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Multichain models of conserved lattice gas
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Conserved lattice-gas models in one dimension exhibit absorbing state phase transition (APT) with simple
integer exponents β = 1 = ν = η, whereas the same on a ladder belong to directed percolation (DP) universality.
We conjecture that additional stochasticity in particle transfer is a relevant perturbation and its presence on a
ladder forces the APT to be in the DP class. To substantiate this we introduce a class of restricted conserved
lattice-gas models on a multichain system (M × L square lattice with periodic boundary condition in both
directions), where particles which have exactly one vacant neighbor are active and they move deterministically
to the neighboring vacant site. We show that for odd number of chains, in the thermodynamic limit L → ∞,

these models exhibit APT at ρc = 1
2 (1 + 1

M
) with β = 1. On the other hand, for even-chain systems transition

occurs at ρc = 1
2 with β = 1,2 for M = 2,4, respectively, and β = 3 for M � 6. We illustrate this unusual critical

behavior analytically using a transfer-matrix method.
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I. INTRODUCTION

In the study of absorbing state phase transition (APT) [1],
directed percolation (DP) [2] has been considered to be the
most robust universality class. Critical behavior encountered
in many diverse problems, such as synchronization [3], damage
spreading [4], depinning transition [5], catalytic reactions [6],
forest fire [7], extinction of species [8], etc., belong to the DP
universality class [9]. It has been conjectured [10] that in the
absence of any special symmetry or quenched randomness,
APT in systems following short-ranged dynamics, charac-
terized by a non-negative fluctuating scalar order parameter,
belongs to DP. The presence of additional conservation laws,
such as particle-hole symmetry [11], conservation of parity
[12], and symmetry between different absorbing states [13]
lead to different universalities. Non-DP behavior has also been
reported in sandpile models [14] where the order parameter
itself does not have any additional symmetry but it is coupled
to a conserved density or height field [15]. In fact, the existence
of a conserved density field is not a sufficient criterion to
characterize various universality classes; the noise in the order
parameter field due to the dynamics plays a crucial role. There
are many examples of systems belonging to the DP universality
class in the presence of a conserved field, most important being
the conserved Manna models [16–20]. These models have
recently been claimed to belong to the DP class [21] contrary to
the common belief that they exhibit non-DP critical behavior.
Sticky sand-piles are another generic class of models [22]
which show DP behavior in the presence of conserved fields.

APT in the presence of a conserved field [20,23,24] has been
a subject of interest in recent years. The conserved lattice-gas
(CLG) model [25,26] and some of its extensions [27,28] are
exactly solvable in one dimension and they provide clear
examples of non-DP behavior. These models are rather simple
having trivial integer exponents. Some variations of CLG
models also show continuously varying critical exponents
or multicritical behavior [27,28]. CLG-like models in one
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dimension (1D) are known to flow to the DP universality class
when density conservation is violated [29]. Thus, one might
naively think that the non-DP behavior observed in aforesaid
models are due to the presence of the conserved density.
However, this is not true because the usual CLG dynamics
on a ladder geometry, although density conserving, lead to
an absorbing transition belonging to the DP class [21]. In this
article, we propose that the reason for the CLG in 1D (1DCLG)
belonging to a universality class different from DP is that the
particle transfer is deterministic. We show that if the dynamics
is restricted so that particles hop deterministically the CLG
models on a ladder belong to the universality class of 1DCLG.
A natural question is then, what is the nature of the absorbing
transition in multichain systems?

The multichain systems introduced in this article can be
solved using a transfer-matrix method by expressing the
steady-state weights as the trace of the product of matrices
formed by replacing each rung by a representative matrix.
When the number of chains M is an odd integer, the system
exhibits an APT at density 1

2 (1 + 1
M

) belonging to the 1DCLG
universality class with the order parameter exponent β = 1.

On the other hand, for even number of chains critical density
turns out to be 1

2 and the order parameter exponent for large
M > 4 is β = 3, with an unusual finite size effect for small
M : β = 1,2 for M = 2,4, respectively.

The article is organized as follows. In Sec. II we introduce
the restricted CLG dynamics and study APT in these models
on a ladder geometry. Here we introduce the transfer-matrix
formalism and obtain the critical exponents β,ν,η. In Sec. III
we generalize the model for M > 2 and study the odd and
even M chains in separate subsections. Finally, in Sec. IV we
conclude and discuss some important issues of the multichain
systems of the conserved lattice-gas model with deterministic
particle transfer.

II. THE MODEL

The conserved lattice-gas model in one dimension
[23,25,26] is defined by the dynamics,

110 → 101; 011 → 101. (1)
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The dynamics conserves the number of particles N or the
density ρ = N

L
. The first part of the dynamics 110 → 101,

which corresponds to rightward hopping, is effectively a
combination of 1100 → 1010 and 1101 → 1011, of which
the former one destroys the consecutive zeros (00’s) and
consecutive ones (11’s) if present in the system and the second
part is 00- and 11-conserving. The same is true for left hop
011 → 101. Thus, the number of consecutive zeros (CZs) and
consecutive 1’s can only reduce as the system evolves. Once
the system leaves a configuration with a higher number of CZs
to another with a lower number of CZs (which necessarily have
a lower number of 11’s, as 11’s are destroyed along with 00’s),
it never visits the same configuration again; for ρ � 1

2 (i.e.,
when the number of 00’s is larger than the number of 11’s) the
system eventually destroys all consecutive 1’s and reaches
an absorbing configuration which cannot evolve following
dynamics (1). On the other hand, when ρ > 1

2 , all consecutive
0’s are destroyed and the system remains active. From the exact
results [26] one knows that the absorbing transition takes place
at ρc = 1

2 with critical exponents β = 1 = ν = η.

To generalize the model to a ladder and multichain system,
we notice that the dynamics of the 1DCLG model can be
interpreted in two ways: (a) particles having one occupied
neighbor are active and they move to the neighboring vacant
site with unit rate, or (b) particles which have exactly one
vacant neighbor move to that vacant site. A natural extension of
(a) to a two-chain system (a ladder) would result in a dynamics,
where particles having at least one occupied neighbor are
active and they move to one of the available vacant sites.
The dynamics is stochastic here, as each site on a ladder has
three nearest neighbors and an active particle may have more
than one vacant nearest neighbors where it must choose one
of them randomly and independently and hops to that site.
This model was studied in [21], which showed that CLG on a
ladder exhibits an absorbing phase transition belonging to the
DP universality class. Interpretation (b) can also be extended to
a two-chain CLG model, where the particle-transfer dynamics
would be deterministic; this is because, now each of the
active particles has exactly one vacant neighbor and it hops
deterministically to that site. In the following, we study these
dynamics and show that with the deterministic particle-transfer
dynamics, CLG on a ladder belongs to the universality class
of 1DCLG, with exponents β = 1 = ν = η. Moreover, we
observe that these models on a multichain system show many
interesting features, which we discuss in the next section. First
we study the model for a two-chain system and show that this
quasi-1D system with deterministic particle-transfer dynamics
is not different from their one-dimensional counterpart.

