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We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic
lattice in the upper critical dimension Du = 4. After re-extracting the critical exponents of avalanches, we
concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are
reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been
tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution
functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the
distribution function of avalanche mass is the same for the d-dimensional cross sections and the d-dimensional
BTW model for d = 2 and 3. The geometrical quantities, however, have completely different behaviors with
respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of
the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the
Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for
the fractal dimensions. The most important one showing this feature is the fractal dimension of loops df , which
is found to be 1.50 ± 0.02 ≈ 3

2 = dGFF
f .
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I. INTRODUCTION

The concept of self-organized criticality was introduced
by Bak, Tang, and Wiesenfeld [1,2] (BTW model) and
was realized with the so-called Abelian sandpile model.
Many analytical and theoretical aspects of this model in any
Euclidean dimensions is known [3–7]. Among them, one
can mention different height and cluster probabilities [8],
avalanche distribution [9–11], the connection of the model
to spanning trees [12], ghost models [13], and q-state Potts
model [14,15]. For a good review, see Ref. [16].

The critical properties of the sandpile models on their upper
critical dimension Du is a challenging problem in this context
[4]. It is known that Du = 4 for BTW model [4,6,17], whereas
for other variants of sandpile model it may be different;
e.g., the dissipative sandpile model was conjectured to be
D

dissipative
u = 5 [18]. Though the critical exponents of the model

on the higher spatial dimensions are expected to be the same
as the mean-field one [11], the behaviors right at the upper
critical dimension are more complex and are shown to be
logarithmically corrected [19,20]. Apart from this complexity,
there is a theoretical interest on the problem of energy
propagation in lower dimensional portions of this system
[21]. More explicitly, the question is whether the exponents
of the avalanches in the lower-dimensional subsystems are
the same as the mean-field ones [21]. This reveals the internal
structure of the original model [22], which is the BTW model
in the upper critical dimension in this paper.

A common way to lower the dimensionality of the system
is the use of cross sections; i.e., track the avalanches in the
cross sections of the model in hand [21,22]. In this way, we
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will have an effective (d − 1)-dimensional model which has
the effect of the extra (dth) dimension whose information is
coded in the effective (d − 1)-dimensional model. This yields
some valuable information about the original (d-dimensional)
system. This helps to observe how things change when the
dimensionality of the system is lowered in the presence of
the dth dimension and how the criticality of the original
model affects the mentioned subsystem [22]. This is more
vital for d = Du = 4 for BTW model, since this dimension is
the margin between non-mean-field and mean-field behaviors
and one can observe how things change when the effective
dimension of the system is lowered and how far the resulting
exponents will be from the mean field results. This needs large
scale numerical simulations and high-quality data, since as
a well-known fact the numerical exponents of the sandpile
models is a challenging problem.

In this paper, we present a detailed analysis of the problem;
After reproducing the results of the previous works on the
BTW model in four-dimensional (4D) systems [4], we take
into account the effective three-dimensional (3D) system by
considering a cubic cross section at x1 = L/2 (in which x1 is
the arbitrary dimension to be subtracted and L is the linear
size of the lattice). We will see that the finite-size scaling
theory is applicable for both d = 4 (as expected) and effective
d = 3 models. Interestingly, some calculated exponents (not
all) are identical to the 3D BTW model. The other effective
model is obtained by further reducing the dimensionality of
the system, i.e., the model living in x1 = x2 = L/2 cross
section. We will see that the resulting induced model is very
different from both mean-field theory and two-dimensional
(2D) BTW model. The justification of hyperscaling relations
between exponents shows that the resulting system satisfies the
finite-scaling relations. At the end, the geometrical aspects of
the loops in 2D is analyzed, showing that the fractal dimension
of loops is nearly 1.5, which is consistent with the Gaussian
free field (GFF) [23–27].
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The paper has been organized as follows: In Sec. II, we
introduce and describe the model and determine the effective
models. In Sec. III, we present the results and some findings of
the previous works reproduced for the four-dimensional case.
The results for effective three dimensions and two dimensions
are presented in Sec. III A and Sec. III B, respectively. Section
IV is devoted to a comprehensive conclusion.

