configuration?
What is the probability that it started near a certain point
in phase-space, given a final configuration? What happens
at intermediate times if both end-points are known? The last
question was first considered by Schrödinger [1], in the context
of diffusion in a classical system. Such problems are known
as “Brownian bridges.” In physics, this terminology is often
extended to the term “stochastic bridges.” These problems are
especially important in studying questions of large but rare
fluctuations and are related to the concept of a prehistory of a
fluctuation [2]: what are the most likely prior events that lead
to a given subsequent observation?

The underlying trajectories of diffusion in a phase-space
are often described with a stochastic differential equation
(SDE). These are very common in physics, chemistry, biology,
engineering, and finance [3]. Their transforms are the topic
of extended analysis in the mathematics literature [4,5] and
are related to diagrammatic methods in classical statistical
physics [6]. They are equivalent to probability conserving
Fokker-Planck equations (FPEs) [7,8]. However, there are
many examples where the relevant SDEs are trajectories
with weights, that is, path-dependent probabilities, as in
the case of the backwards Kolmogorov equation [9], which
describes the probability that an initial condition will reach a
predetermined final state. These also occur when computing
finite-temperature canonical ensembles [10,11] and dynamical
simulations [12] in quantum many-body physics.

Here, we consider stochastic bridges with arbitrary numbers
of components, as well as spatially varying weight and
drift terms. This allows us to treat time-reversed as well
as forward time stochastic bridge. Although software exists
for such bridges in ecological models [13], the general,
nonlinear stochastic bridge is nontrivial to sample efficiently.
We show that such problems are generically transformable
to an unweighted partial stochastic differential equation in

an extra dimension. The advantage of the approach is that
a numerical evaluation is straightforward, using standard
partial stochastic differential equation (PSDE) algorithms with
equally weighted samples, and it is readily extended to bridges
of stochastic fields in arbitrary space dimension. This extends
previously known algorithms [14,15] to include weighted
and backwards time equations, as well as confirming an
earlier conjecture [14] for stochastic bridges without potential
conditions.

There are many known methods for obtaining numerical
samples of unweighted SDEs [16–19]. When there is a weight
factor as well, efficiency issues become important. Simple
methods of direct sampling combined with weights encounter
severe problems. As the spread of weights increases, most
computed trajectories have a very low weight compared to
the most probable trajectory. As a result, the effective number
of equally weighted trajectories decreases with time, and the
sampling error increases [20]. There are methods to treat this,
including the use of genetic or branching algorithms [10,21].
However, even these relatively sophisticated methods do not
appear useful to constrained stochastic bridge calculations,
because most trajectories—apart from a subset of measure
zero—do not satisfy the constraint.

The origin of the sampling problem that occurs with
stochastic bridges, is that standard SDE solvers [18] do not
allow a constrained end-point. The direct use of stochastic
differential equations is inefficient when applied to stochas-
tic bridges. Except for special cases [22], algorithms for
these problems are not widely known, especially for high-
dimensional dynamical variables and fields with arbitrary
nonlinear terms and weights. As well as in physics, applica-
tions are known in probability theory [23], stochastic finance
[24], queuing theory, ecological analysis [25], and computer
science.

Stochastic bridges and related problems have been treated
numerically in other ways as well. To give a brief account,
Markov chain Monte Carlo methods of various types exist
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[22] and could potentially be generalized to the problems
studied here. Similar ideas have been used to study rare
events and large fluctuations, using transition path sampling
[26] and other methods [27]. The stochastic method obtained
in this paper is a partial stochastic differential equation in
an extra dimension, obtained by extending earlier work on
path-integral solutions to Fokker-Planck equations [28–33].
This can be further improved through Metropolis-adjusted
Langevin algorithms (MALA) [22,34].

The time-reversed stochastic bridge is closely related to
the time-reversal question implicit in Schrödinger’s original
title: “Über die Umkehrung der Naturgesetze,” or “On the
time-reversal of natural laws” [1]. Such issues arise generally
in many physical applications, including the question of time-
reversed quantum mechanics [35] and quantum trajectories, as
well as in stochastic control problems and inverse scattering.
We show how to treat these problems in a unified way,
using stochastic evolution in an additional dimension. This
must converge to a steady state, so the time to equilibrate is
important. Numerical examples indicate that such convergence
issues are straightforward to control; they are also found in
stochastic quantization [36].

As anticipated by Schrödinger, there is a general time-
reversal symmetry in stochastic bridges. This is not found
in one-directional stochastic differential equations. The sym-
metry is proved analytically, by utilizing both forwards and
backwards form of the underlying diffusion equations. An
explanation is given in terms of the use of time-symmetric
path integral propagators. These results generalize and extend
earlier results in the literature for evaluating stochastic bridges
using stochastic partial differential equations. Analytic and
numerical examples are given in simple cases, which show
rapid convergence in the additional dimension.

II. WEIGHTED STOCHASTIC EQUATIONS

In this section, we present the definitions and notation
underpinning the algorithm obtained later. While the results
explained here are mostly well known, it is useful to summarize
them in a unified form. For generality and definiteness, we are
interested in stochastic time-evolution problems that either
start from a specific configuration xA, or else terminate at a
specific configuration xB . These are known as forward and
backwards time problems, respectively.