A. CLG model on a ladder with deterministic particle transfer

The two-chain model (M = 2) is defined on a periodic
one-dimensional ladder of length L, i.e., the total number
of sites is 2L labeled by i = 1,2, . . . ,2L. Each site i of the
ladder is either vacant or occupied by at most one particle;
correspondingly the site i is denoted by si = 0,1. A generic
configuration of the system is thus represented by

C ≡
{· · · si−1 si si+1 · · ·
· · · si−1+L si+L si+1+L · · ·

}
.

FIG. 1. Schematic description of the model: Particles having two
occupied nearest neighbors and one vacant nearest neighbor are active
(filled circle), whereas all other particles are inactive (open circle).
The active particles hop to the only vacant nearest neighbor they have.

Particles are allowed to hop to the neighboring vacant site
with a rate that depends upon the total number of occupied
neighbors: those having exactly two occupied neighbors (out
of three) hop with unit rate to the only vacant neighboring site
they have. A schematic description of the dynamics is shown
in Fig. 1. We follow a random sequential update rule. All
the possible hopping scenarios are listed below, where active
particles are shown with a 1̂ and sites marked ∗ can be in any
state, vacant or occupied.{

∗1∗
11̂0

}
→

{∗1∗
101

}
;

{
∗1∗
01̂1

}
→

{∗1∗
101

}
,

{
11̂0

∗1∗

}
→

{
101

∗1∗
}

;

{
01̂1

∗1∗

}
→

{
101

∗1∗
}
, (2)

{
11̂1

∗0∗

}
→

{
101

∗1∗
}

;

{
∗0∗
11̂1

}
→

{∗1∗
101

}
.

Note that, unlike CLG on a ladder studied in [21], here the
dynamics is restricted to follow deterministic particle transfer.
However, the dynamics has a stochastic component coming
from the random sequential update rules.

It is evident from the dynamics that the total number of
particles N or equivalently the particle density ρ = N

2L
is

conserved. It can be understood that the number of active
particles (i.e., which can hop) in the system depends on the
density of particles ρ. For low densities all the particles will
be able to organize themselves such that none of them are
surrounded by two occupied nearest neighbors. Hence activity
in the system will cease and the system is expected to fall
into an absorbing state. On the other hand, for large densities,
many particles would have more than one occupied neighbor
and hence the system can remain active. Thus one expects an
absorbing state phase transition (APT) to take place when the
density of the system is decreased below a critical threshold
ρc. Our aim is to characterize the critical behavior of this APT.

For CLG on a ladder with the deterministic particle-transfer
dynamics (2), when an active particle at site i hops to the
vacant nearest neighbor it creates a vacancy at i which is now
surrounded by occupied sites. Thus particle hopping can never
create additional consecutive 0’s (CZs), either in horizontal or
in vertical directions. The existing consecutive 0’s, if present
in the initial configuration, can only decrease with time. Thus,
starting from any initial configuration the system would reach
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a stationary state, with minimum number of CZs. Since for
density ρ < 1

2 all configurations must have some CZs, the
stationary state is expected to be absorbing. On the other
hand, when density ρ � 1

2 , the dynamics (2) is expected to
get rid of all CZs present in the initial configuration and the
stationary state, like 1DCLG [26], would be devoid of CZs.
Thus the stationary configurations of the system are composed
of rungs (the vertical supports) which do not have any CZs.
Explicitly, among the four possible rungs {0

0}, {0
1}, {1

0}, and {1
1},

the stationary configurations of the system with ρ � 1
2 are

composed of only three; the rung {0
0} must be absent. To keep

track of the number of particles, we denote the rungs by two
indices n and k; n the number of particles in the rung, and
k = 1,2, . . . ,κn is a running index that distinguishes different
rungs in a given n-particle sector. Here, κ1 = 2, κ2 = 1 denotes
the number of rungs in n = 1,2 particle sectors, respectively.

The configurations in the stationary state are now

C ≡ {n1k1,n2k2, . . . ,nLkL} ≡ {niki}. (3)

However, any arbitrary combination of these three rungs i not
allowed in the stationary state as they may produce CZs. For
example, repetition of rungs {0

1} or {1
0}, which create CZs in the

horizontal direction, must be absent in the stationary state.
It is evident that in the absence of CZs, a particle that hops

from site i to j would find that two of its neighbors at j are
already occupied and thus, hopping of this active particle at
site j to the vacant neighbor i is also allowed by the dynamics
(2). So, the stationary dynamics satisfy detailed balance with
steady-state weights given by

w(C) =
{

0 if CZs are present
1 otherwise. (4)

In the following, we construct a transfer matrix T so that

w({n1k1,n2k2, . . . ,nLkL}) =
L∏

i=1

〈
niki

∣∣T ∣∣ni+1ki+1

〉
, (5)

where the orthonormal basis vectors for the transfer matrix
that correspond to different rungs are{

1

0

}
≡ |11〉;

{
0

1

}
≡ |12〉; and

{
1

1

}
≡ |21〉. (6)

Here, again we use a notation |nk〉, with n being the number of
particles in the rung and k = 1,2, . . . is a running index that
distinguishes different rungs in a given n-particle sector. To
ensure that the weight of all those configurations that produce
CZs in the horizontal direction are zero, we must set

〈11|T |11〉 = 0 = 〈12|T |12〉. (7)

Explicitly, the 3 × 3 transfer matrix is given by

T =
⎛
⎝1 1 1

1 0 1
1 1 0

⎞
⎠. (8)

In fact the weights, as written in Eq. (5), ensure that the steady
state of the CLG on a ladder has a matrix product form where

0 0.2 0.4z
0.5

0.6

0.7

ρ

0.5 0.6 0.7 0.8 0.9 1
ρ

0

0.2

0.4

0.6

ρ a

(a) (b)

FIG. 2. (a) Plot of density ρ as a function of z : ρ approaches the
critical value ρc = 1

2 as z → 0. (b) Plot of order parameter ρa (i.e.,
steady-state density of active particles) versus ρ. ρa becomes nonzero
above critical density ρc = 1

2 . For ρ = 1, all the sites are occupied
and thus ρa = 0.

each rung is represented by a matrix,{
1

0

}
≡ |11〉〈11|T ;

{
0

1

}
≡ |12〉〈12|T ;

{
1

1

}
≡ |21〉〈21|T . (9)

The steady-state probability of any configuration

PN ({niki}) = w({niki})
QN

. (10)

Here, QN is the canonical partition function,

QN =
∑
{niki }

w({niki})δ
(∑

i

ni − N

)
, (11)

which, in this model, counts the number of recurring config-
urations of a system of size 2L containing N particles. It is
convenient to work in the grand-canonical ensemble (GCE)
where the density of the system can be tuned by a fugacity z.