II. MODEL AND SIMULATIONS

In this section, we briefly introduce the standard BTW
model on d-dimensional hypercubic lattice [1]; each site i

has an integer height (energy) hi � 1. At initial state, one
can set randomly the height of each site in which hi � hc.
hc is the threshold height equal to the number of nearest
neighbors of each site (e.g, for hypercubic lattice hc = 2d).
At each time step a grain is added on a randomly chosen
site (hi → hi + 1). If the height of this site exceeds hc,
a toppling occurs: hi → hi + �i,j in which �i,j = −hc if
i = j,�i,j = 1 if i and j are neighbors, and zero otherwise.
A toppling can cause the nearest-neighbor sites to become
unstable (have height higher than hc) and topple on their
turn and so on, until all of the lattice sites are below the
critical threshold (stable state). This process is called an
avalanche. The model is conservative and energy is dissipated
only from the boundary sites. The properties of the model in
d = 2 has been investigated extensively and well understood
in the literature [16,28,29], as well as d = 3 [4,11,21]. For
d = 5,6 and higher dimensions, the exponents are consis-
tent with the mean-field results [4,30]. The upper critical
dimension that separates these two phases is d = Du = 4, in
which the determination of the exponents needs some cares
[4,19].

One way to recognize the critical systems is by the power-
law behaviors and the emergence of critical exponents. Let �

denote the total (host) system and ω ⊂ � is some subsystem
of �. A very important question is whether the criticality of �

can induce critical (such as power-law) behaviors in ω as its
subsystem. This problem is relevant since we are sometimes

interested in the models that live on the hypersurfaces. If the
subsystem ω also enjoys the criticality as the host model,
we name it as the induced criticality. The induced critical
subsystem ω may show very different properties with respect
to the critical (host) model [21]. This is due to the fact that
in the dynamics of ω, some information spreads out toward
the host �, and vice versa, which causes the correlations in
ω to differ from both host � as well as isolated model in ω

(isolated model means that the subsystem ω is not embedded
in any larger system). This problem can be realized in lower
dimensional cross sections of d-dimensional (host) system.
The important question is how the information in d dimensions
would be reflected to the lower dimensions. In this mechanism,
one can measure how some information is lost and how the
degrees of freedom in the subtracted dimension affect the lower
dimensional model, i.e., which model lives in the lowered
dimensional system. If the subtracted dimension is temporal,
then one is looking at a frozen model with no dynamics.
The investigation of the contour lines of statistical systems
[31] and ground state of the quantum systems [32] are some
examples. A more interesting situation is the case in which the
subtracted dimension is spatial one. The example is the cross
sections of 3D BTW model, which is proposed to share some
critical behaviors as the 2D Ising model [21]. In this paper,
along with the four-dimensional BTW (as the host) model,
we consider the two- and three-dimensional cross-sections
as the mentioned subsystems. The effective two and three-
dimensional energy propagation for the BTW model is the
aim of the present paper. We directly map a d = 4-dimensional
system to d − 1 = 3 and d − 2 = 2-dimensional one by using
cross sections. The induced criticality of the resulting system
is shown to be completely different from the four-dimensional
case. A schematic set up of this process has been presented
in Fig. 1(a), in which shows a cross section of the hypercubic
lattice at x1 = L/2. In this figure, the colored small boxes
are the sites in which a toppling occurred in an avalanche.
Apparently, this cross section is a three-dimensional system
with some colored and uncolored sites which is analyzed
in this paper. The d − 2 effective model is defined on

