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We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in
two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations
that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-
like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of
a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay
of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time
scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of
characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those
observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in
confinements with lower spatial symmetries.

DOI: 10.1103/PhysRevE.96.042105

I. INTRODUCTION

Long-range interacting classical particles in disordered
media can give rise to exotic phases, e.g., hexatic glass
[1], which is characterized by short-range positional order
and quasi-long-range orientational order. The signature of
this phase is similar to the usual hexatic phase discussed
by Kosterlitz and Thouless [2,3] and Halperin, Nelson, and
Young (KTHNY) [4–6] upon melting of a two-dimensional
(2D) solid, but in the presence of quenched disorder. There
have been attempts to understand experiments with colloidal
particles [7], binary alloy [8], magnetic bubble lattice [9],
and disordered type II superconductors [1] in light of hexatic
glass. Though the existence of a true hexatic glass in the
thermodynamic limit attracted critical theoretical debates
[10,11], its signatures may be realized in small confined
systems [12].

Finite systems, with small number of particles, are of great
current interest. They generally offer controlled experimental
tunability over a wide range of parameters. Disorder is
inherent to all real materials and can be easily introduced in
nanoclusters through the irregularities in their confinements.
Small systems not only are significant from technological
perspectives but also are very important from the angle
of fundamental physics: They are an ideal playground for
exploring the complex interplay of interactions and disorder
[13,14]. In this paper, we develop an understanding of such
interplay by studying static and dynamic correlations in
nanoclusters with (long-range) Coulomb-interacting particles
in different geometrical confinements. We set out to identify
the signatures of the hexaticity and glassiness by studying
these correlations.

Can the Coulomb particles in a trap undergo melting, akin
to the melting of a Wigner crystal [15], its bulk counterpart?
While a true phase transition pertains only to bulk systems,
the notion of solid- and liquid-like “phases” has been used
successfully to characterize qualitative behaviors of finite
systems [16]. The solid-like phase of Coulomb clusters is
called a Wigner molecule (WM) [17], as it mimics the physics
of Wigner crystal [15].

In recent years, static and dynamic properties of two-
dimensional (2D) Wigner molecues were studied for different
types of confinements [18–22] and interaction potentials
[19,23,24] across thermal melting. These theoretical studies
are motivated by experimental realizations, such as colloidal
suspensions [25–27], confined plasma [28–30], electrons in
quantum dots in high magnetic fields [31,32], radio-frequency
ion traps [33], and electrons on the surface of liquid helium
[34]. In related studies, theoretical progress has been made to
elucidate the interplay of Coulomb interaction and disorder
[20,35,36] by tuning quantum fluctuations.

Thermal melting of a Wigner molecule also presents
intriguing physical signatures, as originally demonstrated by
Bedanov and Peeters [18]. Though an order-disorder thermal
transition does not occur in 2D systems [37], KTHNY theory
proposes a transition from a quasi-long-range ordered solid
to an isotropic liquid, with an intervening hexatic phase that
is characterized by short-range positional order and quasi-
long-range bond-orientational order. Such a two-step melting
scenario for clean 2D systems has been realized in experiments
[38–40] and simulations [41,42]. The fate of such a description
in the presence of disorder has drawn significant research
interest [43–46]. Does the melting of 2D Coulomb interacting
particles corroborate with the KTHNY melting, even in the
absence of any disorder? In spite of thirty years of research,
there is no definitive answer, to the best of our knowledge
[47]. Recent studies of static [19] and dynamic [21] properties
of confined Coulomb particles in an irregular trap, however,
confirmed a thermal crossover from its solid- to liquid-like
phases.

In fact, dynamics of particles across the melting often
provides crucial insights [48] on thermal transitions, bringing
out the intricacies of thermal phases. The dynamical response
of 2D systems, close to the liquid-hexatic transition, show
some striking similarities with that of liquids close to the
glass transition [49]. Molecular dynamics simulations of
2D system of colloid particles [50] and experiments with
granular materials [51,52] show that with the increase in
orientational order, the dynamics of the particles slow down
and become heterogeneous. Particles undergo a caging effect

2470-0045/2017/96(4)/042105(20) 042105-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.042105


BISWARUP ASH, J. CHAKRABARTI, AND AMIT GHOSAL PHYSICAL REVIEW E 96, 042105 (2017)

(i.e., get temporarily trapped in the cage of its neighbors) and
cooperative dynamics. These result in subdiffusive behavior
of the mean square displacements, as observed in experiments
[53] and simulations [54–56].

A study of spatiotemporal correlations [21] of Coulomb
interacting particles in irregular and circular traps has recently
unravelled features of intriguing and slow dynamics. Particles
show qualitatively distinct motional footprints at different time
scales. While at very short times dynamics is expectedly
ballistic, it becomes strongly heterogeneous at intermediate
and long times. At low temperature, some particles jiggle
around their equilibrium positions, as expected in a solid, but
others show spatially correlated motion in long and tortuous
paths. This produces an exponential tail in the distribution of
displacements, a ubiquitous feature of glass formers [57]. Such
distributions show temporal crossover from a Gaussian to a
variety of non-Gaussian behaviors, making progressively slow
relaxations with time. Interestingly, such motion contributes to
a stretched exponential (i.e., a decay slower than exponential)
spatial relaxation, a signature of complex motion in a system
of interacting particles in disordered media. A stretched
Gaussian (i.e., decay is slower than Gaussian but higher than
exponential) relaxation of particles has also been reported
[21]. The non-Gaussian displacements were explained through
a phenomenological model invoking dynamic heterogeneity
causing a broad distribution of diffusivity in the clusters. Yet,
the mean squared displacements of particles confirmed their
Fickian motion.

In the backdrop of these surprising findings, some questions
remain unanswered: How similar is the slow dynamics of
Coulomb interacting particles in traps to that of supercooled
systems? Can hexaticity be identified for Coulomb particles in
confinements? Note that the existence of a true hexatic phase
in a one-component plasma has been debated for a long time
[47]. Does the low-temperature phase in irregular confinement
signify a hexatic-glass phase by featuring partial signatures of
both hexatic and glassy behaviors? What are the implications
of heterogeneous dynamics on physical observables? Further,
a heterogeneous dynamics signifies the presence of multiple
time scales in the system. Can we extract different time
scales for Coulomb clusters? How do the relaxation time
scales depend on temperature? For a finite systems, dynamical
responses get strongly affected by particle number and also
by the geometry of the confinement. Can we extract any
systematic dependence of the observables in clusters on their
particle numbers, N?

We address the above questions by presenting, in this paper,
the results of extensive computer simulations on the static
and dynamic properties of Coulomb interacting particles in
different confinement geometries. Melting in traps is mostly
studied in confinements with circular symmetry [16,18,22],
so that one can identify observables which can exploit this
symmetry in identifying the melting. Here, we develop more
general melting criteria that do not depend on spatial symmetry
and hence should apply equally to irregular and circular traps.

Before moving to the technical details, we take this
opportunity to summarize our results here. From our analysis
of static properties, we find that while the positional order is
depleted even at the lowest T for an irregular trap, a solid-like
phase can still be identified due to the bond orientational order.

A liquid-like phase emerges [19] with the breaking down
of bond orientational order beyond a crossover temperature
TX; however, the inhomogeneities in the liquid in irregular
confinement persists up to a much larger temperature, about
an order of magnitude larger than TX. Only beyond this large
temperature scale (∼10TX) does the system start to resemble a
standard isotropic liquid. Our results are indicative of a hexatic-
like low-temperature (T ) phase in irregular confinement. In
contrast, the positional and bond orientational order are better
developed in circular confinement and show an isotropic
liquid-like behavior at much lower temperature compared
to that in irregular confinement. Interestingly, we find that
the crossover temperature TX is quite similar irrespective of
the geometry of the confinement for systems with particle
number N > 100. Analysis of the dynamical responses are
found to be crucial in probing the intricacies of different
thermal phases [48]. We find that while stretched exponential
decay of the distribution of the displacement of particles
persists, irrespective of N , for irregular confinement, it remains
stretched Gaussian for circular confinement. The analysis
of the trajectories of individual particles and temperature
dependence of different time scales for irregular confinement
show striking similarities to those observed for glass formers
near the glass transition temperature [49].

The rest of the paper is organized as follows: In Sec. II,
we will give the details of the models and methods used
in our simulations, emphasizing the introduction of disorder
through irregularity. We will also discuss our numerical
methods. Then we present in Sec. III our results for static
properties, where we analyze the thermal crossover through
the temperature dependence of bond orientational order. In
Sec. IV, dynamic properties are analyzed, by considering
displacement of individual particles, time dependence of bond
orientational correlation, and the temperature dependence
of different characteristic time scales, such as structural
relaxation time, persistence, and exchange times. Much of
these pertain to quantifying any signature of a glass-like
behavior. For both the static and dynamic properties, we study
the dependence of our results on the system size. Finally, we
conclude in Sec. V.