A. The weighted Fokker-Planck equation

We will consider a general form of weighted FPE [37]
in which there are zeroth-, first-, and second-order derivative
terms, for a probability density P (t,x) in an n-dimensional real
vector space of coordinates x = (x1, . . . xn)

T
. The relevant

equation has the form

∂

∂t
P (t,x) = L[x]P (t,x). (1)

where L[x] is a general second-order differential operator:

L[x] = U (x) − ∂iA
i(x) + 1

2∂i∂jDij . (2)

We use the Einstein summation convention, in which
repeated indices are summed. Derivative operators are defined

using the notation that ∂i ≡ ∂/∂xi and are assumed to act on
all terms to the right. Here, U , A, and D are scalar, vector, and
matrix quantities, respectively. We suppose that D is positive
definite and symmetric, and for the purposes of this paper,
constant in space. Cases where partial integration may fail
owing to the size of distribution tails or singular coefficients
are excluded. These will not be investigated, which means that
there are restrictions on the growth rate of the coefficients at
large |x| [38].

In the case where U (x) = 0, probability is conserved, and
one can probabilistically sample to obtain an equivalent Ito
SDE for the sampled path trajectories. This is

ẋ = A(x) + Bζ (t). (3)

As usual, the noise coefficient B is an n × m matrix such that
D = BBT , and ζ = (ζ 1, . . . ζm)

T
is an m-dimensional real

Gaussian noise vector, defined such that

〈ζ i(t)ζ j (t ′)〉 = δij δ(t − t ′). (4)

When convenient, we use the difference notation, that W =∫ t

0 ζ (t ′)dt ′, and the equation becomes

dx = A(x)dt + B · dW . (5)

Unlike the standard FPE, the weighted equation described by
Eq. (1) does not generally result in a conserved probability
if U (x) �= 0 . One can transform the more general weighted
FPE Eq. (1) into a stochastic form like Eq. (3), by weighting
moments of the distribution with a factor e�, where the
additional weight � evolves in time along each trajectory
according to

d� = U (x)dt. (6)

Given an initial condition x = xA at t = tA, any subsequent
moment of form O(x) can be evaluated as a weighted average.
This is obtained by considering a set of initial trajecto-
ries starting at x = xA with equal weights, then summing
over N independent trajectories (x(1), . . . x(N)) with weights
(�(1), . . . �(N)) at a subsequent time t , and taking the limit of
N → ∞, so that

〈O〉t = lim
N→∞

1

N

N∑
i=1

O(x(i)(t))e�(i)(t). (7)

Such weighted averaging is not efficient as a numerical
algorithm when there is a large range of weights � [20]. The
question of sampling efficiency is largely independent of the
question of convergence as a function of step-size. However, it
cannot be readily solved by just using more trajectories, as this
only delays the time when the sampling error growth creates
large errors. The issue of how to efficiently solve weighted
equations without a large sampling error will be investigated
here.

B. Backwards Kolmogorov equation

A common case of a weighted equation is the backward
Kolmogorov equation (BKE) [9], which is widely used to
treat problems such as first passage times [3]. To understand
the terminology, we recall that the standard Fokker-Planck
equation with U (x) = 0 is also called the forward Kolmogorov
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equation, since it predicts a relative probability forwards in
time. If all stochastic trajectories commence at an initial time
tA and point xA, then the probability of moving forwards to a
time t , reaching a neighborhood of volume dV ≡ dnx around
a point xB , is given by P (t,xB)dV ≡ P (t,xB |tA,xA)dV . This
is formally the solution to Eq. (1), given the initial condition
at time tA that P (tA,x) ≡ δN (x − xA), and with t > tA. The
probability is normalized to unity, since all trajectories have to
terminate somewhere, and the probability is defined relative to
the current trajectory location at the latest time t .

One can also enquire about the conditional probability
density of trajectories starting at a location x, given a known
final destination xB . This is obtained by first solving the
backwards Kolmogorov equation subject to a fixed final
condition that P (tB,x) ≡ δN (x − xB) at time tB , which is

− ∂

∂t
P (tB,xB |t,x ) = L∗[x]P (tB,xB |t,x ), (8)

where L∗[x] is an adjoint operator defined by

L∗[x] = U (x) + Ai(x)∂i + 1
2∂iDij ∂j . (9)

This function is not normalized to unity when integrated
over the initial location x, unless the coefficients are indepen-
dent of position. The reason for this is that the probability
P (t,x) occurring in the normal Fokker-Planck approach is
defined as a final state probability density, so it is only
guaranteed to be normalized when integrated over the final
time.

To transform the BKE into the standard form used
elsewhere, we introduce a frame change to a time-reversed
coordinate, t ′ = tB − t . On defining a BKE function of reverse
time, PBKE(t ′,x) ≡ P (tB,xB |tB − t ′,x), one obtains

∂

∂t ′
PBKE(t ′,x) = L∗[x]PBKE(t ′,x). (10)

Next, L∗[x] can be re-expressed in the form of Eq. (2), with
the result that

L∗[x] = U ′(x) + ∂iA
i(x) + 1

2∂iDij ∂j , (11)

where there is now a modified potential of U ′(x) = U (x) − J.