FIG. 1. (a) The avalanche region of 3D cross section of a 4D avalanche on a hypercubic lattice with size L = 16, and also a cut from its
2D cross section. (b) The boundary loop of an avalanche of 2D cross section of a 4D avalanche on a hypercubic lattice with size L = 144.
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x1 = x2 = L/2 cross sections which is apparently two-
dimensional system [see Fig. 1(a)]. For this case, in addition to
customary investigations, we have also studied the geometrical
aspects, like the closed loops which is defined as the external
frontier of a connected avalanche [see Fig. 1(b)]. Note that
though the original avalanche is simply connected, in the three
and two-dimensional effective models, it can be composed of
some disjoint components. An example has been shown in

Fig. 1(a), in which different components have been shown by
different colors (in this figure the subtracted dimensions have
been considered to be x1 and x2). The first attempt concerning
the SOC systems was made by Dashti-Naseabadi et al. [21],
in which two-dimensional propagation of three-dimensional
BTW model was investigated.

In the following sections, we analyze global and local
properties of this model in 4D, effective 3D and effective 2D

(a) (b)

(c) (b)

(e)

FIG. 2. The distribution function of (a) the number of relaxation events s4 (which is equivalent to size of avalanche S4), with the exponent
τs4 = 1.50(3) (derived using χ 2 method), and (b) the gyration radius R4 with the exponent τR4 = 3.00(4). (c) The qth moment of s4 versus
different sizes L. (d) The exponent σs4 versus q, which is derived from Eq. (3). Inset: The exponent σR4 versus q. (e) The function S4 versus
R4 with slope (fractal dimension) γ L=120

S4R4
= 3.90(3). Inset: the finite-size effect for γ ∞

S4R4
= 4.00(5).
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systems. Our analysis for 4D avalanches involves the scaling
relation between the global quantities and their distribution
functions, as well as local ones. The quantities studied in this
paper are as follows (d = 2, 3, and 4 shows the dimension): the
number of relaxation events sd , the size (mass) of the connected
component of an avalanche Sd , the number of distinct toppled
lattice sites sdd , the gyration radius Rd which is defined as:
R2

d ≡ 1
Sd

∑Sd

i=1 (�ri − �rcom)2, which is the gyration radius of the
points involved in a connected component of an avalanche. In
this formula, �ri is the position vector of the ith point of the
avalanche in d spatial dimension and �rcom ≡ 1

Sd

∑Sd

i=1 �ri is the
center of mass of the avalanche.

Note that sd, sdd are the same; since the probability that a
site topples more than one time in an avalanche is negligibly
small for d � 3 [33]. Moreover, Sd is equal to sd and sdd in
d = 4, since the avalanches are simply connected, but it is
not true for cross sections; because an avalanche may have
multiple distinct components in the cross sections. For the
two-dimensional case, we have also analyzed the following
geometrical quantities: the loop lengths l, which is the length
of the loop that is the external perimeter of a 2D cross section
of a micro avalanche; the area inside loops a, which is the total
area that is contained in the loop; the gyration radius of loops r .

Let us mention some comments concerning the distribution
functions of the statistical observables. For any critical system
in the thermodynamic limit L → ∞, one expects that the
distribution function of any statistical observable x (=one of
the observables of the above list) behaves like P (x) ∼ x−τx

in which τx is the exponent corresponding to the observable
x = sd,sdd,Sd,Rd with d = 4,3,2 and also l, a, and r .

An important relation is for the fractal dimensions defined
by y ∼ xγxy in which y and x are the statistical observables.
The relation Px(x)dx = Py(y)dy for the corresponding distri-
bution functions then leads to the scaling relation,

γxy = τy − 1

τx − 1
. (1)

It is notable that this is the case only when the conditional
probability P (x|y) be a narrow function of both x and y.

For finite systems, the finite-size scaling theory predicts
that [4]

P (x,L) = L−βg(xL−νx ), (2)

in which g is a universal function and β and ν are the
exponents corresponding to x. A simple dimensional analysis
shows that τx = β

ν
, which will be tested for all observables

in the remainder of the paper. The exponent νx determines
the cutoff behavior of the probability distribution function. If
finite-size scaling works, all distributions Px(x,L) for various
system sizes have to collapse, including their cutoffs. Then the
argument of the universal function g has to be constant. One
can simply show that rcutoff ∼ Lν ; i.e., the cutoff radius should
scale with the system size L and finally one gets νx = γxr [4].