The partition function in GCE is Z(z) = ∑∞
N=0 zNQN ; from

Eqs. (5) and (11),

Z(z) = Tr[C(z)L]; where

C(z) =
2∑

n=1

zn

κn∑
k=1

|nk〉〈nk|T =
⎛
⎝z2 z2 z2

z 0 z

z z 0

⎞
⎠. (12)

The eigenvalues of C(z) are

λ± = z

2
(1 + z ±

√
z2 + 6z + 1); λ = −z. (13)

In the thermodynamic limit L → ∞, the partition function
gets the dominant contribution from λ+, the largest eigenvalue
of C(z),

Z(z) � λ+(z)L. (14)

The average steady-state density of the system is then

ρ(z) = z

2

∂

∂z
ln λ+(z). (15)

In Fig. 2(a) we plot ρ as a function of z; it approaches a finite
value ρc = 1

2 as for z → 0. Hence, the critical density below
which the system goes to an absorbing state is ρc = 1

2 . In this
critical limit,

lim
z→0

ρz � 1
2 + z − 4z2 + O(z3) ⇒ z � (ρ − ρc). (16)
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Above critical density ρ > 1
2 , the system remains in active

phase. To measure activity, the density of active particles
ρa , as a function of tuning parameter ρ, we calculate the
probability that an occupied site is active in the steady state. To
determine whether an occupied site is active, one must check
the occupancy status of all its neighbors; thus the activity ρa

is the steady-state average of the following three-rung local
configurations,

ρa = 2

〈
110

011

〉
+ 2

〈
011

110

〉
+
〈
111

101

〉
+
〈
101

111

〉

+
〈
111

110

〉
+
〈
110

111

〉
+
〈
011

111

〉
+
〈
111

011

〉
. (17)

A factor 2 in first two terms indicates that these local
configurations have two active sites. Let us calculate the first
term explicitly; others can be calculated in a similar way.〈

110

011

〉
= 1

Z(z)
Tr[z|11〉〈11|T z2|21〉〈21|T z|12〉〈12|T C(z)L−3]

= z3

Z(z)
〈12|C(z)L−2|11〉. (18)

It is evident that the first two terms of (17) give rise to the
lowest order terms in z, as these three-rung configurations
have four particles in total, whereas the others have five (each
particle contributes a factor z).

All the terms of (17) can be calculated in a similar way, as
in (18). The exact expression of ρa as a function of z is long
and we do not present it here, but a parametric plot of ρa(z) as
a function of ρ(z) is shown in Fig. 2(b). It clearly shows that
ρa vanishes linearly as the density approaches the critical limit
ρ → ρc = 1

2 , i.e., ρa ∝ (ρ − ρc) and thus the order parameter
exponent of the absorbing phase transition is β = 1. In the
same figure, the points represent the value of ρa obtained from
Monte Carlo simulation of the restricted CLG on a ladder, for
a system size L = 103.

In fact, to obtain the order parameter exponent β, it is
enough to calculate one of the first two terms in the expression
of ρa in Eq. (17), which are the lowest order in z, because
in the critical limit z → 0 these terms, if they turn out to be
nonzero, contribute dominantly. We consider,

ρ∗
a ≡

〈
110

011

〉
= z3

Z(z)
〈12|C(z)L−2|11〉. (19)

To the lowest order (for the system with even number of sites),
from Eq. (12) we have

〈12|C(z)L−2|11〉 = zL−2〈12|T |11〉〈11|T |12〉 · · ·
〈12|T |11〉 = zL−2.

and Z(z) ∼ zL [from Eq. (14)]. Thus, ρ∗
a � z. Again, from

Eq. (16), z ∝ (ρ − ρc), implying ρ∗
a ∝ (ρ − ρc) and thus β =

1. In Fig. 4 we have shown the plot of ρ∗
a as a function of ρ

(solid line), along with the same obtained from Monte Carlo
simulations of a system of size L = 1000.

In the critical limit the total activity ρa � z � (ρ − ρc) can
also be obtained directly from the Taylor series expansion of
ρa . However, the number of active-three-rung configurations

that contribute to ρa rapidly increase for larger M chains, and
it is convenient to calculate β from ρ∗

a , rather than from ρa.

Now we turn our attention to the density correlation
function, which for a fixed r < L

2 , is the probability that the
(i + r)th site is occupied (i.e., si+r = 1) given that si = 1.
Without the loss of generality we take the ith site is in the
lower rung. Now we can choose two matrices D and E such
that ET and DT represent the occupancy of a site i in the
lower rung, si = 0,1, respectively;

D = |12〉〈12| + |21〉〈21|; E = |11〉〈11|. (20)

Thus, the average density of the system is ρ(z) = Tr[DC(z)L]
Tr[C(z)L] ; it

is straightforward to show that in the thermodynamic limit this
expression is equivalent to Eq. (15). The density correlation
function is now

g(r) = 〈sisi+r〉 − ρ2 = Tr[DC(z)rDC(z)L−r ]

Tr[C(z)L]
. (21)

In the thermodynamic limit

g(r) ∝
(

λ−
λ+

)r

= e−r/ξ ; ξ−1 =
∣∣∣∣ln λ+

λ−

∣∣∣∣. (22)

From Eq. (13), it is evident that the correlation length ξ

diverges in the critical limit z → 0,

ξ � 1

z
= (ρ − ρc)−ν ; with exponent ν = 1. (23)

Any rung-rung correlation function, or the correlation func-
tions for activity also decay exponentially (not shown here)
with the same length scale ξ. Since at the critical point one
expects power-law correlation, g(r) ∼ r2−D−η, we conclude
that for this quasi-1D system η = 1.

The critical exponents that we obtained for the restricted
CLG model on a ladder are thus characterized by the critical
exponent β = 1 = ν = η, which is the same as the CLG model
in 1D. Previous studies of CLG models on the ladder [21]
exhibit absorbing transition in DP universality class due to the
fact that the dynamics of that model was essentially stochastic,
in the sense that the active particles there may have more than
one vacant neighbor, and then it must choose one of them
randomly as the target site, and hop there. Once the stochastic
particle transfer is ceased, in the present model, the critical
behavior of the absorbing transition becomes the same as that
of 1DCLG.

In the following section we discuss a multichain system
and calculate the critical exponents of the absorbing transitions
there. We see that the odd and even number of chains exhibit
different universal features.

III. MULTICHAIN SYSTEM

The multichain models are a straightforward generalization
of the restricted CLG on a ladder discussed in the previous
section, but their critical behavior depends on M , the number
of chains. Formally we start with a M × L rectangular lattice
where each site i = 1,2, . . . ,ML is either vacant (si = 0) or
occupied by one particle (si = 1). Further, we assume periodic
boundary conditions in both the x and y directions. The dynam-
ics of the system for M > 2 is similar to that defined on a ladder
(M = 2): sites which have exactly one vacant neighbor (i.e.,
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three other neighbors are occupied) can hop to the vacant site
with unit rate. The rightward hop of an active particle is then⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

· · ·
∗11

11̂0

∗11

· · ·

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

· · ·
∗11

101

∗11

· · ·

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (24)

where * represents an arbitrary occupancy, vacant or occupied,
and the active particle is marked with a hat. Similarly, the
active particle can also hop to the left or upward or downward
when these sites are the only vacant neighbors of a particle.