II. MODEL AND METHOD

We consider N classical particles each with charge q in a
confining potential Vconf(r). These particles interact via long-
range Coulomb potential and are restricted to move in a 2D
plane. The Hamiltonian describing such a system reads as

H = q2

ε

N∑
i<j=1

1

|�ri − �rj | +
N∑

i=1

Vconf(ri), (1)

where ri = |�ri | =
√

x2
i + y2

i is the distance of the ith particle
from the center. Here, the first term in the Hamiltonian
represents Coulomb repulsion between particles in a medium
with dielectric constant ε. We consider only the bare Coulomb
repulsion, because systems with a small number of particles,
particularly, in the presence of disorder, are expected to offer
only a weak screening, if at all. In our study, we considered two
types of confinement potential: (a) parabolic (having circular
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symmetry),

V Cr
conf(r) = αr2, where α = mω2

0/2, (2)

and (b) irregular (lacking all spatial symmetries) [19,58],

V Ir
conf(r) = a{x4/b + by4 − 2λx2y2 + γ (x − y)xyr}. (3)

We will refer to the corresponding WMs as the circular Wigner
molecule (CWM) and the irregular Wigner molecule (IWM),
respectively. We hope that a comparative study of IWM and
CWM will elucidate the role of disorder (through irregularity)
on thermal crossover in finite systems.

We rescale the length r ′ → φ1/3α−1/3r and energy E′ →
φ2/3α1/3E, where φ = q2/ε, in such a way that the CWM
Hamiltonian transforms to [18]

HCr =
N∑

i<j=1

1

|�ri − �rj | +
∑

i

r2
i (4)

and correspondingly the time scale will also be renormalized
to t ′ = h̄φ−2/3α−1/3t . Such renormalization of length, energy,
and time will eventually make the temperature expressed
as T ′ = E′/kB , where kB is the Boltzmann constant. In
order to have an estimate of these new length and time
scales in conventional units, we consider electrons in a GaAs
heterostructure with a typical confinement energy of h̄ω0 =
1 meV. The above scaled length (r ′), energy (E′), and time (t ′)
unit takes the value of 630 Å, 1.7 meV, and 376 fs, respectively.
In extracting these values, we have used, q = −e, the charge
of an electron, m = 0.067me, the mass of an electron, and
ε = 13 [59].

V Cr
conf is quadratic in length scale while V Ir

conf is quartic. In
order to facilitate a justified comparison between the two, we
need to express the quartic irregular confinement in the units
of quadratic circular confinement. This is achieved by setting
the parameter a = (mω2

0/2r ′2)a′, which includes both ω0 and
a scaling factor a′, for irregular confinement. Thus a judicious
choice of a′, which now controls the strength of the irregular
confinement, brings the two confinements on equal footing on
dimensional ground. Following the same scale transformations
as for the circular case, we obtain the following Hamiltonian
for V Ir

conf :

HIr = a′
[
x4

b
+ by4 − 2λx2y2 + γ (x − y)xyr

]

+
N∑

1�i<j

1

|�ri − �rj | . (5)

There is still the parameter, a′, left to be fixed for V Ir
conf(r). For

a given N , we choose the value of a′ according to the following
considerations.

We know that the model of a bulk 2D electron gas,
neutralized by a uniform positive background, and interacting
via Coulomb interaction, can be characterized by a single
dimensionless coupling � = √

πn/T , where n is the average
number density [60]. Thus, for a given T , the thermodynamic
properties of the system are completely determined by its
density, n. In the present context of finite systems, we adopt the
same view and assume that our systems are also characterized
by the same parameter � (which we will justify below). In

order to make a meaningful comparison between systems in
different confinements but at same T and with same N , we
fix the density by tuning a′ for irregular confinement and α

for circular confinement. The assumption of single parameter
description in terms of � is later indicated (in Sec. III C) by its
bulk value at melting, irrespective of N and trap geometries.
Note that a′ tunes the average density by making the quartic
oscillator narrow or shallow. For a given N , we fixed the
value of a′ for the irregular confinement in such a way that
the average interparticle distance is equal to that for circular
confinement (which equates density in the two traps) at the
lowest T . In this paper, we report results for N = 75,150,
and 500 particles, which require a′ = 0.10,0.055, and 0.020,
respectively, following the above procedure.

The parameter λ in irregular confinement controls chaotic-
ity in the single-particle dynamics [58]. Tuning λ from zero
to unity generates periodic to chaotic motion of a single
particle in the trap. Chaotic motion along with broken spatial
symmetries are taken as the signatures of disorder in our
study. The parameter b(= π/4) breaks the symmetry of a
square and γ breaks the reflection symmetry. We consider
λ ∈ [0.565,0.635] and γ ∈ [0.10,0.20] [61]. The values of
different parameters are adjusted to generate self-similar
copies of motional signatures of a single particle in the system,
and we collect statistics on observables over those realizations
of disorder for the purpose of disorder averaging [62]. Results
from CWM are averaged over many independent simulations.

To study the static properties, we carried out (classical)
Metropolis Monte Carlo (MC) simulation [63] aided by a
simulated annealing algorithm [64]. Dynamical responses are
studied using molecular dynamics (MD) simulation [63]. To
achieve a desired T , we have used Berendsen-like thermostat
[63] during the equilibration. Once the equilibrium is achieved,
a conventional velocity-Verlet algorithm [63] is used to
integrate the equations of motion. We have performed MD
runs up to 2 × 106 steps with a time step size of dt = 0.005t ′.
We find excellent match of different observables obtained
from Monte Carlo simulation with the time-averaged results of
those quantities obtained from molecular dynamics simulation.
This is, however, true except for the lowest temperatures
featuring slow dynamics, as we discuss below. The match
of the physical results from the two independent methods
validates the correctness of our findings.

III. STATIC PROPERTIES

The broken symmetry state of a system at low T can
be identified by its order. For example, crystalline solid
is characterized by both the (long-range) positional and
orientational orders. We thus proceed to explore first the
positional order in our systems at the lowest T . Note that even
though translational symmetry is broken by confinements, a
circularly confined system would still possess the azimuthal
periodicity [18].

A. Positional order

We present in Fig. 1(a) the ground state (T = 0) config-
uration [65] in a specific irregular trap: λ = 0.635,γ = 0.20,
for N = 500 particles. No positional order is apparent here
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FIG. 1. (a) The ground-state (T = 0) configuration of N = 500
particles in an irregular trap (λ = 0.635,γ = 0.20). The orange dots
are selected central particles for the search of positional order (see
Sec. III A), while all other particles are represented by blue dots.
Panels (b)–(d) show Fourier transforms of particle density for various
cases: Panel (b) is for the ground state with all particles shown in panel
(a). Panel (c) is for the orange particles only in the central region of
panel (a). Panel (d) is for all particles, but at T = 0.02 ∼ TX , the
crossover temperature. In panels (b)–(d), magnitude of ρ(�k) is scaled
to unity for visual clarity.

to the naked eye. In order to quantify any ordering, we plot
in Fig. 1(b) the Fourier component of local density, ρ(�k) =∑N

j=1 exp[i�k · �rj ], corresponding to the configuration shown

in Fig. 1(a). Here, �k is the momentum vector and �rj represents
the position vector of the j th particle. We measure distances in
the unit of r0, the mean spacing between neighboring particles.
For our choice of parameters, fixed by matching the density
in the two traps, r0 is the same for the IWM and CWM for a
given N .

A perfect triangular lattice (the Bravais lattice for 2D
Wigner crystal) shows Bragg peaks at the corresponding
reciprocal lattice vectors, �kRLV. These peaks broaden with T ,
disappearing upon melting. In Fig. 1(b), we see only a weak
diffuse pattern around �kRLV in addition to strong peak at �k = 0.
Broadness of these patches ensures that there is, at best, a very
short range (much shorter than the system size) positional
order in IWM. Because the positional order is expected to be
weak near the boundary, we next look for such ordering for
the particles near the central region of the trap. We choose
only those particles (colored orange) which belong to a small
region (of length lx = 7r0 along the x axis and

√
3lx/2 along

the y axis to accommodate a commensurate triangular lattice
structure; see Appendix A for more details) near the center
and study their contribution to ρ(�k). While the diffuse patches
become more prominent, they hardly produce Bragg peaks;
see Fig. 1(c). This finding, in addition to nearly no temperature
dependence of ρ(�k) [as seen by comparing Fig. 1(b) at T = 0
and Fig. 1(d) at T = 0.020] comprise a strong signature of
lack of any positional order in our IWM.

FIG. 2. (a) The ground-state (T = 0) configuration of N = 500
particles in circular confinement. The orange dots are particles in the
central region selected to study positional order in the bulk, while
all other particles are represented by blue dots. Panels (b)–(d) show
Fourier transform of particle density for various cases: Panel (b) is
for the ground state with all particles shown in panel (a). Panel (c) is
for the particles only in the central region of panel (a). Panel (d)
is for all particles, but at T = 0.02 ∼ TX . In panels (b)–(d), magnitude
of ρ(�k) is scaled to unity for visual clarity.

A CWM, in contrast, posses stronger positional order
because of its azimuthal periodicity. This is reflected in
Fig. 2, whose each panel depicts the same observables as
in Fig. 1 but for CWM. The enhanced positional order is
evident from Fig. 2(b) and particularly Fig. 2(c). The spatial
extent of central particles is fixed by looking into the radial
distribution, n(r), of the N = 500 particles in CWM at the
lowest T (= 0.002) (for more details, see Appendix A). The
depletion of positional order in this case is also evident by
contrasting the T dependence in Figs. 2(b) and 2(d).