Here, the term J is the trace of the Jacobian of the drift, i.e.,
J = T r( J), where J i

j = ∂jA
i . To understand the implications

of this result, we note that in the forward time direction, if
U = 0, the equivalent stochastic equation is

∂x
∂t

= A(x) + (stochastic terms), (12)

while in the backward time direction, provided the diffusion is
constant, there is a modified weight U ′(x), and the drift terms
change sign:

∂x
∂t ′

= −A(x) + (weight and stochastic terms). (13)

The time-reversed deterministic behavior in the drift term
A is as expected from the fact that there is a change in
reference frame from t to t ′ = −t . However, when the drift
coefficients are not constant the additional weighting terms
have subtle effects. In summary, for nonlinear drift the BKE
trajectories have changed relative probabilities as well as
being time-reversed. This means that the usual stochastic

techniques for sampling require additional weighting terms.
This makes them very inefficient unless the algorithm is
modified substantially.

III. TIME-REVERSED INFERENCE

For an illustration of the applications of the BKE, we now
obtain the time-reversed probability of leaving from a small
volume dV near location x, given a known final location xB . In
typical applications, given a final condition x = xB at t = tB ,
we wish to evaluate earlier observable moment expectations.
This is one of many conditional problems in probability theory.

A. Time-reversed diffusion

To obtain the required result, we apply Bayes’ theorem
[39]. The quantity given by the BKE is P (tB,xB |t,x)dV , the
conditional probability that a trajectory is at final location near
xB , if initially near x. We wish to obtain the complement
of this, namely the conditional probability that a trajectory is
initially near x, given a known final location at xB .

Bayes’ theorem gives the result that the joint probability of
these two events at x, xB is

P (tA,x; tB,xB)dV 2 = P (tB,xB |tA,x)p(tA,x)dV 2

= P (tA,x|tB,xB)p(tB,xB)dV 2, (14)

where P (t,x|tB,xB) is the conditional probability for t < tB ,
that a trajectory comes from an initial location near x, if it
terminates near xB .

Here we have also introduced a priori probabilities
p(tA,x)dV , p(tB,x)dV of the two events at tA and tB .
In the the case of a constant probability C of trajectory
starting points, p(tA,x)dV = C. Noting that for conserved
probabilities,

∫
P (tA,x|tB,xB)dnx = 1, we obtain

p(tB,xB) = C

∫
P (tB,xB |tA,x)dnx. (15)

Hence, on canceling the constant factors of C, the time-
reversed conditional probability is

P (tA,x|tB,xB) = P (tB,xB |tA,x)∫
P (tB,xB |tA,x)dnx

. (16)

Algorithms for sampling the weighted Fokker-Planck equa-
tion allow one, among other things, to sample the BKE. This
gives a useful strategy for generating a time-reversed stochastic
process. In the next section, we show how to use these results
to derive an algorithm for a more general problem known as
the stochastic bridge.

B. Time-reversed linear problems

As an example of these applications of the BKE, we
consider linear stochastic equations, both forward and back-
ward in time. The previous results show that one example of
the general weighted Fokker-Planck equation is a backward
Kolmogorov equation, since it has an equivalent weighted
trajectory. However, in some cases there can also be an
equivalent, unweighted set of trajectories.
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This is trivially the case for a forward time, linear stochastic
equation, of form

dx = J xdt + BdW(t), (17)

where J is a constant n × n matrix, and B is also constant in
this example.

The fact that the time-reversed equation is also unweighted
follows, since the results given above show that the weight term
U ′(x) = −J is the same for each trajectory. It therefore cancels
on calculating the conditional time-reversed probability. Thus,
the time-reversed stochastic trajectory in the linear case is
simply

dx = −J xdt ′ + BdW(t ′). (18)

In summary, with constant diffusion and linear drift the
effect of time-reversal gives the known result that it reverses
the drift sign, while keeping the diffusion term unchanged.
This result is also known to be valid from an earlier analysis
of linear stochastic time-reversal [40].

IV. STOCHASTIC BRIDGES

We defined a forward time stochastic process as the relative
probability of trajectories that start definitely at xA, while
ending in a neighborhood dV of xB . Similarly, we defined
a time-reversed stochastic process as the relative probability
of trajectories that end definitely at xB, while starting in
a neighborhood dV of xA. Given the discussion above,
these are generally different problems. From the probabilistic
viewpoint, they are simply two different, abstract conditional
probabilities, P (B|A) and P (A|B), which are not the same.

There are more general types of multitime conditional
probabilities as well. In this section we will be interested
in stochastic trajectories constrained at two end-points A,
C, while being unconstrained at an intermediate point B.
We therefore define a stochastic bridge as the probability
P (B|A,C), i.e., the probability of obtaining an intermediate
point x = xB , with constraints on initial and final points
xA, xC .

Similar results were previously obtained for simpler cases,
including scalar variable [15,41] and potential problems [14].
In these papers, the drift term A was obtained as the gradient
of a potential V , and the diffusion was constant in space. As a
consequence, these algorithms are unable to treat the general
class of problems dealt with here, which include arbitrary
drift without a potential, as well as weighted trajectories and
time-reversed stochastic paths.