The dynamics conserves the total number of particles N or
density ρ = N

ML
and, like the dynamics on a ladder, cannot

create consecutive 0’s but destroy the ones present in the
system. Thus one expects that consecutive 0’s are absent in
the steady state [30]. Thus we work in the ρ > 1

2 regime and
assume to start with an initial configuration which does not
have any consecutive 0’s. Since the system, once transit from
a configuration with a higher number of CZs, will never come
back to visit it again (as the creation of CZs is not allowed by
the dynamics), it would be economic in terms of simulation
time to start with an initial configuration (IC) which does not
have any consecutive 0’s. For these models, we call such ICs
natural initial configurations (natural ICs) and it is certainly
possible to create such configurations for ρ � 1

2 ; we choose
to discuss the ρ > 1

2 case in more detail and show that the
critical density is ρc � 1

2 for all M. These models for M > 2
have some subtle features for ρ > 1

2 which were not present
in M = 1 [26] or M = 2 (previous section); we will discuss
these issues in Sec. IV in some detail.

It is easy to see that in the absence of CZs, if the dynamics
allows a transition from any configuration C to another one C ′
it also allows the reverse transition C ′ → C. Since any such
transition occurs with unit rate, the steady state must satisfy
detailed balance, with steady-state weight w(C) = 1 for all C

which are devoid of CZs. Thus, all the configurations (devoid
of CZs) in the supercritical regime are equally likely. Our first
step is to enumerate such configurations.

Any M-chain system of size L consists of L rungs,
which are the vertical supports. Since we want to construct
configurations which are devoid of CZs, we must primarily
ensure that every rung must not contain any CZs. Let dM be the
number of such rungs; clearly, dM is the same as the number
of allowed configurations in the steady state of the 1DCLG
model [26] on system size M with M

2 or more particles. This is
because, for a density larger than 1

2 the 1DCLG model leads to
a steady state where CZs are absent. The steady-state weights
of these models can be expressed in a matrix product form
[26]; the grand-canonical partition function with a fugacity z

that controls the particle density of the 1D chain for a system
size M is given by

Z1D(z) = Tr

[(
z 1

z 0

)M]
. (25)

For z = 1, the partition function counts all possible
configurations of the system irrespective of its density.

Thus,

dM = Z1D(1) = Tr

[(
1 1

1 0

)M]
(26)

= 1

2M
[(

√
5 + 1)M + (

√
5 − 1)M ]. (27)

In fact, the matrix that appears in Eq. (26) is simply the transfer
matrix which is used to construct a binary string which does
not possess CZs. Also note that the asymptotic form of dM is

dM � φM where φ =
√

5 + 1

2
(28)

is the golden ratio.
The M-chain system is composed of dM different kinds of

rungs, but any arbitrary arrangement of rungs is not allowed
in the steady state. This is because the rungs themselves do
not contain any CZs, but any arbitrary placement of rungs
could generate CZs on horizontal bonds. Our aim would be
to construct a transfer matrix considering each of the rungs
as basis vectors, which would automatically take care of the
forbidden arrangements. Let us categorize the collection of
dM rungs with respect to the number of particles they have;
in the n particle sector we have, say, κn rungs labeled by
k = 1,2, . . . ,κn. Thus,

M∑
n=ν

κn = dM, (29)

where ν is the minimum number of particles in a rung. Since
the rungs do not contain CZs in the vertical direction, the
minimum number of particles in the rung is

ν =
⌊

M + 1

2

⌋
=
{
M/2 for M = even

(M + 1)/2 for M = odd,
(30)

and the maximum number is M. The exact value of κn (number
of rungs that contain exactly n particles and, of course, M −
n vacant sites) is the coefficient of zn in the Taylor series
expansion of Z1D(z) about z = 0,

κn = {zn}Z1D(z). (31)

For some n it is straightforward to calculate κn. For example,
for n = M we have κM = 1 (the rung is filled with 1’s), for
n = ν, κν = 2 when M is even (alternative sites are occupied,
starting with 0 or 1) and κν = M for odd M (with n = M+1

2
particles, one of the M vertical bonds of the rung must have
consecutive 1’s).

At this stage, we use a systematic ordering of the rungs,
which can act as the basis vectors for the transfer matrix. We
represent the rungs by {nk} where n,k are integers: n varies
in the range (ν,M), and k, for a given n, varies in the range
(1,κn). The standard basis for the transfer matrix is a set of
orthonormal vectors

{|nk〉} ≡ {|ν1〉,|ν2〉, . . . ,
∣∣νκν

〉
. . .

|n1〉,|n2〉, . . .
∣∣nκn

〉
, . . .

. . .

|M1〉}. (32)
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In this basis, the elements of the transfer matrix are nonzero,
〈nk|T |n′

k′ 〉 = 1, when two rungs |nk〉 and |n′
k′ 〉 as neighbors do

not produce any CZs in the horizontal direction, i.e., if one of
the rungs has 0’s at certain positions, the other must have 1’s
at that position.

〈nk|T |n′
k′ 〉 =

{
1 if |nk〉,|n′

k′ 〉 do not generate CZs

0 otherwise.

It is easy to obtain the transfer matrix manually for small M,

but the dimension of the matrix dM ∼ φM grows exponentially,
and quickly the calculation becomes tedious. However, it can
be computed numerically noticing the fact that for any two
M-bit binary strings s and s ′ which do not have consecutive
zeros, the operation s̃&s̃ ′, where & and �represent bit-wise
AND and NOT operations, respectively, gives a nonzero value
only when there is at least one spatial position where both
strings have a 0.