In the absence of appreciable positional order, solidity in
IWM is contributed by the orientational order in 2D. Motivated
by this assertion, we next analyze the bond orientational order
in the system.

B. Bond orientational order

The bond orientational order parameter, ψ6(k), for kth
particle is defined as [66]

ψ6(k) = 1

Nb

Nb∑
l=1

ei6θkl . (6)

Here, θkl is the angle made by the bond between the particles
k and l with an arbitrary axis and Nb is the number of nearest
neighbors of particle k. We identify the nearest neighbours of
a given particle by the standard Voronoi construction [67].

Physically, |ψ6| gives the propensity of a regular six-
coordinated neighborhood of the chosen particle in its en-
vironment. Note that here |ψ6| is constructed to emphasize the
bond orientational order in a triangular lattice which is often
the Bravais lattice for interacting particles in 2D. A healthy
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FIG. 3. Evolution of the the distribution, P (|ψ6|), of bond
orientational order, |ψ6|, with T is shown for N = 500 in panels
(a) and (b), for N = 150 in panels (c) and (d), and for N = 75 in
panels (e) and (f) in irregular and circular confinements, respectively.
The low-T peak in P (|6|) at |6| ∼ 1, that signifies the “solidity,”
smears out as the system undergoes the thermal crossover. The small
and weak peak in P (|6|) at |6| ∼ 1 at high T , particularly for
smaller N , is a spurious one (see text) and does not constitute bond
orientational order.

propensity of a six-coordinated neighborhood is discernible
for the IWM at T = 0 in Fig. 1(a), except obviously for the
particles on the boundary.

Figure 3(a) shows the T dependence of the probability
distribution, P (|ψ6|), of |ψ6|(= |ψ6(k)| for k = 1,2, . . . ,N )
for IWM with N = 500 particles. We see that the distribution
is sharply peaked around unity at low T (= 0.002), implying
the presence of an orientationally ordered phase. With increase
in T , the peak broadens due to thermal fluctuations that
distorts the bond angles θkl with the neighbors. For T > 0.02,
we get a very broad distribution signifying the breakdown
of orientational order. Thus, the T dependence of P (|ψ6|)
captures a thermal crossover from an orientationally ordered
solid-like phase to a disordered liquid-like phase in confined
systems.

Thermal evolution of P (|ψ6|) for CWM with N = 500
particles is shown in Fig. 3(b). The low-T peak in P (|6|) is
sharper for CWM compared to IWM, depicting a stronger bond
orientaional order for circular confinement. This occurs due to
the formation of an ordered triangular-lattice-like structure
around the central region of the circular confinement at low

T [68,69], as shown in Fig. 2(a). With increase in T , the
strength of the peak at |6| ∼ 1 diminishes and we find a
broad distribution, similar to what is observed for irregular
confinement, for T > 0.020.

How does P (|ψ6|) change with N? Figures 3(c) and 3(d)
show the T dependence of P (|ψ6|) for N = 150 particles in
irregular and circular confinements, respectively. We see that
the height of the peak around |ψ6| ∼ 1, at low T , decreases
with smaller N , implying diminishing bond orientational
order. While the thermal evolution of P (|ψ6|) for N = 150
is qualitatively similar to what we find in Figs. 3(a) and
3(b) for N = 500, we observe the appearance of a small and
feeble peak in P (|ψ6|) near |ψ6| ∼ 1 and 0.3 for both the
confinements. We assert that such peak is spurious and carries
no physical significance. We will discuss this feature shortly.

It is interesting to note that P (|ψ6|) shows hardly any
thermal evolution for T > 0.02. This is found to be true
irrespective of the confinement geometry. This insensitivity
confirms that the scrambling of orienational order and hence
melting is complete by T ≈ 0.03.

With further decrease in N , we see some nongeneric
features in the thermal evolution of P (|ψ6|). Figures 3(e)
and 3(f) show the T dependence of P (|ψ6|) for N = 75
particles in irregular and circular confinements, respectively.
Here, P (|ψ6|) not only loses its sharpness around |ψ6| = 1 at
low T but we also find the strengthening of the small peak
near |ψ6| = 1 at higher T for both the confinements. This
spurious peak (as well as a similar weaker feature mentioned
for N = 150), does not correspond to sixfold orientational
order, as mentioned above. Note that a particle with a sole
neighbor must yield |ψ6| = 1, irrespective of the value of bond
angle. And we find that the spurious peaks are contributed
predominantly by the particles on the boundary, having fewer
neighbors than usual. Decrease in N increases the ratio of the
number of boundary particles to bulk particles and enhances
such spurious signals.

To quantify the weakening of bond orientational order with
decreasing N at low T , we have computed the fraction of
particles having |ψ6| � 0.9, which is given by the area under
the P (|ψ6|) vs |ψ6| curve for 0.9 � |ψ6| � 1 at T = 0.002.
We find that as N changes from 75 to 500, this fraction varies
from 35% to 68% for irregular confinement while it changes
more rapidly, from 20% to 71%, for circular confinement.

From our overall study, we find that systems with N < 100
tend to show nonuniversal behavior, not only for P (|ψ6|) but
also for other observables we describe below. On the other
hand, systems with N = 100–500 describe generic behavior
featuring qualitatively similar results.

The nature of melting by disrupting bond orientational
order is usually tracked by studying the large-r behavior of
bond orientational correlation function, g6(r) = 〈ψ6(r)ψ∗

6 (0)〉.
However, for finite systems with small number of particles,
g6(r) is not much useful, because any trend in its r depen-
dence is hard to discern [19] due to limited values of r in
confinements.

C. Projection of bond orientational order

In order to get additional insights into the degree of
local orientational order, we next look into the short distance
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FIG. 4. Thermal evolution of the distribution, P (φ6), of φ6, rep-
resenting the bond orientational correlation up to nearest neighboring
distance (see text), is shown for N = 500 in panels (a) and (b), for
N = 150 in panels (c) and (d), and for N = 75 in panels (e) and (f)
in irregular and circular confinements, respectively. P (φ6) features
bimodal structures: The peak near φ6 ∼ 1 (at low T ) signals solidity,
and the one at φ6 ≈ 0 portrays liquidity.

projection of bond orientational correlation function, defined
in the following way. The magnitude of this projection, φ6(k),
of the particle k, onto the average local bond orientational
order of its nearest neighbors is defined as [70,71]

φ6(k) =
∣∣∣∣∣ψ6(k)∗

1

Nb

Nb∑
l=1

ψ6(l)

∣∣∣∣∣. (7)

While |ψ6(k)| measures the local hexagonal environment,
φ6(k) determines how the orientation of a particle fits into the
mean orientation of its nearest neighbors. Thus, the distribution
P (φ6) represents the bond orientational correlation up to
next nearest neighbor distances. At low T , as most of the
particles are surrounded by regularly oriented six neighbors,
we expect φ6 ∼ 1. Increasing T depletes orientational order
and φ6 decreases to zero in a fully melted state.

We show in Fig. 4(a) the distribution P (φ6) at different T

for IWM with N = 500. At low T (= 0.002), as expected the
distribution P (φ6) is sharply peaked at φ6 ≈ 1. In contrast,
at high T (= 0.050), P (φ6) becomes sharply peaked around
φ6 ∼ 0, implying the local sixfold order is lost even at the
second shell, representing a liquid-like state.

Similar analysis for circular confinement with N = 500
particles [Fig. 4(b)] shows a sharper peak around φ6 ∼ 1

in P (φ6) at low T compared to irregular confinement. This
reflects better orientational ordering in circular confinement
due to azimuthal symmetry. But the qualitative features are
similar in both confinements. It is interesting to note that the
bimodal nature representing solid and liquid behavior crosses
over at about TX = 0.02 in both traps featuring a very flat
distribution P (φ6).

Lowering N (= 150) [Fig. 4(c) for irregular and Fig. 4(d) for
circular confinement] reduces the strength of the low-T peak at
φ6 ∼ 1, implying that the orientational correlation turns fragile
with decreasing system size. This is unsurprising because
of the increase of the fraction of boundary particles which
naturally breaks orientational order. This is also reflected
in the additional humps near φ6 ∼ 0 at all temperatures
for both confinements [Figs. 4(c) and 4(d)] and nongeneric
multimodal P (φ6) at low T for circular confinement, as seen in
Fig. 4(d). Further reduction of N wipes out bond orientational
correlation and a solid-like phase is hard to discern in irregular
[Fig. 4(e)] or circular [Fig. 4(f)] confinements. Other than
the peak in P (φ6) near φ6 ∼ 0 in both traps, the distribution
features nongeneric behavior, making it difficult to discern a
thermal crossover in smaller systems.

We extend our analysis to identify the crossover tempera-
ture, TX, by studying the fluctuation of the orientational order
parameters |ψ6| and φ6, defined as

χψ = N [〈|ψ6|2〉 − 〈|ψ6|〉2], (8)

χφ = N
[〈
φ2

6

〉 − 〈φ6〉2
]
. (9)

Here, χ ’s are the generalized susceptibility correspond to order
parameter |ψ6| and φ6, respectively. A bulk system shows
diverging susceptibility at the transition; however, they turn
into a peak in finite systems whose sharpness increases with
N . We identify the crossover temperature from the location of
such peaks in χψ and χφ .