A. Path integral solution

To obtain results for stochastic bridges, we first obtain
an efficient algorithm for the general weighted stochastic
trajectories described by Eq (1). This includes the case of
the BKE. It gives a technique for propagating time-reversed
stochastic trajectories in nonlinear cases more general than
in Eq (17), and a technique for treating weighted stochastic
processes. To do this, we write the general solution in its
path-integral form [42] and transform the results to a stochastic
partial differential equation in a higher dimension.

Only the case where Dij is invertible will be treated. Al-
though this restriction is not essential, it simplifies the method,
and reduces the algebraic complexity. In these cases, the path-
integral result is straightforward. There have been a number of
well-known path-integral formulations of diffusion processes,
pioneered by Onsager and Machlup [43,44], although this early
work was restricted to linear equations. Later developments
due to Stratonovich [45] and others [30,31,46,47] extended
and made this early work more rigorous. As known from
this previous work, there is an analogy to a covariant or
curved-space path integral, where g ≡ D−1 plays the role of
a metric tensor. While a full covariant analysis is only needed
when the diffusion is space-dependent, which will be treated
elsewhere, we will utilize this definition of g here.

1. Green’s function approach

The simplest derivation, corresponding to the earliest work
of this type, used a convolution of Greens functions. The
Green’s function of the FPE for short times �t = ε is the
solution to an initial delta function condition of δ(x − xA).
Defining a relative velocity v = (x − xA)/ε − A(xA) com-
pared to the average drift velocity A, the solution is [37]

G(x|xA) = 1

N (ε,xA)
eε[−vT gv/2+U (x)]. (19)

The normalization term is N (ε,xA) = √
det [2πε D(xA)],

and since D is positive-definite, it has positive eigenvalues
and a positive determinant. Noninvertible cases where some
eigenvalues vanish are treated by taking a limit that turns the
Gaussian into a δ function. An orthogonal local coordinate
transformation can always be found such that a symmetric
diffusion can be diagonalized, but we will not assume this.

The path integral is a convolution of successive Green’s
functions. Consider a discrete set of N + 1 times tk = tA +
kε for k = 1,N + 1 where tC = tN+1, and corresponding
coordinates xl , with xA = x0, xC = xN . Defining d[x] ≡
dnx1 . . . dnxN , the solution over the finite interval [tA,tC],
given an initial distribution P (tA,x) = δn(x − xA), is then

P (tB,xC) = lim
ε→0

∫
..

∫
d[x]G(xC |xN−1)..G(x1|xA). (20)

This form of the path integral is equivalent to the well-
known Ito-Euler or forward-time numerical algorithm [18]
for a stochastic equation, but with additional weights now
included from the potential U (x). We note that the right-hand
side explicitly includes xC , and it depends implicitly on tC
through the relation that tA = tC − (N + 1)ε.

The results for the case of constant diffusion with no drift
correspond to a standard quantum mechanical Feynman path
integral in imaginary time [48]. In more general cases, this
form of path integral is not time-symmetric, nor is it invariant
under coordinate transformations. This makes it unsuitable for
the functional calculus methods we will use later, as Feynman
also recognized [49].

2. Time-symmetric path-integral

A time-symmetric treatment of path integrals was originally
obtained by Stratonovich for the case of constant diffusion
[45]. To summarize this method for the constant diffusion case,
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one may take the limit of ε → 0 with functions evaluated at the
midpoints, not the starting points of each interval [33,50]. This
allows the path integral to be treated as a normal functional
integral.

In the case where D is constant, one may replace A(x) by
A(x̄), and U (x) by

Ū = U (x̄) − 1
2J, (21)

where x̄ = (x + x′)/2 and J = ∂iA
i(x̄). This gives the same

formal path integral result as Eq. (20) in the limit of ε →
0, except for the additional spatial derivative term in the
potential. On introducing v̄ = (x′ − x)/ε − A(x̄), and after
some manipulation [33], one obtains a corrected propagator:

Ḡ(x′|x) = 1

N (ε)
eε[−v̄T gv̄/2+Ū (x)]. (22)

The final path integral is written—after the limit ε → 0 is
taken—as

P (tB,xB) =
∫

dμ[x(t)] exp

{
−

∫ tC

tA

L(x,ẋ)dt

}
, (23)

where the functional measure is defined as

dμ[x(t)] = lim
ε→0

d[x]

N (ε)N
, (24)

the end-points are constrained so that x(tA) = xA and x(tC) =
xC , and ẋ ≡ ∂x/∂t . The effective path-integral Lagrangian in
the time-integral can now be written as

L(x,ẋ) = 1
2 (ẋ − A(x))T g[ẋ − A(x)] − Ū (x). (25)

Here the assumption is made that all functions are smooth, so
that in the limit of ε → 0, one has A(x) = A(x̄). However,
the potential is modified since Ū (x) �= U (x), owing to the
Jacobian correction term in Eq. (21).

3. Time-reversed path-integrals

In the time reversed or BKE case, we must replace A by
−A, and U by U ′ = U − J. Taking into account the derivation
explained above and applying it in the reverse time direction,
this would then give a Lagrangian in which the final potential
term Ū ′ = Ū is unchanged, giving

L′ = 1

2

(
∂xi

∂t ′
+ Ai

)
gij

(
∂xj

∂t ′
+ Aj

)
− Ū . (26)

If we rewrite the path integral and its derivatives as a function
of forward time, so t ′→t ≡ −t ′, then this leads to a form for the
Lagrangian, which is the same as for the FPE, namely, Eq. (25).