The monofractality and multifractality of the sandpile
models is the notion that is served as an important issue in the
literature. Before closing the section, we mention some points
on the multifractal structure of the model, which is a longstand-
ing debate in the literature. In fact, the relation Eq. (2) is only
correct for monofractal systems. To investigate this, we use

the method of moment analysis presented in Ref. [34]. To this
end, we should calculate the qth moment of the x variable 〈xq〉
(x = the statistical observable in each dimension), defined by

〈xq〉L =
∫

Px(x,L)xqdx ∼ Lσx (q), (3)

in which σx(q) = νx(q − τx + 1) for monofractal systems.
It is seen that for monofractal systems σx(q) has the linear
behavior in terms of q, i.e., σx(q + 1) − σx(q) = νx . It is a
very serious test for monofractality and multifractality of the
system. In addition, the exponents can be extracted from this
analysis. In the following sections, we use this analysis.

III. NUMERICAL RESULTS

This section is devoted to the numerical results. We
present the results for four-, three-, and two-dimensional cases
separately. To extract the exponents, we have used the data
collapse technique. To fit the data, we have used the χ -square
method. The results for all dimensions show a clean finite-size
scaling with the exponents to be reported in the following
sections. As stated in the previous section, the statistics of sd

and sdd is the same and we only consider sd in the following
sections.

We consider four-dimensional BTW model on a hypercubic
lattice of linear sizes L = 48, 70, 84, 100, and 120, and its
three- and two-dimensional cross sections. For calculating our
desired quantities, more than 5 × 107 avalanches are taken into
account. We start with a random height distribution hi ∈ [1,6]
and inject the sand grains randomly through the sample. Once
the system reached the steady state, the statistical observables
are analyzed. To make the samples independent, L2 random
injections are made between two successive samplings.

First, we have reproduced the results of the previous works.
These results have been gathered in Figs. 2(a), 2(b), and 2(e). In
Fig. 2(a), the data collapse of the distribution function of s4 has
been shown for various lattice sizes. Our analysis shows that
this function fulfills properly the finite-size scaling hypothesis,
Eq. (2), with βs4 = 5.4, νs4 = 3.6, and τs4 = 1.50(3). These
results are consistent with the mean-field ones [4] as indicated
in Table I. In Fig. 2(b), we see that βR4 = 3.0, νR4 = 1.0, and
τR4 = 3.00(4).

The exponent σs4 (q) has been plotted in Figs. 2(c) and 2(d).
In Fig. 2(c), 〈sq

4 〉 has been calculated in terms of L for various
amounts of q. The corresponding σs4 (q) has been shown in the
right figure whose slope is 3.86(1), which is approximately
compatible with νs4 ≈ 3.6. On the other hand, τs4 can extracted
from this figure to be 1.58(1), which is in agreement with
the obtained result from data collapsing. The linear behavior
of this quantity shows its monofractal behavior. νR4 and τR4

have also been reported in the inset of this figure, from which
(considering only the linear part of the graph) we see that

TABLE I. The exponents of four-dimensional BTW [4,33] model.

τ ν β
β

ν
τMF νMF βMF

s4 1.50(3) 3.6(1) 5.4(1) 1.5 3
2 4 6

R4 3.00(4) 1.0(1) 3.0(1) 3.0 — — —
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. The distribution function of (a) the number of relaxation events s3 with the exponent τs3 = 1.33(3), (b) the gyration radius R3 with
the exponent τR3 = 3.30(4), and (c) the size of the clusters S3 with the exponent τS3 = 1.85(4). (d) The function S3 versus R3 with slope (fractal
dimension) γ L=120

S3R3
= 2.75(3). Inset: the finite-size effect of γS3R3 with γ ∞

S3R3
= 2.80(5). (e) The qth moment of s3 versus different sizes L.