We present the temperature dependence of χψ for irregular
and circular confinements in Figs. 5(a) and 5(b), respectively,
for different N . The broad peak in ψ6 in irregular confinement
gets sharper with N ; however, they all represent a unique
TX ∼ 0.02. In contrast, the circular trap with N = 75 shows
melting at a significantly lower TX [Fig. 5(b)]. The qualitative
physics carried by χφ , as presented in Figs. 5(c) and 5(d) for
irregular and circular confinements, respectively, are similar
to that of χψ . For a system with small N , orientational
melting swamps any radial ordering, resulting in a lower
temperature for the disappearance of orientational order in our
study.

The definitions of φ6 and ψ6 ensure φ6(k) + |ψ6(k)| � 2.
Further, being a projection, φ6(k) � |ψ6(k)|. Hence, we can
identify melting by describing each particle to be either
solid- or liquid-like using the majority rule [70]: Particle k

is solid-like if φ6(k) + |ψ6(k)| > 1 and liquid-like otherwise.
In Figs. 5(e) and 5(f), we show the fraction of solid- and
liquid-like particles at different T for irregular and circular
confinements, respectively. We see that at very low T (= 0.002)
almost 90% of the particles are solid-like, while at high
T (= 0.050) particles are mostly liquid-like. Interestingly, the
two curves cross each other around the same TX as obtained
from other quantities mentioned above.
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FIG. 5. T dependence of the generalized susceptibilities identi-
fying the crossover temperature TX , for N = 500,150,75. Panels (a)
and (c) show the thermal evolution of χψ and χφ respectively in
irregular confinement. While the peaks of χψ and χφ sharpen with N ,
their location, TX , suffer hardly any change. Panels (b) and (d) show
results similar to those in panels (a) and (c) but for circular trap. The
fragile order in this case for N = 75 degrades TX . Panels (e) and (f)
illustrate the T dependence of the fraction of solid- and liquid-like
particles in the system for circular and irregular trap. The crossing
of the two takes place in a narrow window of T (for different N ) for
V Ir

conf(r), whereas the temperature window is broad for V Cr
conf(r).

In order to compare TX with the corresponding melting
temperature for bulk 2D systems, we also calculate the
parameter �(= √

πn/T ) at T = TX. It is found that for bulk
systems melting occurs for � ≈ 137 [60] (see Appendix B
for � at all T ). In Table I, we show � for different N and

TABLE I. Estimation of the parameter � = √
πn/TX charac-

terizes the melting in bulk 2D systems, for irregular and circular
confinements. For bulk systems, � ≈ 137 at the transition. Note that
the average particle density n is estimated by computing the area
covered by N particles in the respective confinements.

Irregular Circular

N n TX � n TX �

75 2.42 0.017 ± 0.003 162 1.90 0.011 ± 0.001 222
150 2.53 0.019 ± 0.001 148 2.12 0.019 ± 0.002 136
500 3.01 0.021 ± 0.001 146 2.78 0.020 ± 0.001 148

found that � remains close to 137, within acceptable tolerance
for N > 100. Also, note that while � at TX depends on N , it
varies more widely for circular confinement than for irregular
confinement.

Before moving to the next topic, the following point
deserves a special mention here: A Wigner molecule with
depleted positional order but featuring a healthy orientational
order at length scale comparable to system size is indicative of
hexaticity, expanding the notion of the KTHNY description.
However, in systems with disorder, like the irregular confine-
ment considered here, similar characteristics perhaps describe
a hexatic glass phase. Our results in the preceding section
indicates that a hexatic glass can be realized at least in the
irregular trap.

IV. DYNAMIC PROPERTIES

In this section, we resort to dynamical characterization of
different phases of our system. Some aspects of intriguing slow
and heterogeneous dynamics in IWM with N = 150 have been
recently reported [21] by us. Such a motion of constituent
particles is a hallmark of glassy systems. Here, we expand
on our earlier results, first by characterizing qualitatively the
motional signatures in the traps and subsequently by extracting
time scales associated with the structural relaxation causing
the depletion of short-range bond orientational order in our
amorphous system. We also explore the effect of particle
number, N , on the dynamical characteristics of the system. At
a given T , the dependence of each time correlation function
on N for both the confinements is discussed in the appendix.

A. Temporal bond orientation correlation function

The long-time dynamical behavior of a system at different
T can yield crucial information on the 2D phases of matter,
e.g., solid, liquid, and hexatic phases [45,48]. Here, we first
analyze the bond orientational correlation function in the time
domain [45], defined as

g6(t) = 〈ψ∗
6 (t)ψ6(0)〉. (10)

In the solid phase, g6(t) remains constant in t , while it decays
exponentially in the isotropic liquid phase for bulk systems. In
the hexatic phase, g6(t) shows an algebraic decay, i.e., g6(t) ∼
t−α(T ) [48,66].

Figure 6(a) depicts the t dependence of g6(t) at different T

with N = 500 particles in irregular confinement. Three distinct
behaviors of g6(t) can be identified: At low T (� 0.006),
g6(t) remains nearly flat, implying a solid-like phase. It decays
exponentially in the high-T (� 0.030) liquid phase, whereas
in the intermediate phase, 0.01 < T < 0.025, we find that
the decay is algebraic. We find α(T ) to have a surprisingly
weak T dependence across the whole intermediate-T region
of its algebraic decay. The three distinct behaviors are also
discernible in the circular trap as seen in Fig. 6(b). In contrast
to IWM, α(T ) shows a stronger T dependence in CWM. The
robust power law decay of g6(t) is compelling evidence of the
existence of a hexatic-like phase in our irregularly Coulomb
clusters. Figures 6(c) and 6(d) show t dependence of g6(t) at
different T with N = 150 particles in irregular and circular
confinements, respectively. While we can still identify distinct
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FIG. 6. t dependence of temporal bond orientational correlation
function, g6(t), at different T for N = 500 [panels (a) and (b)], N =
150 [panels (c) and (d)], and N = 75 [panels (e) and (f)] particles
in irregular and circular confinements, respectively. Solid lines are
the appropriate fitting to the actual data (points). The results confirm
three qualitatively different evolution: The low-T flat traces typify
the solid-like behavior, the power-law decay for intermediate T is
reminiscent of the bulk 2D hexatic trend, while the large temperature
exponential fall represent isotropic liquid nature.

temporal regimes for this smaller value of N , we do not find a
time-independent g6(t) even at the lowest T . For N = 75, g6(t)
decays more rapidly for V Cr

conf [Fig. 6(f)] compared to V Ir
conf

[Fig. 6(e)] (see Appendix C for more details). For small N ,
the loss of bond orientation is swamped by azimuthal melting
that typically occurs at a lower T [18].

B. Analysis of the trajectory

Focusing on a typical realization of the irregularity, {λ,γ } =
{0.635,0.20}, we show in Fig. 7(a) the initial configuration
of N = 150 particles (thick dots) at T = 0.006 after MD
equilibration. On this, we also superimpose the trajectory
of three particles (indexed as 1,2, and 3) during the MD
simulations. We see that at low T the nature of the dynamics
of individual particles can be broadly classified in following
two categories:

(i) There are particles, like the one indexed 1 in Fig. 7(a),
which only rattle around their equilibrium position over the
duration of whole MD simulation.

(ii) Additionally, there are particles, indexed 2 and 3 in
Fig. 7(a), which move longer distances (a few r0) in the course
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FIG. 7. (a) Initial positions of N = 150 particles (blue dots)
in a specific realization of an irregular confinement along with
the trajectories of three particles at T = 0.006. Thick black lines
indicate the net displacement of the particles over the duration of the
simulation. [(b), (c)] Trajectories of the particles 2 and 3 with larger
displacements, as shown in panel (a). Both of them jiggle around their
equilibrium position for a while and they make occasional and sudden
jumps by distance ∼r0. Particle 1, however, does not make such
hops (not shown separately). (d) t dependence of the instantaneous
distance ri(t) from the center of the confinement for the three selected
particles (i = 1,2,3). Displacement (��ri(t) = {�ri(t) − �ri(0)}) of N =
500 particles in irregular confinement is shown for (e) t = 1000 and
(f) t = 9500 at T = 0.006.

of time. Their trajectories are enlarged in Figs. 7(b) and 7(c),
along with a solid line representing the net displacement. These
particles jiggle around their equilibrium position for certain
time and then jump by a distance ∼r0 and spend time there
before jumping to previous (reversible motion) or to a new
location (irreversible motion).