It is easy to see that T L generates all possible configurations
devoid of CZs, irrespective of the number of particles (1’s). To
describe the M × L system with a conserved particle number
N (or conserved density ρ = N

ML
) we introduce a fugacity z

and write the partition function in grand-canonical ensemble
as

Z(z) = Tr[C(z)L]; 〈nk|C(z)|n′
k′ 〉 = zn〈nk|T |n′

k′ 〉. (33)

Since the minimum number of particles in any of the rungs is
ν, we can expand C(z) as follows:

C(z) =
M∑

n=ν

znCn, (34)

where matrices Cn are independent of z. The description
of the grand-canonical ensemble is incomplete, unless we
specify the density as a function of fugacity z. Density of
the M × L system can be calculated by taking trace (Tr[·])
over all configurations where one specified site of the system
is occupied. Since the rung niki

at site i is only a binary
string {si,si+L, . . . ,si+(M−1)L} with

∑M−1
j=0 si+jL = ni , we can

associate a unique decimal value D(nk) = ∑M−1
j=0 2j si+jM to

it; the decimal value is an odd integer if the first site of the
rung is occupied. Thus by defining a diagonal matrix,

D =
M∑

n=ν

κn∑
k=1

|nk〉〈nk|δ[1 − D(nk)mod2], (35)

we get the density of the system as

ρ(z) = 1

Z(z)
Tr[DC(z)L]. (36)

Of course, one standard way to calculate the density is as
follows. If the largest eigenvalue of C(z) is λ(z), in the
thermodynamic limit Z(z) � λ(z)L and the density is

ρ(z) = z

M

d

dz
ln λ(z). (37)

However, when the dimension of the transfer matrix is large
(which is indeed the fact as the dimension dM ∼ φM ) it is
advantageous to calculate ρ(z) numerically, using Eq. (36).

In the following we see that the critical density ρc where the
M × L system undergoes a nonequilibrium phase transition

from an active to an absorbing state is

ρc = lim
z→0

ρ(z) (38)

and the critical behavior of the system depends on how the
partition function and other observables depend on the z → 0
limit; in this regime, contributions from matrices Cν and Cν+1

are most important.

A. Steady state in matrix product form

The steady state average of different observables can be
calculated easily, if we write the steady-state weights of the
configurations in a matrix product form. Every configuration
of the system is composed of L rungs. Denoting a rung nk

by a matrix R(nk) (in total there are dM number of different
matrices) the steady-state probability of a configuration {niki}
can be written in a matrix product form using a matrix product
ansatz,

P ({n1k1,n2k2 . . . nLkL} = 1

QN

Tr

[
L∏

i=1

R
(
niki

)]

× δ

(
L∑

i=1

ni − N

)
,

where the δ function ensures conservation of the number of
particles N , and QN is the canonical partition function

QN =
M∑

{ni=ν}

κni∑
{ki=1}

Tr

[
L∏

i=1

R
(
niki

)]
δ

(
L∑

i=1

ni − N

)
.

The grand-canonical partition function is then

Z(z) =
∞∑

N=0

zNQN = Tr

⎡
⎣( M∑

n=ν

κn∑
k=1

znR(nk)

)L
⎤
⎦.

Comparing this with Eq. (33), we get matrices

C(z) =
M∑

n=ν

zn

κn∑
k=1

R(nk) (39)

and R(nk) = |nk〉〈nk|T . (40)

Equation (40) is very important to us, as any explicit matrix
representation is useful for the calculation of observables. For
example, the steady-state average of a particular rung n̄k̄ is

〈n̄k̄〉 = Tr[zn̄R(n̄k̄)C(z)L−1]

Tr[C(z)L]
= 〈n̄k̄|C(z)L|n̄k̄〉

Tr[C(z)L]
. (41)

A comparison of Eqs. (39) and (34) gives

Cn =
[

κn∑
k=1

|nk〉〈nk|
]
T = �nT, (42)

where �n is the projection operator, defined by the term within
brackets [·], which projects out all the rungs having exactly n

particles.
One important observable we would be interested in is the

order parameter of the absorbing phase transition, namely,
activity. Writing a matrix representation for it is not that
simple, as constructing all possible arrangements of the rungs
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that can create active sites is not possible for general M; for
M = 2, as we have discussed in the previous section, there
are eight three-rung configurations which have at least one
active site. However, one can infer about the behavior of the
order parameter at the critical point easily by considering only
any of the three-rung configurations which have the minimum
number of particles which contribute to the lowest order in z.

However, we have already mentioned, the critical behavior of
the system with an odd number of chains is different from the
same with even M; we discuss these two cases separately in
the following two sections.

B. CLG on odd number of chains

For odd number of chains, M = 2m + 1, the minimum number
of particles on a rung (which does not have CZs) is ν = m +
1. There are exactly M rungs which have (m + 1) particles
(1’s) and m holes (0’s), thus each one contains exactly one
consecutive 1 in the vertical direction. We denote these rungs
as

|ν1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

0

1

0

1

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,|ν2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

0

1

0

1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,
∣∣νkν

〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

1

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

Our first aim is to calculate the critical density ρc for the CLG
dynamics (with deterministic particle transfer) on a system
with an odd number of chains. In fact, since one can construct
configurations of L rungs (without any CZs) using only the
rungs containing ν particles (like {ν1,ν2,ν1,ν2 . . . }) the steady-
state density of the system cannot decrease below ν/M , and
one expects the critical density to be ρc � m+1

2m+1 . We show
below that ρc = limz→0 ρ(z) = m+1

2m+1 .
In the z → 0 limit, the partition function is

Z(z) = zνLTr{[Cν + zCν+1 + O(z2)]L}
= zνL

(
Tr
[
CL

ν

]+ z

L−1∑
k=0

Tr
[
Ck

νCν+1C
L−1−k
ν

]+ O(z2)

)
.

Thus the critical density is

ρc = lim
z→0

ρ(z) = Tr
[
DCL

ν

]
Tr
[
CL

ν

] . (44)

Now, since the M rungs (vectors) in the (m + 1)-particle
sector are related to each other by a rotational symmetry (with
respect to the position of a single consecutive 1 in the vertical
direction), 〈νk|Cν |νk〉 = 〈ν1|Cν |ν1〉 for any k = 1,2, . . . ,κν =
M. Thus

Tr
[
CL

ν

] = κν〈ν1|CL
ν |ν1〉. (45)

Again matrix D, defined in Eq. (35), projects out only those
rungs which have 1 in the first position irrespective of the total

number of particles. Thus,

Tr
[
DCL

ν

] =
∑

k

′〈νk|CL
ν |νk〉 = νodd〈ν1|CL

ν |ν1〉, (46)

where the prime indicates that the sum is restricted to consider
only those k for which D(νk) is an odd integer. The number
of such rungs in the (m + 1)-particle sector is νodd = m + 1.
Thus the critical density, Eqs. (45) and (46), is

ρc = m + 1

2m + 1
= 1

M

⌊
M + 1

2

⌋
. (47)

Further, in z → 0 limit, using Eqs. (34) and (36) we get

ρ(z) � Tr[D(Cν + zCν+1)L]

Tr[(Cν + zCν+1)L]
� ρc + γ z + O(z2), (48)

where γ is a nonzero constant independent of z. Thus, in this
critical limit,

z ∝ (ρ − ρc). (49)