(f) The exponent σs3 versus q, which is derived from Eq. (3). Inset: The exponent σR3 versus q.
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νR4 = 0.90(7) and τR4 = 2.73(7). It is seen that for small q

values this graph is not linear, whereas for higher amounts of
q the graph shows linear behavior. Such a behavior has also
been seen in two-dimensional systems for which considering
only the linear part of the graph yields the desired results [35].

The mono- and multifractality of the avalanches in the
BTW is a long-standing problem in the literature [11,34]. As
pointed out in Ref. [34], the number of topplings (s) shows
multifractal behaviors for two dimensions, whereas the mass
of the avalanches (S) is monofractal. In four dimensions, the
statistics of s and M is the same and as is seen in our analysis,
both show the monofractal behaviors.

To measure the fractal dimension of the four-dimensional
clusters γS4R4, we calculate average S4 in terms of R4, which
has been indicated in Fig. 2(e). The measured fractal dimension
3.90(3) for the maximum lattice size L = 120 is consistent
with the hyperscaling relation 1, i.e., (τR4 − 1)/(τS4 − 1) = 4.
For all fractal dimensions we have calculated the finite-size
effect and observed that they fulfill the following relation: via
the relation all

γxy = γ ∞
xy − κxy

(
10

L

)
, (4)

in which γ ∞
xy is the extrapolated exponent (the thermody-

namical limit of the exponent, i.e., L → ∞) and the slope
κxy is another exponent showing the rate of approach to the
thermodynamic limit (the factor 10 is to make number more
convenient). This has been shown in the inset of the Fig. 2(e),
which shows that γ ∞

S4R4
= 4.0(1) and κS4R4 = 2.5 (the slope

has been obtained excluding the bad data for L = 48). It is
a well-known result in the field [4], i.e., γSdRd

= d in the
d-dimensional BTW model, since the avalanches are simply
connected. This is not necessarily true for lower-dimensional
cross sections (as will be seen in the following sections), for
which the avalanches contain some hollows (untoppled sites),
which affect their fractal dimensions.

A. Three dimensions

As stated in the previous section, we measure the induced
criticality in lower-dimensional cross sections of the four-
dimensional BTW (host) model. This part is devoted to
the quantities that are derived from the three-dimensional
cross sections that were introduced in Sec. II. We have first
extracted the four-dimensional avalanches and then simply
have analyzed the three-dimensional cross sections of the
avalanches. The results for distribution functions have been
shown in Figs. 3(a)–3(c), whose exponents have been gathered
in Table II. It is interestingly seen that s3 has the same
exponents as the ones for s in the three-dimensional BTW

TABLE II. The exponents of the three-dimensional cross sections.
The exponents for three-dimensional BTW [4,33] model have been
shown for comparison.

τ ν β
β

ν
τ3DBTW ν3DBTW β3DBTW

s3 1.33(4) 2.6(1) 3.5(1) 1.34 4
3 3 4

R3 3.30(4) 1.0(1) 3.3(1) 3.3 2 — —
S3 1.85(4) 2.9(1) 5.4(1) 1.86 4

3 — —

model. For example, observe that τs3 = 1.33(4), which is
consistent with τ 3DBTW

s = 4
3 [4]. Although this is true for

τs3 , νs3 , and βs3 , the results for R3 and S3 differ significantly
from the 3D BTW model. This shows that the statistics of
the total projected avalanche is just like the three-dimensional
BTW avalanche, but each individual component of avalanche
behaves differently. The other observation is that νR3 is nearly
unity. In fact, as we will see in the next section, this exponent is
nearly equal to unity for all cross sections with all definitions of
gyration radius. This confirms that the cutoff value of gyration
radius (Rcut) scales linearly with the system size L for all
dimensions which is one of the measures of criticality.