Such occasional jumps can be captured by looking into
the instantaneous position, ri(t), as shown in Fig. 7(d),
where i represents the particle index. We see that within
a sufficiently small time window (and hence we call them
jumps), these particles change their positions, moving by a
distance of the order of r0. This motion can be regarded as the
cage-breaking process and avalanches of such cage-breaking
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FIG. 8. (a) Initial positions of N = 150 particles (blue dots) in
circular confinement along with the trajectories of three particles at
T = 0.006. Solid lines indicate the net displacement of the particles
over the duration of the simulation. [(b), (c)] Trajectories of the
particles 2 and 3 with larger displacements, as shown in panel (a). (d)
t dependence of the instantaneous distance ri(t) from the center of the
confinement for the three selected particles (i = 1,2,3). Displacement
[��ri(t)] of N = 500 particles in circular confinement is shown for
(e) t = 1000 and (f) t = 9500 at T = 0.006.

events give rise to string-like pattern for the displacement
��ri(t) = {�ri(t) − �ri(0)} of the particles as shown in Figs. 7(e)
and 7(f) for N = 500. A similar trajectory for N = 150 was
presented in Ref. [21]. We, however, note that the length of
such string in the scale of system size decreases by going from
N = 150 to N = 500, hinting that such motions are rare in
the bulk limit. This cooperative motion in irregularly trapped
Coulomb clusters is similar to those observed in other systems
such as colloids [72], Lennard-Jones mixtures [56], and 2D
dusty plasma [73]. Similar motional footprints have been found
for each realization (identified by a specific pair of {λ,γ }) of
irregular confinement we studied.

Figure 8 shows equivalent analysis for circular confinement,
where Fig. 8(a) shows the initial configuration (thick dots)
of N = 150 particles at T = 0.006 along with the trajectory
of three selected particles. Trajectories of two particles are
enlarged in Figs. 8(b) and 8(c). The instantaneous position

ri(t) [Fig. 8(d)] in V Cr
conf reveals that particles change their

positions more gradually compared to those in V Ir
conf [see

Fig. 7(d)]. We find that particles in circular confinement also
show heterogeneous dynamics [Figs. 8(e) and 8(f)]. However,
the motions in this case are consistent with the azimuthal
symmetry of the trap and hence the collective motion in a long
and tortuous string-like path is less pronounced.

C. Inhomogeneity of the liquid beyond crossover

In our previous study [21], we found that the slow
dynamics becomes profound near the thermal crossover. Here,
the self-part of the Van Hove correlation [74], Gs(r,t) =
〈∑N

i=1 δ[r − |�ri(t) − �ri(0)|]〉, which represents the probability
that a particle has moved by a distance r in time interval
t , shows stretched exponential spatial decay at long times:
Gs(r,t) ∼ exp[−lrk(t)] with k < 1. Here, we extend such
studies to track the N dependence of k(t) for different T .
Henceforth, we denote k for V Ir

conf and V Cr
conf as kIr and kCr,

respectively.
Figure 9(a) shows the t dependence of kIr at different T

for N = 500. At low T (∼ 0.006), kIr settles down to unity
at intermediate and long t [inset of Fig. 9(a)], implying an
exponential tail in Gs(r,t). With increasing T , we find kIr

drops below unity and attains the minimum value for around
TX ∼ 0.020. For T > TX, the long-time limit of kIr rises up
again and only at a very high T (= 0.250) kIr approaches 2, as
expected for an isotropic liquid-like behavior.

Figures 9(b) and 9(c) depict the t dependence of kIr at
different T for N = 150 and 75, respectively, and we see that
while the stretched exponential behavior of Gs(r,t) around
TX in V Ir

conf is generic for all N , the finer details differ.
In particular, the recovery of the final isotropic liquid-like
behavior signaled by kIr → 2 for large t occurs differently
for different N . In Fig. 9(c), we see that an isotropic liquid
is not at all recovered for N = 75 up to the largest time
of our simulation, even at high T (= 0.10). A system with
N = 500 particles [Fig. 9(a)] attains such limit more smoothly
than N = 150 [Fig. 9(b)], indicating a surprisingly large
temperature window of inhomogeneous liquid (signaled by
kIr < 2) would gradually shrink approaching the bulk limit. We
find that kIr attains the minimum value (this value was found
to increase with N ) at T ∼ TX for all N (see Appendix D for
details).

Figure 10(a) depicts the t dependence of kCr for N = 500
at different T . While kCr ≈ 1 at low T , we find 1 < kCr < 2
at intermediate T and long t , implying that only a stretched
Gaussian decay of Gs(r,t) is realized in V Cr

conf in contrast to
the stretched exponential decay observed in V Ir

conf . At higher
T (� 0.100), kCr ∼ 2 for all t , describing an isotropic liquid-
like behavior for all time scales. The stretched Gaussian decay
of Gs(r,t) persists even for smaller N , as shown in Fig. 10(b)
for N = 150 and Fig. 10(c) for N = 75. It is worth mentioning
here that recent experiments [75,76] with nanoparticles have
realized such stretched Gaussian spatial decay in confined
media. We note that while kCr → 2 for N = 75, kIr fails to do
so even at high T [Fig. 9(c)]. Thus, even though the solid phase
is quite similar in circular and irregular geometry, the Coulomb
liquid is quite inhomogeneous in irregular confinement for a
much wider temperature range, 0.01 < T < 0.25. Note that
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FIG. 9. Illustration of the intriguing spatial evolution of Gs(r,t) ∼
exp[−lrkIr ] by depicting the t dependence of kIr (see text), at different
T for V Ir

conf . The results are analyzed for (a) N = 500, (b) N = 150,
and (c) N = 75. Main panels show the t dependence of kIr beyond
the crossover temperature, while the insets depict the t dependence
of kIr at low T .

our results for the low T s are consistent with the conjecture of
universal exponential tails of Gs(r,t) in glass formers [57] and
hold even in the case of Coulomb clusters.

D. Time scales of structural relaxation

Motion in confined system is rife with heterogeneous
dynamics, implying multiscale temporal relaxations. We focus
below on extracting relevant time scales, e.g., structural relax-
ation time, cage correlation time, time scale of heterogeneity,
and persistence and exchange times. We will also discuss how
these signify the underlying dynamics, and finally we will
compare all these time scales to understand the inter-relations
among them.

1. Time scale for structural relaxation and heterogeneity

When particles in a solid diffuse, its structure relaxes, and
we estimate the corresponding time scale for our systems in
following manner. We calculate the time evolution of the self
part of a two-point density correlation function, called the
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FIG. 10. t dependence of the exponent kCr, depicting the nature
of the decay of Gs(r,t) at different T for circular confinement, is
analyzed for (a) N = 500, (b) N = 150, and (c) N = 75. Main panels
show the t dependence of kCr beyond the crossover temperature, while
the insets depict the t dependence of kCr at low T .

overlap function Q(t) [77,78], defined as

Q(t) =
〈

1

N

N∑
i=1

w(|�ri(t0 + t) − �ri(t0)|)
〉
, (11)

where w(r) = 1.0 if r < rc and zero otherwise. The angular
parenthese denotes averaging of results over the time origin, t0,
over MD configurations, and also over different realizations of
the disorder. Because particles mostly rattle in a small distance
around their equilibrium positions (within rc, as defined below)
at small t,Q(t) ∼ 1, whereas for large t,Q(t) ∼ 0, signaling
complete structural relaxation. Of course, the small size of t for
the above statement depends on the operating T . We evaluate
w(r) by monitoring the displacements of individual particles.
Once a particle moves by a distance greater than rc, then we set
w(r) = 0 for all future times, ensuring Q(t) is a monotonically
decaying function of t .

Obviously, Q(t) depends on the choice of rc and the optimal
value of rc is chosen so that the fluctuation of Q(t) attains its
maximum value (for details, see Appendix E). This fluctuation
is quantified by dynamic susceptibility, χ4(t) = 1

N
[〈Q2(t)〉 −

〈Q(t)〉2]. At a given T , χ4(t) attains maximum at a time, τχ ,
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FIG. 11. The time dependence of the overlap function Q(t) for
different T for N = 500 [panels (a), (b)], N = 150 [panels (c), (d)],
and N = 75 [panels (e), (f)] in irregular and circular confinements,
respectively. Solid lines represent appropriate fitting of the data
(points). While at low T , Q(t) decays very slowly, it falls to zero
rapidly for T > 0.006.

which is the time scale associated with dynamic heterogeneity
[77,79].

Figure 11(a) shows the t dependence of Q(t) in irregular
confinement at different T for N = 500. While at low T , the
decay of Q(t) is very slow, and it falls to zero rapidly for
T > 0.010. The time dependence is found to be of the form
Q(t) ∝ exp[−(t/τα)c] [80], except for very short times. It is
found to be exponential (c = 1) for T > 0.010, whereas it
is stretched exponential for T = 0.006 and 0.010 and has a
much slower decay for T = 0.002. Similar analysis for circular
confinement with N = 500 [Fig. 11(b)] yields an exponential
decay for T > 0.006 (see Appendix F for details) and stretched
exponential for T = 0.006.