We now proceed to calculate the order parameter ρa(z),
namely, the density of activity. To know that a particle at a
given site is active, one needs to check that all except one of
its neighbors is occupied. Since for M > 2 every site has four
nearest neighbors, the active particle must have three occupied
neighbors and one vacant neighbor; thus, one must consider
three consecutive rungs to verify the occupancy of neighbors.
One can place three different rungs in several possible ways
to construct active configurations (having at least one active
particle) which are devoid of CZs; we will not enumerate
all these configurations. To know the behavior of activity
ρa(z) in the critical limit z → 0, we need to consider only
one of the active three-rung configurations with the minimum
number of particles, because these configurations, being lowest
order in z, contribute dominantly as z → 0. In other words,
if ρa(z) = ∑

j cj z
αj with α1 < α2 < · · · , an active three-rung

configuration leads to the dominant contribution at z = 0,

ρa(z) ∝ zα1 . (50)

Comparing Eqs. (49) and (50) we obtain the order parameter
exponent β,

ρa ∝ (ρ − ρc)β, where β = α1. (51)

For odd M chain, the minimum number of particles in three
rungs is 3ν = 3(m + 1), i.e., when each rung has the minimum
ν number of particles; however, one cannot create an active
configuration only with these rungs. We show that an active
configuration can be obtained with one extra particle, i.e.,
when one of the three rungs contains a ν + 1 particle. There
are many such active configurations with 3ν + 1 = 3m + 4
particles; a systematic construction for generic M follows. This
construction is not unique, but a proof that the steady-state
average of any such configuration is nonzero and it varies
as zα1 in z → 0 limit is enough to determine the critical
exponent β.

Let us take the |ν2〉 rung from Eq. (43) and put an extra
particle on the first vacant site on this rung; this new rung
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belongs to the (ν + 1) particle sector and we denote it as |(ν +
1)1〉. Let us take the active three-rung configurations as

{ν1,(ν + 1)1,ν3} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

0

1

0

1

0
...

1

1

1

0

1

0

1
...

1

0

1

1

0

1

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)

The steady-state average of this configuration for a given M =
2m + 1 is

ρ∗
a (z) = 〈{ν1,(ν + 1)1,ν3}〉 = 1

Z(z)
〈ν1|C(z)|(ν + 1)1〉

× 〈(ν + 1)1|C(z)|ν3〉〈ν3|C(z)L−2|ν1〉. (53)

In the z → 0 limit,

ρ∗
a = zνzν+1zν(L−2)〈ν3|CL−2

ν |ν1〉
zνLTr

[
CL

ν

] = Az, (54)

where A is a positive constant. This is because Cν is a posi-
tive symmetric matrix and 〈ν3|CL−2

ν |ν1〉 � 〈ν3|Cν |ν1〉L−2 = 1.
Thus, for any odd M = 2m + 1 chain, the order parameter ρa ,
like ρ∗

a , approaches 0 continuously as

ρa ∼ (ρ − ρc)β ; β = 1. (55)

In Fig. 3(a) we have shown a parametric plot of ρ∗
a (z) as

a function of ρ(z) for different M = 3, 5, 7, 9, 11. The data
points for M = 3, 5, 7 in the same plot show ρ∗

a obtained from
a Monte Carlo simulation of the restricted CLG dynamics for
different densities. The simulation was done on a system of
size L = 1000 and starting from a natural initial configuration.
Clearly, the critical density for M = 2m + 1 is ρc = m+1

2m+1 and
it approaches 1

2 as M increases. In Fig. 3(b) we plot ρ∗
a as a

function of (ρ − ρc) in log scale to obtain the order parameter
exponent β = 1.

C. CLG on even number of chains

A special case of the even M = 2m chain is the ladder
(M = 2) which is discussed in Sec. II. There, we have
explicitly calculated the density ρ(z) and the activity ρa(z)
and found the order parameter exponent β = 1. Given that any
odd M chain undergoes an absorbing transition with exponent
β = 1, one expects that the same must be true for all even M;
however, this is not true. Note that, a ladder is a very special
case where open and periodic boundary conditions in the
vertical direction results in the same lattice structure. Further,
unlike any M > 2 system where every site has four nearest
neighbors, the ladder has only three. We will see below that
M = 4 is also a special case and it results in β = 2, whereas
any even chain with M > 4 results in an absorbing transition
with exponent β = 3.

For the even M = 2m, the minimum number of particles
in the rungs that does not contain consecutive 0’s is ν = m.

0.5 0.6 0.7 0.8 0.9 1
ρ

0

0.005

0.01

0.015

0.02

ρ∗

M=3
M=5
M=7
M=9
M=11

a

(a)

0.0001 0.001 0.01 0.1
ρ−ρ

10-5

10-4

10-3

10-2

ρ∗

M=3
M=5
M=7
M=9
M=11

a

c

(b)

FIG. 3. The order parameter ρa is the sum of the steady-state
averages of several three-rung configurations, of which one of the
terms, which is lowest order in z, is ρ∗

a given by Eq. (52). (a) A
parametric plot of ρ∗

a (z) as a function of ρ(z), calculated following
the transfer-matrix method (solid line) for M = 3, 5, 7, 9, 11 (top to
bottom) is compared with the same obtained for different densities
(symbols) using Monte Carlo simulations of the restricted CLG
dynamics (density conserving) on a M × L system, with L = 1000
and M = 3, 5, 7. Clearly, ρ∗

a vanish at ρc = 1
M

�M+1
2 �. (b) Log scale

plot of ρ∗
a as a function of (ρ − ρc), along with a line with unit slope

(dashed line) indicates that ρ∗
a ∼ (ρ − ρc)β with β = 1.

There are exactly two rungs which have ν particles, i.e.,
κν = 2,

|ν1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ν2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (56)

We use Eqs. (44), (45), and (46), which also holds true when M

is even (can be checked easily) to calculate the critical density,

ρc = lim
z→0

ρ(z) = Tr
[
DCL

ν

]
Tr
[
CL

ν

] = νodd

κν

= 1

2
. (57)
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In fact, since the rungs are devoid of CZs, the minimum
density of a configuration is ρ = 1

2 , obtained from, say,
{ν1,ν2,ν1,ν2 . . .} and one expects the critical density ρc � 1

2 .

However, all configurations for density ρ > 1
2 are not active

and one needs to check explicitly that the minimum density is
the critical density.

Next we focus on the order parameter ρa . Here too, we
need to know three consecutive rungs to identify whether
a particle at a given site is active, i.e., the active site must
have three occupied and one vacant neighbor. Of all such
three-rung configurations, what contributes near the critical
point is the active three-rung configuration that has the
minimum number of 1’s. Unlike odd M , one cannot create
an active three-rung configuration with 3ν + 1 particles; we
need at least 3ν + 2. We start with M = 4, which is the first
even chain system where the lattice sites have four nearest
neighbors, and extend it to M = 6,8, . . . . Let us take the
|ν1〉 = (1,0,1,0,1,0, . . . ), put a particle at the first vacant site,
and move the particle from third to fourth position and denote
this rung as |(ν + 1)1〉 = (1,1,0,1,1,0,1,0, . . . ). Let us put a
particle at the second vacant site of |ν2〉 = (0,1,0,1, . . . ) and
denote it as |(ν + 1)2〉 = (0,1,1,1,0,1,0,1, . . . ). Thus one of
the active three-rung configurations with minimum number of
particles is {(ν + 1)1,(ν + 1)2,ν1},

M = 4 :

⎛
⎜⎜⎝

1
1
0
1

0
1
1
1

1
0
1
0

⎞
⎟⎟⎠; M > 4 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
1
1
0
1
0
...