γS3R3 and its finite-size relation has been shown in Fig. 3(d)
and its inset. From this figure we see that it satisfies the
relation 4 with γ ∞

S3R3
= 2.8 and κS3R3 = 0.84. This observation

has two important consequences: First, note that it fulfills
the hyperscaling relation γS3R3 ≈ γ

hyper scaling
S3R3

= τR3 −1
τS3 −1 = 2.71.

Second, it shows that the avalanches are not simply connected
in the three-dimensional cross sections; i.e., there are some
hollows inside them that cause the mass of avalanche to
be lower than a simply connected region with the fractal
dimension 3.

As in the previous section, we calculate the spectrum of s3

in this part. It has been shown in Figs. 3(e) and 3(f), in which
〈sq

3 〉
L

has been plotted in terms of L for various amounts of
q. As is evident in the right figure, σs3 (q) is linear in terms
of q with the slope 2.82(1), which is in agreement with the
numerical amount of νs3 ≈ 2.6. The numerical amount of τs3

can be read from this figure, which is obtained 1.44(1). This
is in agreement with the result in Table II. Also, σR3 has been
plotted in the inset with νR3 = 0.93(5) and τR3 = 2.94(5).

B. Two dimensions

The more interesting features can be found in two dimen-
sions, since our tools for statistical investigations are more
various than higher dimensions. In this case, the statistical
fluctuations of the observables are more than the ones for
higher dimensions as is explicit in Figs 4(a)–4(c). The 2D
exponents and their fittings have been shown in these figures
and have been gathered in Table III. Except for s2, the results
of the exponents for two-dimensional cross sections is very
different from the 2D BTW model. This can be deduced from
the Table III, from which it is seen that τS2 ≈ 2τs2 . In the
last row of this table, the results for GFF model have been
shown. It is seen that this model is more compatible with 2D
induced model, although there are some discrepancies. In the
Fig. 4(d) the plot of S2-R2 has been sketched whose inset is the
finite size dependence of the slope γS2R2 . This quantity satisfies

TABLE III. The exponents of local quantities in two-dimensional
cross sections. The corresponding exponents for two-dimensional
BTW and GFF models have also been shown for comparison.

τ ν β
β

ν
τ2DBTW τ2DGFF

s2 1.20(10) 1.6(1) 2.0(1) 1.25 1.293 —
R2 3.60(9) 1.0(1) 3.6(1) 3.6 5

3 3

S2 2.45(10) 2.0(1) 4.8(1) 2.4 4
3

31
15
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. The distribution function of (a) the number of relaxation events s2 with the exponent τs2 = 1.20(10), (b) the gyration radius R2

with the exponent τR2 = 3.60(9), and (c) the cluster size S2 with the exponent τS2 = 2.45(10). (d) The function S2 versus R2 with slope (fractal
dimension) γ L=120

S2R2
= 1.85(5). Inset: the finite-size effect of γS2R2 with γ ∞

S2R2
= 1.86(5). (e) The qth moment of s2 versus different sizes L.

(f) The exponent σs2 versus q, which is derived from Eq. (3). Inset: The exponent σR2 versus q.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a) The Green function in terms of r for various rates of lattice sizes with the exponent xl = 2.5(2). The distribution function of
(b) the length of loops l with the exponent τl = 3.15(13), and (c) the gyration radius r with exponent τr = 4.20(11). (d) The function l versus r

with slope (fractal dimension) γrl = 1.50(2). Inset: The function l versus a with slope γal = 0.75(2). (e) The qth moment of l versus different
sizes L. (f) The exponent σl versus q, which is derived from Eq. (3).
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the Eq. (4) as for the higher dimensions. The corresponding
exponents are γ ∞

S2R2
= 1.86 and κS2R2 = 0.01.