Figures 11(c) and 11(d) show t dependence of Q(t) for ir-
regular and circular confinements, respectively, with N = 150.
With lower N we generally find that Q(t) decays more rapidly
at low T and shows stretched exponential decay for T = 0.006
in irregular confinement while it falls exponentially for circular
confinement. At higher T ,Q(t) decays exponentially for
both the confinements. For N = 75, we observe stretched
exponential decay at T = 0.006 for irregular confinement
[Fig. 11(e)], while Q(t) decays exponentially for all higher
T . For circular confinement, Q(t) decays exponentially at all
T � 0.006 [Fig. 11(f)]. Note that at low T , for any given
N,Q(t) decays faster for circular confinement compared to

 0

 0.2

 0.4

 0.6

 0.8
(a) VIr

Conf

N=500

Χ
4(

t)

 0

 0.2

 0.4

 0.6

 0.8
(b) VCr

Conf

N=500

Χ
4(

t)

T=0.006
T=0.010
T=0.020
T=0.030
T=0.050

 0

 0.1

 0.2

 0.3
(c) VIr

Conf

N=150

Χ
4(

t)

 0

 0.1

 0.2

 0.3

(d) VCr
Conf

N=150

Χ
4(

t)

 0

 0.1

 0.2

10-1 100 101 102 103 10 4

(e) VIr
Conf

N=75

Χ
4(

t)

t

 0

 0.1

 0.2

10-1 100 101 102 103 104

(f) VCr
Conf

N=75

Χ
4(

t)

t

FIG. 12. The t dependence of χ4(t) for different T for N = 500
[panels (a), (b)], N = 150 [panels (c), (d)], and N = 75 [panels (e),
(f)] in irregular and circular confinements, respectively. For a given
N, χ4(t) attains maximum at time τχ which decreases with increase
in T .

irregular confinement, implying that effect of disorder from
the irregularity is to increase the structural relaxation time.
Also, at any given T ,Q(t) decays more rapidly with decrease
in N for both the confinements (see Appendix G for further
details).

Next, we study the t dependence of χ4(t) at different
T . Figure 12(a) shows χ4(t) at different T for irregular
confinement with N = 500. χ4(t) attains the maximum value
at some intermediate time, τχ , which moves to lower value
with increase in T . We find similar T dependence of χ4(t)
for circular confinement with N = 500 [Fig. 12(b)]. What
happens if we decrease N? Figures 12(c) and 12(d) shows t

dependence of χ4(t) at different T for irregular and circular
confinements, respectively, with N = 150. With decreasing
N , we find that at any given T , τχ decreases to lower
value, indicating that structural relaxation time decreases
with N . Similar trends are also observed for N = 75 in two
confinements [Figs. 12(e) and 12(f)].

We estimate the structural relaxation time, τα , using relation
Q(τα) = 1/e [77,79] for T � 0.006. For a bulk system, one
generally estimates the structural relaxation time from the
temporal decay of the self part of the intermediate scattering
function, Fs(k,t) [81] (with k set to the value at which the
static structure factor features its first peak). But, since k is
ill defined for a small finite system, we resort to Q(t) for
estimating τα . We show the T dependence of τχ along with τα
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FIG. 13. T dependence of τχ along with τα , obtained from Q(t)
for irregular (a) and circular (b) confinements, respectively, with
N = 150. Both the time scales show similar T dependences. The
T -dependence of τα for different N is shown in panel c,d for irregular
and circular confinements, respectively. The solid line shows the
exponential fitting (τα ∝ exp[−A/T ]) to the actual data (points).

in Figs. 13(a) and 13(b) for V Ir
conf and V Cr

conf , respectively, with
N = 150. For both the confinements, the T dependences of
these two characteristic times are essentially identical within
the tolerance. The rapid increase of τχ and τα with decrease
in T are reminiscent of glassy systems. Since, for any given
N, T dependences of τχ and τα are similar, in Figs. 13(c) and
13(d) we show the dependence of τα on T for different N . We
find that τα ∝ exp[−A/T ] [80] for any given N and A shows
a weak dependence on N (for details, see Appendix H).

2. Cage-correlation time

The role of repulsive interparticle interaction on the
physical properties of Coulomb clusters can be further probed
by addressing the cage effects, in which each particle is locked
up by its neighbors. Rearrangement of cage due to thermal
fluctuations relaxes the system and thereby the particles
diffuse in the system. The rate of change of neighbors of a
particle yields a cage correlation function (CCF) and helps
in understanding how rapidly the local environment of each
particle changes on an average. We note here that in glass
formers, too, particle motion gets slower, without appreciable
change in the structure, upon approaching the glass transition
temperature.

We calculate CCF by first defining a neighbor list, keeping
track of the neighbors of each particle. A neighbor list L(i)(t)
for particle i in an N particle system is a vector of length N

and is defined as [82] L(i)
j (t) = 1 if j is the nearest neighbor of

i at time t and zero otherwise, with j = 1,2, . . . ,N . We use
the Voronoi construction [67] to select neighbor list at all t .
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FIG. 14. Decay of cage correlation function, cg(t), depicting how
the initial neighbors fail, with time, to confine a particle, on average, at
different T for N = 500 [panels (a), (b)], 150 [panels (c), (d)], and 75
[panels (e), (f)] for irregular and circular confinements, respectively.
The solidity at low T is reflected in the fact that the same neighbors
continue to cage a particle at all times. The solid line shows the best
fit to the actual data (points).

The CCF at t is given by

Cg(t) = 〈Li(t) · Li(0)〉〈
L2

i (0)
〉 . (12)

If all the neighbors of the particle at time t is identical to the list
at time t = 0, CCF assumes unity for that particle. If, however,
all the neighbors of a particle gets changed, CCF becomes zero
at that instant of time.

In Figs. 14(a) and 14(b), we show the decay of CCF
at different T for irregular and circular confinements, re-
spectively, with N = 500. For both the confinements, Cg(t)
remains close to unity for all times at T � 0.006, implying
no significant rearrangements of neighbors. As T increases,
Cg(t) shows a decay in both the confinements of following
form: cg(t) ∝ exp[−(t/τg)β] with β < 1 [80]. The exponent
β is found smaller for V Ir

conf compared to that of V Cr
conf , as

illustrated in Appendix I.
The t dependence of cg(t) for different T with N = 150 is

shown in Figs. 14(c) and 14(d) for V Ir
conf and V Cr

conf , respectively.
While cg(t) stays close to unity for T = 0.002, note that with
a decrease in N,Cg(t) decays more rapidly for both the con-
finements while the decay is faster for V Cr

conf compared to V Ir
conf .

Particularly, for N = 75, Cg(t) decays quite rapidly for V Cr
conf

[Fig. 14(f)] at T = 0.010. Thus, compared to V Ir
conf [Fig. 14(e)],

the local rearrangement occurs more frequently for smaller N

in V Cr
conf , which in turn causes the bond orientational order to

deplete rapidly, as reflected in g6(t) and ψ6.
We find that for different N , the exponent remains in

the range 0.45 � β � 0.7 (see Appendix I). Recently, it
was found that Cg(t) for supercooled liquids [83] and for
water in nanoporous silica [84] show stretched exponential
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FIG. 15. T dependence of average caging (τC) and noncaging
(τNC) times for different N for irregular (a) and circular (b) confine-
ments. Crossover temperature TX is estimated from the crossing of τC

and τNC . Inset in panel (b) shows the N dependence of the estimated
TX for both the confinements.

decay with the characteristics exponent β = 0.6. In fact, a
stretched exponential temporal decay is very common to
supercooled liquids [85]. For a system with static random
traps, the asymptotic value of β relates the dimensionality d

of the system through β = d/(d + 2) [86]. Thus, for d = 2,
asymptotic value of β is 0.5. Our results are in broad agreement
with such prediction and experiments.

We can also probe the time scale associated with local re-
arrangements of particles by studying the relative fluctuations
in position of the particles with respect to its neighbors. A per-
fectly caged particle is expected to have equidistant neighbors.
Exploiting this idea, we define the caging time (τC) of the ith
particle as the time up to which the following condition holds
for at least three of its neighboring particles (j ):

σi(t)

�rij (t)
� d; for at least j = 3.

Here j = 1,2, . . . ,Nb, with Nb denoting the number of
nearest neighbors of particle i; �rij (t) = |�ri(t) − �rj (t)| and
σ 2

i (t) = 〈�2rij (t)〉 − 〈�rij (t)〉2. We take cutoff value d/r0 as
0.1, analogous to the usual Lindemann ratio. Once the above
criterion breaks down, then the time taken by the particle to get
caged again is called the noncaging time (τNC). In the above,
caging is defined at least with respect to three of its neighbors,
because in 2D a minimum of three particles are required to
cage a particle. Figures 15(a) and 15(b) show the average τC

and τNC for irregular and circular confinements, respectively,
for different N . Here, τC and τNC are expressed relative to
the total time of the MD simulation. At low T , caging time is
expectedly high as particles are mostly confined by its nearest
neighbors. As T increases, thermal energy overcomes caging.
Thus, average τC decreases and consequently τNC increases
with increase in T . We find that, for a given N , average
τC and τNC cross each other around T ∼ TX for both the
confinements [see inset of Fig. 15(b)]. Note that this analysis
of τC and τNC excludes the particles on the boundary because
the definition of caging does not work for them.

3. Persistence and exchange time

A crucial time scale that probes the dynamic heterogeneity
as well as glassiness is the contrasting behavior of the
persistence and exchange times [87,88]. They are defined as
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FIG. 16. Distribution of persistence (τp) and exchange (τe) times
for N = 500 [panels (a), (b)], N = 150 [panels (c), (d)], and N =
75 [panels (e), (f)] particles in irregular and circular confinements,
respectively. In the figure all quantities are expressed as log to the base
e. The decoupling of the two distributions at low T demonstrates the
qualitative similarity of the particle dynamics in irregular traps with
those in glassy systems. Such decoupling is hard to discern (except
for T = 0.010) for circular traps for all N .

follows: At any given T , let us consider a particle i, whose
initial (t = 0) position is ri(0). The persistence time t1 for
a given cutoff distance rp is specified by the first time that
particle i has moved far enough that |ri(t1) − ri(0)| � rp.