0
1
1
1
0
1
0
1
...

1
0
1
0
1
0
1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (58)

The steady-state average of this configuration for a given M =
2m is

ρ∗
a (z) = 〈{(ν + 1)1,(ν + 1)2,ν1}〉

= 1

Z(z)
〈(ν + 1)1|C(z)|(ν + 1)2〉〈(ν + 1)2|C(z)|ν1〉

× 〈ν1|C(z)L−2|(ν + 1)1〉
= z2ν+2 〈ν1|C(z)L−2|(ν + 1)1〉

Tr[C(z)L]
. (59)

If |ψ〉,〈ψ | are, respectively, the right and left normalized
eigenvector of C(z) corresponding to the largest eigenvalue
λmax = zνλ(z), in the thermodynamic limit L → ∞ one can
write ρ∗

a as

ρ∗
a (z) = z2

λ(z)2
〈ν1|ψ〉〈ψ |(ν + 1)1〉. (60)

This expression, being independent of system size L, is very
useful in evaluating ρ∗

a (z). The results for different M are
shown in Fig. 4. For M = 4, we have dM = 7 dimensional
matrix C(z) = z2C2 + z3C3 + z4C4. Since we are interested in
the z → 0 limit it is sufficient to take an approximation C(z) �
z2[C2 + zC3] and now the largest eigenvalue is λmax(z) =

0.6 0.8 1ρ
0

0.02

0.04

ρ a

0.6 0.8 1ρ
0

0.004

0.008

ρ a

0.6 0.8 1ρ
0

0.001

0.002

ρ a

0.6 0.8 1ρ
0

0.0003

0.0006

ρ a

(a) (b)

(c) (d)

*

*

*

*

FIG. 4. Parametric plot of ρ∗
a (z), the steady-state average of

the active three-rung configuration in (58), as a function of ρ(z).
(a), (b), (c), and (d) correspond to even M = 2, 4, 6, and 8, respec-
tively. Solid lines are obtained from the transfer-matrix formulation
and the symbols correspond to the same obtained from Monte
Carlo simulation of the restricted CLG on the M × L system with
L = 1000. Clearly, ρ∗

a vanishes at ρc = 1
2 for all M .

z2λ(z) where

λ(z) = 1
2 (1 + 3z +

√
1 + 2z + 9z2). (61)

In the z → 0 limit,

ρ(z) = z

M

d

dz
ln λmax(z) � 1

2
+ z

2
+ O(z2). (62)

Thus the critical density ρc = 1
2 matches with the generic result

(57) obtained for even M. Moreover, in the critical regime, we
have z ∝ (ρ − ρc).

The expressions for the eigenvectors are lengthy (omitted
here), but the product of the ν1th element of |ψ〉 and the
(ν + 1)1th element of 〈ψ | is

〈ν1|ψ〉〈ψ |(ν + 1)1〉 = 1

2
√

1 + 2z + 9z2
. (63)

Using this in Eq. (60), in the critical limit we get

ρ∗
a (z) � z2

2
+ O(z3). (64)

Thus, in the critical regime, the order parameter for M = 4
behaves as ρa(z) ∼ (ρ − ρc)β , with β = 2. For higher M ,
extracting the order parameter exponent analytically using
Eq. (60) is difficult; for even M > 4 we proceed to get an
estimate from Eq. (59).

In the z → 0 limit,

C(z)L = zνL

⎡
⎣CL

ν + z

L−1∑
j=0

Cj
ν Cν+1C

L−1−j
ν + O(z2)

⎤
⎦.
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Here, from Eq. (42) we have

Cν = �νT = (|ν1〉〈ν1| + |ν2〉〈ν2|)T , (65)

which has the following properties:

C2
ν = |ν1〉〈ν2|T + |ν2〉〈ν1|T ,

C2l
ν = C2

ν ; C2l+1
ν = Cν,

(66)
Tr[Cν] = 0; Tr

[
C2

ν

] = 2,

Cν |ν1〉 = |ν2〉; Cν |ν2〉 = |ν1〉;
where l is a positive integer. The proofs of these relations are
straightforward if we use the fact 〈νk|T |νk′ 〉 = 1 − δk,k′ . We
proceed further considering the system size to be L = 2l; thus,
to leading order in z

Tr[C(z)L] = zνL
[
Tr
[
C2

ν

]+ O(z)
] = zνL[2 + O(z)], (67)

and

〈ν1|C(z)L−2|(ν + 1)1〉
zν(L−2)

= 〈ν1|CL−2
ν |(ν + 1)1〉

+ z

L−3∑
j=0

〈ν1|Cj
ν Cν+1C

L−3−j
ν

× |(ν + 1)1〉) + O(z2). (68)

Now, 〈ν1|CL−2
ν |(ν + 1)1〉 = 〈ν1|C2

ν |(ν + 1)1〉 = 0 and we are
left with the O(z) term of Eq. (68). In the sum, all the matrix
product terms that end with Cν would vanish, because Cν |(ν +
1)1〉 = �νT |(ν + 1)1〉 = 0 as, for M > 6 the rung (ν + 1)1

cannot be a neighbor of any of the rungs in the ν-particle
sector. So, the only surviving term in the sum is

〈ν1|CL−3
ν Cν+1|(ν + 1)1〉 = 〈ν1|CνCν+1|(ν + 1)1〉 = 1.

Finally, to the lowest order in z, Eq. (68) gives

〈ν1|C(z)L−2|(ν + 1)1〉 = zν(L−2)z. (69)

Using this and Eq. (67) in Eq. (59) we obtain

ρ∗
a � z3 for even M � 6. (70)

To find the order parameter exponent we need to know the
behavior of ρ(z) at the critical point. As z → 0,

ρ(z) = Tr[DC(z)L]

Tr[C(z)L]
= 1

2
+ αz, (71)

where α is a positive constant; a plot of ρ(z) versus z is shown in
Fig. 5(a) for M = 2, 4, 6, 8, 10. Thus in the critical regime, z ∝
(ρ − ρc) and ρ∗

a for even M � 6 is proportional to (ρ − ρc)β

with β = 3.
To summarize, when the density approaches the critical

value ρ → ρc, ρ∗
a and thus the order parameter ρa behave as

ρa � 1

2

{
(ρ − ρc)2, M = 4

(ρ − ρc)3, M = 6,8, . . . .
(72)

Thus, the order parameter exponent for the even M-chain
system is

β =

⎧⎪⎨
⎪⎩

1 for M = 2(ladder)

2 for M = 4

3 for M = 6,8, . . . .