Thus, the Lagrangian is unchanged whether it is derived
from the FPE or the BKE, provided the final integrals
are expressed in a compatible form, with the same time
coordinate. To explain this, the FPE gives the probability
density of arriving near xB , having started at a fixed point,
xA. Conversely, the BKE allows us to investigate probability
densities of starting near xA, conditional on arriving at a fixed
point, xB . Since it is the final position that is known, it is
normally written as an equation in reverse time, t ′. If we write

the path integral formulation of these probability densities so
they are expressed in the same time-coordinate, then the final
Lagrangians are identical.

B. Path integrals and stochastic bridges

Path integral trajectories can have constrained intermediate
and/or end points. Suppose that we consider a trajectory in
the forward time direction, starting at xA, passing through
xB and ending at xC , thus giving a Dirichlet type fixed
boundary condition. In this case we simply have to evaluate
the probability P (B) that the trajectory passes through xB .

We therefore wish to sample the path integral as a functional
of coordinate space and time, i.e., to sample paths [x] = [x(t)],
with a constrained functional probability that is given by

P([x]) = exp

{
−

∫ tC

tA

L(x,ẋ)dt

}
, (27)

under the constraint that x(tA) = xA, and x(tC) = xC .
The goal is to obtain a set of equally weighted stochastic

trajectories for sampling purposes. If U = 0, then a SDE
algorithm with independent variable t will achieve this,
although the end points cannot be treated efficiently: only
a set of measure zero will satisfy the constraints. If U �= 0,

then even a set that meets these constraints will have different
weights, in general, make sampling inefficient.

One method to proceed when there are constraints, is to
define a new stochastic process in a virtual “time” coordinate
τ , such that its steady-state solution for τ → ∞ is P([x]).
This is achieved using a technique similar to that employed in
stochastic quantization [36]. We can define a new probability
functional P([x],τ ) in an extra dimension τ , with the steady-
state requirement that

lim
τ→∞P([x],τ ) = P([x]). (28)

The steady-state solution at τ → ∞, is required to have a
potential form as a functional integral over paths x′(t) that have
their end-points constrained so that x(tA) = xA and x(tB) =
xB :

P([x(t)],τ → ∞) ∝ exp

{∫ x(t)

α([x′])d[x′]
}
. (29)

From direct functional differentiation of Eq. (29), and
applying the condition that

∂

∂τ
P([x],τ → ∞) = 0, (30)

this is achieved provided P([x],τ ) satisfies a functional
Fokker-Planck equation in the form

∂

∂τ
P([x],τ ) = δ

δx

[
−α[x] + δ

δx

]
P([x],τ ). (31)

Since the solution of the new functional FPE must agree with
the required path-integral in Eq. (27), it follows directly that

α([x]) = − δ

δx

∫ tC

tA

L(x,ẋ)dt. (32)
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The full applicability of methods like this are under active
investigation in the mathematical and probability literature
[14]. To obtain the partial stochastic differential equation
coefficient α[x], it follows from Eq. (31) that the functional
α[x] is given by

αk[x(t)] = − δ

δxk(t)

∫
L(x,ẋ)dt

= − ∂L

∂xk(t)
+ d

dt

∂L

∂ẋk(t)
. (33)

Substituting into Eq. (25), and dropping the time arguments
for brevity, one obtains that

αk[x] = vT g
∂ A
∂xk

+ ∂Ū

∂xk
+ gkl v̇l , (34)

where v = [ẋ − A(x)]. We now re-express the coefficients of
Eq. (34) in a simpler form. Introducing second derivatives,
ẍ ≡ ∂2x/∂t2, one then obtains a compact expression for α in
terms of time-derivatives of the trajectory location, namely,

α = gẍ + C ẋ + U . (35)

Here the circulation matrix,

C = JT g − g J, (36)

describes the extent to which the drift A violates potential
conditions. To be more explicit, we can write the circulation
term with its components as

Ckj = ∂Ai

∂xk
gij − gkl

∂Al

∂xj
. (37)

We also introduce the vector U , which is an effective drift rate
in the virtual time coordinate, where

Uk = ∂

∂xk

[
Ū − 1

2
AT g A

]
. (38)

C. Stochastic equation in virtual time

The distribution of Eq. (29) solves the problem of the
stochastic bridge in the form treated here. We now wish to
sample this probability distribution efficiently, with equally
weighted samples. This is achieved by noting that the func-
tional Fokker-Planck Eq. (31) is exactly equivalent to a partial
stochastic differential equation (PSDE) in virtual time,

∂x
∂τ

= α([x]) +
√

2ξ (t,τ ). (39)

It has noise correlations given by

〈ξ i(t,τ )ξ j (t ′,τ ′)〉 = δij δ(t − t ′)δ(τ − τ ′),

and transverse Dirichlet boundary conditions at tA, such that
x = xA, and at tC such that x = xC .