Exchange times tn − tn−1 for n > 1 require the recursive
determination tn, setting tn−1 as initial time. For a given rp,
distributions of exchange (τe) and persistence (τp) times can
be obtained by ensemble averaging over all trajectories. rp is
chosen of the order of r0 so as to probe the structural relaxation
and diffusion. The same rp is used for all T . It has been
shown [87,88] that for glassy dynamics, distribution of (τe) and
(τp) generally decouple near the glass transition temperature.
This decoupling is attributed to dynamic heterogeneity in these
systems and constitutes one of the key features of supercooled
liquids [87,88].

The distributions of these two time scales for our clus-
ters are shown in Fig. 16 for irregular [Fig. 16(a)] and
circular [Fig. 16(b)] confinements with N = 500. We notice
that for T > 0.030, P (τe) and P (τp) coincide for both the
confinements. As T becomes close to TX(≈ 0.020), the two
distributions become distinct; the mean value for P (τp) moves
toward longer times for IWM. But for circular confinement,
P (τe) and P (τp) coincide even at T = 0.020. Thus, the
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FIG. 17. T dependence of structural relaxation time τα , average
persistence time 〈τp〉, and cage correlation time τg for (a) irregular and
(b) circular confinements with N = 150. Dotted lines are for visual
guidance. Panels (c) and (d): Thick dots show the cross-correlation
between τα,〈τp〉, and τg in a log-log plot for irregular and circular
confinement, respectively, taken over a temperature range 0.01 �
T � 0.05. Solid lines represent the best fit to such correlations. 〈τp〉
is scaled by appropriate factors for visual clarity.

distribution of τp and exchange τe gets decoupled for irregular
confinement as system approaches TX. Below TX, we find that
P (τe) and P (τp) decouple even for circular confinement. Does
such decoupling occur even for smaller N? Figures 16(c) and
16(d) show T dependence of P (τe) and P (τp) for N = 150
and Figs. 16(e) and 16(f) show it for N = 75 particles in
irregular and circular confinements, respectively. We find
that such decoupling of the two time scales also occurs for
N = 150 [Fig. 16(c)] and 75 [Fig. 16(e)] particles in irregular
confinement. The decoupling is more prominent in irregular
than circular confinement. For CWM, decoupling, if there
is any, is present only for very low T (� 0.010). We have
ensured that the decoupling is not because of bias in the
sampling process by carrying out the jackknife test [89] and
Ansari-Bradley [90] test.

Since the overlap function, cage correlation function, and
persistence time all are connected with the structural relaxation
of the system, we now look into the T dependence of the
characteristic time scales associated with all these quantities.
For example, cage correlation time τg represents the charac-
teristic time scale for the rearrangement of particles in their
local environment and average persistence time 〈τp〉 depicts
the time required for particles to move a certain distance on
average and thus is associated with the relaxation mechanism
in the system. In Fig. 17, we show the T dependence of τα,τg ,
and 〈τp〉 for irregular [Fig. 17(a)] and circular confinements
[Fig. 17(b)] with N = 150. We find that all these time scales
increase rapidly for the IWM compared to CWM as T is

decreased below TX. Thus, the signatures of glassy dynamics,
while showing up in both confinements, are more prominent
for irregular confinement.

4. Cross-correlation between different relaxation times

Here, we study the cross-correlation between the different
time scales described above. Figure 17(c) illustrates the
cross-correlations between τα and τg, τα and 〈τp〉, and 〈τp〉
and τg , gathered over a temperature window across melting;
namely, 0.01 � T � 0.05, for irregular confinement. Our
results indicate that there is a positive correlation between
these characteristic times scales; when one goes up, the other
increases too, in a proportionate manner. Quantifying such
correlations, we find that τi ∝ τ

cij

j [80] with the following sets
of best-fit parameters {τi,τj ,cij}: {τα,τp,3.14}, {τα,τg,3.98},
and {τp,τg,1.27}. Similar positive correlation between differ-
ent times scales is also observed for circular confinement
as depicted in Fig. 17(d). In this case, we find {τi,τj ,cij}:
{τα,τp,0.73}, {τα,τg,4.03}, and {τp,τg,4.45}. Thus, all these
time scales help in characterizing the multiscale relaxation in
our Coulomb clusters.

V. CONCLUSIONS

In conclusion, we have carried out a comprehensive
simulation of static and dynamic properties to understand the
thermal crossover of Coulomb interacting particles in traps.
Our results offer insights into the possibility of observing
intriguing phases in confined 2D systems. Signatures of
hexatic-like phases for Coulomb clusters are discerned from
their healthy bond orientational order at low temperatures,
as seen from the distribution of ψ6 and its projection on the
mean local orientational order, φ6. This assertion is further
strengthened from the temporal bond orientation correlation
function, g6(t), showing an algebraic decay for a window of
temperatures. Expectedly, we find the lack of positional order
in irregular Wigner molecules. Circular Wigner molecules,
however, show competition of triangular lattice-like positional
ordering in the central portion of the trap whereas the regions
near the boundary follow circular symmetry. Thus, at least
for the irregular (hence, disordered) systems, any rigidity
of the solid-like phase is quantified through the strength
of the bond orientational order. Consequently, melting in a
Coulomb cluster is identified through the breakdown of this
bond orientational rigidity.

We find that it is difficult to observe generic trends
for systems with small N (< 75) and their behavior shows
special features because of the larger boundary-to-bulk particle
ratios for those N ’s. In particular, we find that circular
Wigner molecule with small N undergoes crossover at lower
temperature as seen from, e.g., generalized susceptibilities,
fraction of solid- and liquid-like particles, and caging and
noncaging time. We analyzed several melting criteria, often
taking advantage of the confined geometries, all of which point
toward a unique crossover temperature (within tolerance) for
N > 100. When this crossover temperature is expressed in
terms of dimensionless coupling � (defined in Sec. III C), we
get �c ≈ 147 for N > 100, which is close to the predicted
critical value, �c ≈ 137, for the bulk 2D systems.
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While static responses are qualitatively similar for irregu-
lar and circular confinements, dynamical correlations yield
distinct signatures. With decreasing temperature, dynamics
of particles become slow and strongly heterogeneous due
to caging effects in irregular trap though the bond orienta-
tional order gets strengthened in both circular and irregular
geometries. We find a stretched exponential decay of spatial
correlations in irregular confinement. Instead, a stretched
Gaussian behavior identifies circular traps, which is also
observed experimentally [75,76]. We also witness some of the
key signatures of glassy dynamics in Coulomb clusters, such
as spatially correlated motion of particles over longer distances
forming a tortuous string-like paths, stretched exponential
decay of correlations, strong increase of relaxation times
with lowering temperature, and decoupling of persistence
and exchange times for T � TX. All these indicate that a
hexatic-like phase with features of glassy dynamics is realized
in finite systems, at least in those with disorder and long-range
interactions. Note that the glassy behavior that we observe
for Coulomb clusters are usually found in literature only for
systems with short-range interactions [49,56,87] (spin glasses,
however, are realized with long-range interactions [91]). A
hexatic-glass phase, differing from the usual hexatic phase
in 2D only by its quenched randomness, makes the study
of defects in our system an interesting proposition. We hope
that our results will help enrich the knowledge of melting in
two-dimensional confinements.

ACKNOWLEDGMENTS

The authors thank Chandan Dasgupta for valuable dis-
cussions. We acknowledge computational facilities at IISER
Kolkata. B.A. acknowledges the University Grant Commission
(UGC), India, for a doctoral fellowship. A.G. acknowledges
the hospitality of the Aspen Center for Physics and was
supported in part by the Simons Foundation.

APPENDIX A: CHOICE OF THE SPATIAL EXTENT
OF THE CENTRAL REGION TO EVALUATE ρ(�k)

In order to justify our choice for the region inside the
system, we have looked into the radial distribution, n(r),
of the N = 500 particles in circular confinements at the
lowest T (= 0.002). Here, the distance r is measured from
the center of the confining potential and in units of average
interparticle distance, r0. Figure 18(a) shows that only for
r > Rc = 9.3 [indicated by dashed line in Fig. 18(a)], there
are well-separated peaks in n(r), implying that the outer shells
have a well-defined radius. Because of the formation of a
triangular lattice-like structure, the distribution n(r) does not
have well-separated peaks for small r . This fact can also be
identified by looking into the bond orientational order (BOO)
by considering the particles for which r < Rc (bulk particles)
and those for which r > Rc (boundary particles), as shown in
Fig. 18(b). Here, we can see that distribution is sharply peaked
around 1 for bulk particles compared to that for particles on
the outer shells, confirming the formation of hexagonal ordered
structure in the bulk for circular confinement with N = 500
particles. This choice of Rc restricts the maximum possible
length along the X axis to be lx ∼ 7r0 and along the Y axis

FIG. 18. (a) Radial distribution, n(r), of the N = 500 particles in
circular confinement at T = 0.002. The dashed line shows the cutoff
distance Rc used to identify the bulk particles. (b) Distribution of
the bond orientational order ψ6 for particles having r (distance from
the center of the confinement) < Rc (bulk particles; solid line) and
those for which r > Rc (boundary particles; dashed line) in circular
confinement at T = 0.002.

to be ly = √
3lx/2 (to consider a commensurate triangular

lattice), as we must have

l2
x + l2

y < R2
c ,

l2
x +

(√
3

2
lx

)2

< (9.3)2,

(A1)
7l2

x

4
< (9.3)2,

lx < 7.03.