(73)
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FIG. 5. (a) ρ(z) as a function of z. (b) Log scale plot of ρ∗
a shown

in Fig. 4 for M = 2, 4, 6, 8, 10 (top to bottom) as a function of ρ − ρc

shows that β = 1, 2 for M = 2, 4 and β = 3 for even M > 4. Lines
with slope 1, 2, 3 are shown in dashed lines for comparison.

In Fig. 4 we have shown the plot of ρ∗
a as a function

of ρ for M = 2, 4, 6, 8 calculated using the transfer-matrix
formulation (solid line) and compared it with the same
obtained from the Monte Carlo simulation of the M-chain
CLG model with deterministic particle transfer, for chain
length L = 1000. They clearly indicate that the absorbing
transition occurs at ρc = 1

2 . In Fig. 5(b) with the same data,
ρ∗

a is plotted against ρ − ρc in log scale to obtain the order
parameter exponent β, which agrees with Eq. (73).

IV. CONCLUSION

In this article, we study the conserved lattice-gas model
on a multichain system, where particles having exactly one
vacant neighbor are considered active, and they are allowed to
hop deterministically to the only vacant neighbor they have.
For a single chain, this model reduces to the usual CLG model
in 1D, exhibiting a nonequilibrium phase transition from an
active to an absorbing state when the density of the system
falls below the critical value ρc = 1

2 ; the critical behavior here
is rather trivial, having integer exponents β = 1 = ν = η. A
two-chain conserved lattice-gas model has been studied earlier
[21], where particles having at least one occupied neighbor and
one vacant neighbor are considered active; absorbing transition
in these models turns out to be in the DP universality class,
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conjectured as the most robust universality class of absorbing
transition. Since the ladder in the thermodynamic limit can
be considered as a one-dimensional system, the change of
universality class from 1DCLG to DP was rather surprising. A
possible reason for the flow to the DP class is the stochasticity:
particles having exactly one occupied neighbor must choose
one of the other two neighbors (which are vacant) as the target
site and hop there. If stochastic particle transfer is a relevant
perturbation, we should retain 1DCLG universality when this
stochasticity is ceased and particle hopping is restricted to be
deterministic. Keeping this view in mind we study a restricted
CLG dynamics on a ladder (Sec. II) and indeed, the APT turned
out to be in the 1DCLG class.

It is natural to expect that this scenario must prevail for
any multichain M × L system, as in the thermodynamic limit
L → ∞ (keeping M fixed) the system is effectively one
dimensional. This is indeed the case when M is an odd
integer and the APT for odd number chains belongs to the
1DCLG universality. The scenario is, however, different when
the number of chains is an even M � 4; there, the value of order
parameter exponent β depends on the number of chains. For
M = 2 (ladder) the APT belongs to the 1DCLG universality
with β = 1, whereas for M = 4 we get β = 2, and for any
even M > 4 the order parameter exponent is β = 3.

We calculate the critical exponents using a transfer-matrix
method, where the steady-state weight can be written as the
trace of a matrix string constructed by representing rungs or
vertical supports of the M-chain systems as matrices. The
number of matrices required for such a matrix product form
is the same as the number of periodic binary strings which
are devoid of consecutive zeros. This number, and thus the
dimension of the transfer matrix grows exponentially as φM

where φ is the golden ratio. Along with this, the possible ways
a configuration can have local activity also grows quickly and
calculation of the order parameter ρa , which is the density
of active particles, becomes practically impossible as M

increases. However, the critical exponent β can be obtained
from ρ∗

a , the steady-state average of an active three-rung
configuration that contains the minimum number of particles.
We substantiate the calculation of ρ∗

a with the numerical values
obtained from Monte Carlo simulation.

Like any other absorbing phase transition into multiple
absorbing configurations, Monte Carlo simulation of these
models also suffer from the choice of initial condition [31];
it is presumed that the critical steady states of these systems
are hyperuniform [32] and the system takes an unusually long
time to relax and achieve that. One must carefully choose
initial conditions which preserve the natural correlations of
the stationary state. Again unlike the 1DCLG model (M = 1)
where all supercritical configurations are active, for M � 2
chains the supercritical states have (i) absorbing configurations
in the supercritical region and (ii) active configurations which
are dynamically inaccessible. For example, when M is even,
there are only two configurations at ρc which are devoid of
CZs; since one of the sublattices is completely occupied,
in this configuration each particle has exactly four vacant
neighbors and one can create absorbing configurations with
higher density by adding additional particles, keeping two

10-2

10-1

100 101 102 103 104 105 106

ρ a
 (t

)

t

random IC
natural IC

FIG. 6. The density of active particles ρa(t) as a function t for
M = 2. The evolution from a random initial condition (IC) exhibits
undershooting and long relaxation to the stationary state; both these
ill effects are avoided if we use the natural IC. Here L = 104 and
ρ = 0.53.

neighbors of every particle vacant. Also, the dynamically
inaccessible active configurations are not so uncommon; some
examples M = 2,3 are

(
. . . 011̂010 . . .

. . . 101101 . . .

)
;

⎛
⎜⎝

. . . 10111 . . .

. . . 011̂01 . . .

. . . 11110 . . .

⎞
⎟⎠. (74)

To avoid both kinds of configurations in numerical simulations
we start with an initial state that contains the rung |M1〉 which
is fully occupied and the rungs which have minimum number
ν = �M+1

2 �; of course, care must be taken so that the initial
configuration is devoid of CZs. The conserved density of
the system ρ = ζ + (1 − ζ ) ν

M
can be tuned by changing the

number of |M1〉 rungs ζL. In Fig. 6 we plot ρa(t) as a function
of t for density ρ = 0.53 and L = 104 starting from a random
IC (where ρL particles are placed at randomly chosen sites,
avoiding multiple occupancies) and natural IC, created from
the rungs {νk} of the ν-particle sector and the rung {M1}.
Clearly, the random IC takes a long time to relax and produce
undershooting, whereas the natural IC relaxes very quickly.

In the calculation of the partition function, however, we
have summed over all configurations which are devoid of CZs,
without avoiding (i) absorbing configurations with ρ > ρc

and (ii) the dynamically inaccessible active configurations.
We presume that at any supercritical density, the fraction
of such configurations in comparison to the total number of
configurations devoid of CZs vanishes in the thermodynamic
limit. This assumption must be true as, for any M , as ρ∗

a

obtained from the numerical simulations match with the
analytical results obtained using a transfer matrix and the
partition function; a proof, though desirable, is missing.

It is rather surprising that the critical exponents of this
class of models depend on the geometry of the lattice. For
even M , the system with two or four chains for which we
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get β = 1,2 respectively, may be considered as the finite size
effect, although unusual. The most surprising point is the large
M limit, where β explicitly depends on whether M is odd or

even; in this case the M → ∞ limit is nontrivial. It remains to
see what the critical behavior of the restricted CLG model is
in two dimensions.
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