The results for σs2 (q) has been shown in Figs. 4(e) and 4(f),
from which it is evident that the slope is 1.76(2), which is
compatible with the obtained result for νs2 ≈ 2.0. Also τs2 is
obtained to be 1.31(1), which is compatible with the results of
Table III. In the inset the same quantities have been calculated
for R2 yielding νR2 = 0.68(5) and τR2 = 3.02(0.05).

In addition to the mentioned exponents, we have also
calculated the geometrical Green function G(r) as an important
quantity in 2D statistical models. It is defined as the probability
that two randomly chosen points with the distance r stay
on the same loop (note that this definition is different from
the Green function defined commonly in sandpile models
G(|i,j |), which is defined as the number of toppling in site
j provided that there has been a toppling in site i [21,36]). For
2D critical models, one expects that G(r) ∼ r−2xl , xl being
the corresponding exponent. This function has been shown in
Fig. 5(a) for various lattice sizes from which the power-law
behavior is evident.

Let us first compare the exponents with the 2D BTW
model: τ 2DBTW

s ≈ 1.293, τ 2DBTW
S2

= 4
3 and τ 2DBTW

R2
= 5

3 [4]. It
is interestingly seen that τ 2DBTW

s2
lies within the statistical error

bar of τs2 showing that the local properties of the effective two-
dimensional system is just like the ordinary 2D BTW model,
the same result as the 3D cross section in the previous section.
This reveals that the local properties of the 3D and 2D cross
sections are just like the 3D and 2D BTW models, respectively.
The point τS2 > τ 2DBTW

S2
arises from the fact that the probability

of the formation of larger avalanche clusters in 2D cross
sections is lower than 2D BTW model. This is because of the
fact that in the cross sections the sand grains have the chance
to leave the 2D cross section toward the extra dimensions.
This reasoning is also true for R2. We note again that the
geometrical variables (Sd and Rd in all sections, and l, r , and
a in the following) have been calculated for single component
of avalanches in a cross section not the total avalanche. The
geometrical exponents of l,r,a G(r) have been shown in
Table IV. The data for 2D BTW and GFF models also have
been shown for comparison. One may conclude that the ob-
tained exponents are more closer to the results of GFF model.

A very different feature has been obtained for the geomet-
rical quantities in the 2D cross section. As defined in Sec. II,
after identifying the 2D avalanche clusters, we have extracted
the loops, which are defined as the external frontiers of the
avalanches whose lengths are named as l with gyration radius
r . Also we have identified the total area simply by coloring the
area inside the loop, named as a. Our analysis of l, r , and a

TABLE IV. The geometrical exponents for two-dimensional cross
sections. The corresponding exponents for two-dimensional BTW
[4,36] and GFF [25–27] models have also been shown for comparison.

τ ν β
β

ν
τ2DBTW τ2DGFF

l 3.15(13) 1.8(1) 5.4(1) 3.0 1.2 7
3

a 2.65(12) 2.3(1) 5.8(1) 2.52 — 2

r 4.20(11) 1.1(1) 4.4(1) 4.0 ≈ 4
3 3

Gr xl = 1.2(11) 0.8(1) 1.7(1) 2.13 Logarithmic xl = 0.5

contains the distribution functions and the fractal dimensions
as the previous sections. The most important fractal dimension
in this analysis is γlr ≡ df , which is known as the fractal
dimension of the loops. The importance of this parameter is its
relation with the other parameters in the 2D critical systems.
The most important example is the diffusivity parameter (κ)
in Schramm-Loewner evolution (SLE) theory. According to
this theory, two-dimensional critical models are classified
according to the numerical amount of κ [31], e.g., 2D BTW
model belongs to κ = 2 universality class [36]. df and κ satisfy
the relation df = 1 + κ

8 [37,38]. The results for the distribution
functions have been shown in Figs. 5(b) and 5(c), and for the
fractal dimensions in 5D. It is notable that, up to the maximum
size considered in this paper, the fractal dimensions γlr and γla

do not run with the system size L; i.e., γ ∞
lr ≈ γlr and γ ∞

la ≈ γla .
As is seen in Table V, the exponents are very different with
respect to 2D BTW model. We see that df = 1.50(2), which
is compatible with κ = 4 SLE class. This class is known to
be 2D GFF [23–27]. The fractal dimensions of this model
have been shown in the last row of Table V, which are very
similar to the corresponding fractal dimensions of 2D cross
sections, i.e., in addition to df , γ ∞