Writing the PSDE in its explicit form, one has

∂x
∂τ

= gẍ + C ẋ + U +
√

2ξ (t,τ ). (40)

The path-integral is then solved by taking the steady-state
or τ → limit of the distribution of this stochastic process,
using a numerical method for a PSDE [51] with Dirichlet
boundary conditions. To compare this with other expressions
in the literature, we notice that previous analyses [14] have

considered cases without weights (U = 0) and with a drift
potential V such that

gjiA
i = − ∂V

∂xj
. (41)

This places an immediate constraint on the drift Ai , known
as the drift potential condition. Differentiating Eq. (41) with
respect to xk , and using the equality of second derivatives
under change of order of differentiation, leads to

gjiJi,k = gkiJi,j . (42)

This is the condition that the circulation term vanishes,
so that C = 0. Thus, the circulation term C contains all the
nonpotential contribution to the drift. Under the restriction
that U = C = 0, our results are identical to the previous ones.
The case that U = 0 but C �= 0 was conjectured to give the
result of Eq. (40) in earlier literature [14], although using
an abstract notation. Our result gives a derivation for this
conjecture, makes the notation explicit, and extends it to
weighted stochastic processes.

D. Time-reversed stochastic bridges

The time-reversed path originates from constraining the
future time phase-space position, resulting in the backwards
Kolmogorov equation, which has an additional weight term.
We can use the path integral method to constrain the earlier
time as a time-reversed stochastic bridge, reversing the
procedures in the previous subsection. We wish to demonstrate
that the time-ordering of imposing the constraints doesn’t
matter, which was the motivation of Schrödinger’s original
work on “Umkehrung” or time-reversal.

Because Ū ′ = Ū , we see from Eq (11) that the virtual
stochastic equation for the time-reversed path x′(t ′) is:

∂x′

∂τ
= g

∂2x′

∂t ′2
+ C′ ∂x′

∂t ′
+ U +

√
2ξ (t ′,τ ). (43)

It is instructive to write this using a variable change to
the forward time coordinate, with x(t) = x′(t ′) = x′(tB − t),
and ∂x/∂t = −∂x′/∂t ′. This is the same coordinate system as
the usual FPE, and one might expect to therefore get the same
bridge equations. After all, once written in the same coordinate
frame, each describes an identical overall constraint on the
bridge. We note that dt ′ = −dt in the time-reversed frame of
reference, and Ai = −A′i when using the BKE, so that the
result of the variable change is to only change the sign of the
circulation term. Since C ′ = −C , this has no effect: all terms
match once the sign change in the time-coordinate is taken into
account. We obtain a partial stochastic equation identical to the
previous form. In summary, these equations are independent
of whether the forward or backwards Kolmogorov equation
chosen initially, provided the same time coordinate is utilized
in the final equation.

This is as one might expect: neither end-point constraint
is conditional on the other. The result given here satisfies
Schrödinger’s requirements with regard to time-reversibility,
without having the product form that Schrödinger considered
[1]. The agreement of the forward and reverse time results gives
further evidence that this weighted, virtual-time stochastic
equation is correct.
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<
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FIG. 1. Convergence of Brownian bridge variance (solid lines) to
analytic result (dotted lines) with virtual time τ , at fixed real time of
t = 0. Upper and lower lines indicate sampling errors of ±1σ .

V. EXAMPLES

We now consider a number of examples of this approach,
both to give a comparison with previous analyses and to show
where there are new results.

A. The scalar Brownian bridge

The first example we treat is the classic, scalar Brownian
bridge, in which the unconstrained stochastic process is

dx = dW. (44)

It is known [52] that the constrained problem of x1 = x2 = 0
is solved by the random trajectory

x(t) = W (t) − t

T
W (T ), (45)

where x(0) = x(T ) = 0, and W (t) = ∫ t

0 dW (t).
In this case one can sample the stochastic trajectory directly.

The forward and backward bridges are identical, and one can
easily compute moments at intermediate times, including the
variance,

〈x2(t)〉 = t(T − t)

T
. (46)

Since there is neither drift nor potential terms, the partial
stochastic equation method gives

∂x

∂τ
= ∂2x

∂t2
+

√
2ξ. (47)

B. Scalar bridge numerics

Solving this PSDE with fixed or Dirichlet boundary
conditions at t = ±0.5 gives the results for 〈x2(t)〉 shown
in Figs. 1 and 2. This demonstrates rapid convergence with
virtual time τ , and excellent agreement with the known result
for the Brownian bridge variance at the midpoint, t = 0.

5.005.0-
t

0

0.05

0.1

0.15

0.2

0.25

<
x2 >

FIG. 2. Convergence of Brownian bridge variance (solid lines) to
analytic result (dotted lines) with real time t , at a fixed virtual time
τ = 1. Upper and lower lines indicate sampling errors of ±1σ .

The results in Fig. 2 show that this agreement is maintained,
within sampling error, over the full range of real time. Figure 3
shows a three-dimensional representation of the results.

These results used a public domain PSDE solver [53],
using 2000 time steps in τ , 31 time steps in real time t ,
and 104 stochastic trajectories. The algorithm was an iterated
semi-implicit or midpoint technique [17,51]. Central finite dif-
ferences were used for the transverse derivatives with Dirichlet
boundary condition. This algorithm can be accelerated using
spectral methods [54]. To check convergence, the following
procedure was used:

Sampling Error: A subensemble averaging technique was
used, in which the stochastic trajectories were dividing
into subensembles. After subensembles were averaged, the
resulting means were averaged, and error-bars were estimated
using standard deviations of the mean. These are shown as
upper and lower lines in two-dimensional graphs.