S2R2
= 1.86(5) ≈ 15

8 = γ GFF
SR ,

and also γla = 0.75(2) ≈ 3
4 = γ GFF

la (for more details about
GFF’s exponents, see Refs. [25–27]). Therefore, we conclude
that although the exponents of the distribution functions of
2D GFF model is slightly different from 2D induced model,
it seems that the geometrical properties of the two models are
the same. This correspondence (2D cross sections of 4D BTW
model and 2D GFF) should be processed and investigated more
in the community to be understood more deeply, perhaps in
terms of the conformal filed theory.

Before closing this section, we calculate σl(q) which has
been presented in Figs. 5(e) and 5(f). The slope of the linear
part of this figure is 1.06(7) and τl = 2.47(0.02). This amount
differs from νl ≈ 1.8 and τl ≈ 3.15 in Table V. We note that
these differences arise only for the geometrical quantities (as
is also evident in the previous section), which has its roots in
the multifractal behaviors of the BTW model.

At the end, we mention that the fact that Scut
2 ∼ LνS2 ,

in which νS2 = 2.0 may seem strange since if the scaling
relation Scutoff ∼ R

γSd Rd

cutoff holds, then one can easily find that
νS2 = γS2R2νR2 . The fact that this relation does not hold for
all dimensions (d = 2, 3, and 4) means that the mentioned

TABLE V. The fractal dimensions for the two-dimensional cross
sections. The exponents obtained from the hyper-scaling relation, i.e.,
Eq. (1), have also been shown for comparison. In the last row, the
fractal dimensions for 2D GFF [25–27] model have also been shown
which is consistent with the corresponding exponents in the 2D cross
sections.

(x,y) (l,r) (l,a) (a,r) (S2,R2)

γ ∞
xy 1.50(2) 0.75(2) 2.0 1.86(5)

τy−1
τx−1 1.50 0.76 1.97 1.86

2D BTW 5
4 — — 2

2D GFF 3
2

3
4 — 15

8
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scaling relations are modified for the scales comparable with
the system size for all dimensions considered in this paper, in
contrast to some previous works [4]. The decrease of S2 due
to the extra (subtracted) dimensions is more than R2, so that
γS2R2 is lower than 2, which is the fractal dimension of 2D
BTW avalanches.

IV. CONCLUSION

In this paper, we have considered the BTW model on
its upper critical dimension Du = 4. The exponents of the
avalanches have been obtained using extensive numerical
simulations, which are consistent with the previous results
[4]. Our main concentration was upon the three and two-
dimensional cross sections which were shown to be critical.
It was shown that the resulting exponents in all dimensions
fulfill properly the finite-size scaling relations and some
hyper-scaling relations between the fractal dimensions and

the exponents of the distribution functions were shown to be
valid. The number of topplings in each avalanche (s), one of the
quantities which was analyzed in this paper, was shown to have
the same critical properties for d−dimensional cross sections
and d−dimensional BTW model. This equivalence is not true
for other statistical observables which are the geometrical
ones. The full information concerning the exponents have
been gathered in the tables in the text. The results for
the statistics of loops in the two-dimensional cross sections
have been analyzed separately whose exponents are very
different from the two-dimensional BTW model. We propose
that the 2D cross-section properties are properly fitted to
the 2D GFF. Although the exponents of the distribution
functions are slightly different, the equality of the fractal
dimensions is excellent. The most important exponent in this
case is the fractal dimension of loops df = 1.50(2), which
is compatible with the GFF theory; i.e., dGFF

f = 3
2 [25–27].

The full information about the fractal dimensions has been
presented in Table V.
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