0
0.5

0.1

1

<
x2 >

0.2

Brownian Bridge

t

0

0.3

0.5

-0.5 0

FIG. 3. Three-dimensional Brownian bridge variance surface
evolving with real and virtual time.
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FIG. 4. Parametric plot of x versus y values for 10 random
unconstrained stochastic trajectories for a linear stochastic differential
equation with ε = 0.01, from time t = 0 to t = π .

Virtual time-step error: Calculations were repeated with
twice the number of virtual time-steps to check virtual-time
convergence. In all cases, error-bars were less than ±1%.

Virtual time equilibration: Calculations were repeated
with double the maximum virtual time window, to ensure
convergence.

Real time-step error: Calculations were repeated with larger
numbers of real time-steps to check real-time convergence in
step-size.

C. Linear case

The next example we treat is a general linear FPE. To
simplify the resulting algebra, we assume that D = g = εI ,
where I is an identity matrix. This has an exact solution for the
time-reversed process in which only the drift is time-reversed
[40], so it is a useful test case. For this problem, we have a
forward SDE of

dx = J xdt + √
εdW , (48)

with A = J x, and J is a constant matrix.
This can be treated using the stochastic equation given

above, although this will not include constraints. One may also
sample it using the constrained path-integral method, which
gives an equivalent partial stochastic differential equation of

∂x
∂τ

= 1

ε
[ẍ + ( JT − J)ẋ − JT J x] +

√
2ξ . (49)

In the reverse time direction, the corresponding BKE has
Ã = −A, and a potential of Ũ = −Tr[ J] = −J . Since this is
constant, one has U ′ = 0, just as with the forward time case.
The path integral expressions for the bridge are identical in the
forward and backward directions, which illustrates the general
time-reversal symmetry in the path-integral algorithm.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
y

-1.5

-1

-0.5

0

0.5

1

1.5

x

FIG. 5. Parametric plot of final x versus y values for 10 random
trajectories at τ = 0.4, for a linear stochastic bridge with ε = 0.01,
from time t = 0 to t = π .

As a numerical example of linear evolution in higher
dimensions without a drift potential, consider the case

J =
[

1
−1

]
, (50)

giving the equivalent stochastic differential equation of

ẋ = y + √
εζ1, ẏ = −x + √

εζ2. (51)

This describes circular motion with no equivalent gradient,
combined with random diffusion in the x-y plane. The bridge
is from x = [1,0] to x = [−1,0], with ε = 0.01, over a time
interval of π . The equivalent virtual time bridge equation is

∂x
∂τ

= 1

ε
[ẍ − 2 J ẋ − x] +

√
2ξ (t,τ ). (52)

In the limit of small ε, the bridge solution has a deterministic
equation that is similar to the motion of a charged particle in
a magnetic field in the z direction, resulting in circular orbits
in the x-y plane. This results in characteristic quasicircular
bridges, if the initial and final constraints are chosen to occur
on a circle with a fixed radius from the origin. Here, Fig. 4 gives
a parametric plot for ten random stochastic trajectories starting
at x = [1,0], while Fig. 5 graphs the constrained x,y values
in the bridge. This shows the expected circular motion, which
only occurs if the circulation term of C = −2 J is present.

In these figures, there were 1200 time steps using a semi-
implicit midpoint method [17] for the stochastic equation, with
negligible step-size errors. The bridge equations were solved
with a fourth-order Runge-Kutta finite-difference method
with 4 × 104 virtual time-steps and 40 real-time steps. The
accompanying figures give solutions of the PSDE at the final
value of virtual time, in this case τ = 0.4. There was little
or no difference found by using τ = 0.2, indicating a steady
state.
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FIG. 6. Ten typical stochastic bridge trajectories, showing evo-
lution of x,y during the constrained transition from a stable to a
metastable point for the Maier-Stein equations with α = 1, μ = 1,
and ε = 0.01. Here, τ = 1 and t = 20.

D. Nonpotential bridges

The last case we treat is a nonlinear FPE, also with a circu-
lation term and no potential solution. There are many examples
of this type, occurring in chemical reaction networks, thermal
ratchets, and communications networks. These processes can
lead to large rare fluctuations. The behavior of escape paths
and transition events has been investigated previously. Due
to the lack of a drift potential, the circulation term strongly
modifies the bridge results.

A relevant example is a two-dimensional system proposed
by Maier and Stein [55,56] and analyzed in greater detail
by some later workers [26]. This describes two-dimensional
over-damped stochastic motion in a force field that generally
has no potential, where

ẋ = xp(x,y) + √
εζ1, ẏ = yq(x,y) + √

εζ2. (53)

Here, p(x,y) ≡ 1 − x2 − αy2 and q(x) ≡ −μ(1 + x2) . If
α �= μ, then this is not a gradient system. In the special
case of α = μ, this has a drift potential. One may sample
the corresponding bridge with an equivalent partial stochastic
differential equation of

∂x
∂τ

= 1

ε
[ẍ + cẋ + u] +

√
2ξ (t,τ ), (54)

where the circulation term is an antisymmetric matrix:

C = c
ε

= 2

ε
(α − μ)xy

[
0 1

−1 0

]
, (55)

and the virtual drift vector U is given by U = u/ε, where

u =
[
x((3 + μ)ε − p2 + 2x2p + 2qμy2)

y(εα + 2pαx2 − q2)

]
. (56)

E. Nonpotential bridge numerical examples

The Maier and Stein system has a stable double-well
potential, provided that α = μ > 0. If μ > 0, then there are
local attractors at x = (±1,0) where the drift terms vanish,

-0.2 -0.1 0 0.1 0.2
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0.4

0.6

0.8
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1.2
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FIG. 7. Parametric plots of x versus y for ten independent
stochastic bridge trajectories, with α = −10, μ = 1, and ε = 0.01.
Initial condition is the stable point at x = [1,0]; total integration time
is τ = 2 and t = 20.

as well as an unstable equilibrium point at x = (0,0). In the
cases where α �= μ, these local attractors are not changed,
but the off-axis flow with y �= 0 is changed. This leads to
large excursion events occurring during the escape trajectories,
as illustrated by the solutions shown in Fig. 7. These are
well-suited to investigation using stochastic bridge techniques.
Here we focus on a stochastic bridge that connects a stable
point to the saddle point, starting at (−1,0) and ending at
(0,0). We suppose that μ = 1 and analyze different values of
α. This allows one to investigate the probability of different
escape paths that connect the two stable points, conditioned
on a predetermined transition time between the paths. An
approximate analysis of the stochastic differential equation
shows that, near the stable points, the effective equation in y

has the form

ẏ ≈ −2μy + √
εζ2.

As a result, for small enough noise coefficients ε, the y

distribution will stabilize in a short time to give 〈y2〉 ≈ ε/4μ.
However, paths with y �= 0 result in x being attracted toward
a new quasistable point, since on substituting y2 ≈ 〈y2〉 ≈
ε/4μ, the effective equation in x becomes

ẋ ≈ −x(1 − x2 − εα/4μ) + √
εζ2.

The x distribution will re-equilibrate to give an approximate
Gaussian centered around x = √

1 − εα/4μ. These analytic
calculations predict that the early-time behavior of the
x trajectories is to move rapidly to a new quasistable point
that depends on α, prior to undergoing an escape from the
local potential well.

In the potential case, with α = μ = 1, there is no circulation
term, and bridge techniques that use gradient methods are
able to calculate the stochastic bridge distributions. Typical
trajectories are shown in Fig. 6.

With α < μ, there is no potential for the drift, although
there is an effective metastable point as before. Paths with
y �= 0 result in large excursions in x, with x being amplified
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FIG. 8. Ten typical stochastic bridge trajectories, showing evo-
lution of x,y during the constrained transition from a stable to a
metastable point for the Maier-Stein equations with α = 6.67, μ = 1,
and ε = 0.01. Here, τ = 1 and t = 20.

away from the transition path, toward ±∞. There these are
conditionally excluded in the bridge. In order for the system to
travel stably between the stable points, y must remain smaller
than its local equilibrium value. This gives transition paths that
must thread the needle of small y values to make a transition.
Typical trajectories with suppressed y values near x = 0.8, as
they exit the stable region, are shown in Fig. 7. These have
α = −10.

The most interesting case is α  μ. Again, there is no
potential solution. Paths with y �= 0 will rapidly reduce x

toward the origin, away from the stable point. As a result, there
is a bifurcation during tunneling with characteristic curved
transition paths that connect the stable points [26,55], and the
opposite behavior to those with α � μ. A set of trajectories
for the stochastic bridge with α = 6.67 are shown in Fig. 8.

Finally, in Fig. 9, we show ten stochastic trajectories starting
from the stable point, but without constraints and the same
time duration. No escapes occur on this time scale. This shows
the great utility of stochastic bridges for studying rare events.
Simply taking the original equations and waiting for an escape
to occur will generally take much longer than solving the
bridge equations, with a total time duration that would become
exponentially long as the noise is reduced.

In these numerical calculations, the same RK4 techniques
with finite differences and convergence checks were used as
in Fig. 1. All Maier-Stein bridge figures used 60 time steps
and 1.5 × 104 virtual time steps. The stochastic differential

FIG. 9. Ten typical stochastic differential equation trajectories,
showing evolution of x,y for t = 20, with the same parameters as in
Fig. 8. Over this time scale, no escapes occur, and all trajectories are
trapped near the stable region at x = [1,0].

equation solutions used 5000 time steps, with no significant
discretization errors.

VI. SUMMARY

A general definition of stochastic bridges was given for
arbitrary weighted stochastic equations. A path integral was
obtained for the corresponding probability density. We show
that there is a difference in stochastic equations in forward
and backward time directions, owing to the different type of
Bayesian conditioning involved. However, the final stochastic
bridge results are completely identical regardless of the time-
direction of the underlying equation, which directly relates to
Schrödinger’s original motivation for studying this problem.
A numerical algorithm was obtained for the results given
here, using a higher-dimensional stochastic partial differential
equation. An example of the well-known exactly soluble
Brownian bridge was evaluated numerically, agreeing with
this previously known result.

Our results generalize previous ones and substantiate an
earlier conjecture on stochastic bridges for equations with
nonpotential flows. Several numerical examples are given of
how large excursions away from the direct escape path may be
analyzed using these methods.
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