Once we have chosen the small region for circular con-
finement, the same length scales were used for irregular
confinement to investigate the effect of disorder in the system.

APPENDIX B: � VALUES FOR CIRCULAR AND
IRREGULAR CONFINEMENTS

In the main article, we have mentioned the value of the
parameter � at the crossover temperature. Here, in Table II,
we have tabulated � values for all T and N for irregular and
circular confinements.

APPENDIX C: COMPARISON OF t DEPENDENCE OF g6(t)
FOR DIFFERENT N

In Fig. 19, we show the t dependence of g6(t) for
different N at T = 0.006 [Figs. 19(a) and 19(b)], T = 0.020
[Figs. 19(c) and 19(d)], and T = 0.050 [Figs. 19(e) and
19(f)] for irregular and circular confinements, respectively.
At T = 0.006, with decreasing N,g6(t) starts to decay slowly
at long time for irregular confinement [Fig. 19(a)] while it
decays quite rapidly for circular confinement [Fig. 19(b)].
Such rapid breakdown of orientational order at low T for
N = 75 in V Cr

Conf indicates the fact that crossover temperature,
TX (as computed from the fluctuation of bond orientational
order discussed in main article), is lower for N = 75. At
intermediate T (= 0.020), g6(t) shows algebraic decay for all
N [Figs. 19(c) and 19(d)] and for both the confinements.
For circular confinement with N = 75 [Fig. 19(d)], g6(t) first
decays exponentially and then fluctuates around some mean
value. At T = 0.050, g6(t) shows exponential decay for all N

in both the confinements.
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TABLE II. Estimation of the parameter � = √
πn/T , charac-

terizes the melting in bulk 2D systems, for irregular and circular
confinements. For bulk systems � ≈ 137 at the transition. Note that
the average particle density n is estimated by computing the area
covered by N particles in the respective confinements.

Irregular confinement Circular confinement

N T n a = √
nπ � = a/T n a = √

nπ � = a/T

500 0.002 3.01 3.075 1537.5 2.78 2.955 1477.5
0.006 512.5 492.5
0.010 307.5 295.5
0.015 205.0 197.5
0.020 153.8 147.8
0.025 123.0 118.2
0.030 102.5 98.5
0.050 61.5 59.1

150 0.002 2.53 2.819 1409.5 2.12 2.581 1209.5
0.006 469.8 430.2
0.010 281.9 258.1
0.015 187.9 172.1
0.020 140.9 129.1
0.025 112.8 103.2
0.030 93.9 86.0
0.050 56.4 51.6

75 0.002 2.42 2.757 1378.5 1.90 2.44 1220.0
0.006 459.5 406.7
0.010 275.7 244.0
0.015 183.8 162.7
0.020 137.8 122.0
0.025 110.3 97.6
0.030 91.9 81.3
0.050 55.1 48.8
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FIG. 19. t dependence of exponent g6(t) for different N at T =
0.006 [panels (a) and (b)], T = 0.020 [panels (c) and (d)], and T =
0.050 [panels (e) and (f)] for irregular and circular confinements,
respectively. Points represent the actual data while the solid line
represents an appropriate fit of the selected data (determined by the
extent of the solid line).
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FIG. 20. t dependence of exponent k(t) for different N at T =
0.006 [panels (a), (b)], T = 0.020 [panels (c), (d)], and T = 0.050
[panels (e), (f)] for irregular (kIr) and circular (kCr) confinements,
respectively.

APPENDIX D: COMPARISON OF TIME EVOLUTION
OF EXPONENT k(t) FOR DIFFERENT N

In Fig. 20, we show the time evolution of the exponent
kIr and kCr (see the main text for details), respectively, for
different N at T = 0.006 [Figs. 20(a) and 20(b)], T = 0.020
[Figs. 20(c) and 20(d)], and T = 0.050 [Figs. 20(e) and 20(f)].
For all these T , we find that the kIr attains lower value, on an
average, with decrease in N , implying that effect of disorder is
more prominent for small N . For kCr, the long-time behavior
is similar for all N and T .

APPENDIX E: CHOICE OF CUTOFF DISTANCE rc

FOR OVERLAP FUNCTION Q(t)

Q(t) depends on the choice of rc and the optimal rc is
chosen as follows: We study the fluctuation of Q(t), defined
as the dynamical susceptibility

χ4(t) = 1

N
[〈Q2(t)〉 − 〈Q(t)〉2] (E1)

at low T for different choices of rc. From the definition, we see
that χ4(t) = 0 when no particle moves by a distance beyond
rc. It is zero, as well, when displacements of all the particles
are greater than rc. So there must be a time scale, τχ , when
χ4(τχ ) reaches maximum for a given rc. Thus, the maximum
of χ4, i.e., the fluctuations in Q(t), at t = τχ signifies the
maximal dynamic heterogeneity. At a given T , we choose the
value of rc for which such dynamic heterogeneity attains the
maximum. For each N , we have done this analysis for irregular
confinement and use the same rc for circular confinement. For
example, we find that for N = 150, χ4(t) reaches its maximum
for rc = 0.09 (Fig. 21), which is about 14% of r0. Once rc is
chosen, then we study the t dependence of overlap function
Q(t) and χ4(t) for different N . Similar analyses for N = 500
and 75 yield rc = 0.12 and 0.08, respectively.
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FIG. 21. Determination of the cutoff rc for V Ir
conf with N = 150,

by tracking its value for which χ4(t) achieves the maximum keeping
temperature fixed at its lowest value (T = 0.002). This optimal rc =
0.09 is then used for the evaluation of the overlap function Q(t).

APPENDIX F: DETAILS OF THE FITTING PARAMETERS
FOR OVERLAP FUNCTION

Beyond a very short time, the time dependence of overlap
function Q(t) can be expressed as Q(t) ∝ exp[−(t/τα)c]. For
a given N , the details of the fitting parameters τα and c for both
the confinements at different T are given in Table III. We find
that for irregular confinement Q(t) decays exponentially (c =
1) for T > 0.01 for all N , whereas it is stretched exponentially
(c < 1) for lower T and has a much slower decay for T =
0.002. For circular confinement, Q(t) shows predominantly

TABLE III. Details of the fitting parameters, τα and c, of the over-
lap function function, Q(t), for irregular and circular confinements.

Irregular Circular
confinement confinement

N T τα c τα c

500 0.006 5.96 0.34 6.51 0.57
0.010 4.19 0.72 3.81 1.00
0.020 1.36 1.00 1.22 1.00
0.030 0.86 1.00 0.77 1.00
0.050 0.59 1.00 0.55 1.00

150 0.002 8.24 0.73
0.006 2.75 0.82 2.13 1.00
0.010 1.62 1.00 0.94 1.00
0.020 0.64 1.00 0.58 1.00
0.030 0.47 1.00 0.42 1.00
0.050 0.34 1.00 0.33 1.00

75 0.006 1.82 0.76 1.39 1.00
0.010 1.63 1.00 0.84 1.00
0.020 0.54 1.00 0.50 1.00
0.030 0.40 1.00 0.45 1.00
0.050 0.31 1.00 0.28 1.00

FIG. 22. t dependence of exponent Q(t) for different N at T =
0.006 [panels (a), (b)], T = 0.020 [panels (c), (d)], and T = 0.050
[panels (e), (f)] for irregular and circular confinements, respectively.

an exponential decay, while stretched exponential decay is
found for N � 150 at very low T .

APPENDIX G: t DEPENDENCE OF Q(t) FOR
DIFFERENT N

Figure 22 shows the N dependence of Q(t) for T = 0.006
[Figs. 22(a) and 22(b)], T = 0.020 [Figs. 22(c) and 22(d)],
and T = 0.050 [Figs. 22(e) and 22(f)] for irregular and
circular confinements, respectively. At all T , the characteristic
time scale τα increases with N . At T = 0.006, while Q(t)
shows stretched exponential decay for irregular confinement
[Fig. 22(a)], it is exponential for circular confinement with
N � 150 [Fig. 22(b)]. For N = 500, we find stretched
exponential decay even for circular confinement. Q(t)

TABLE IV. Dependence of the fitting parameter, A, for structural
relaxation time, τα , on particle number N for irregular and circular
confinements.

N Irregular confinement Circular confinement

A A

500 0.021 0.016
150 0.012 0.011
75 0.011 0.009
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TABLE V. Details of the fitting parameters, τg and β, of the cage
correlation function, cg(t), for circular and irregular confinements. For
both the confinements, the decay of cg(t) is stretched exponentially,
β < 1.

Irregular Circular
confinement confinement

N T τg β τg β

500 0.020 202.60 0.56 242.78 0.62
0.030 52.86 0.60 43.87 0.69
0.050 19.30 0.63 15.66 0.68

150 0.010 2271.83 0.45 1077.54 0.48
0.020 188.00 0.44 216.93 0.58
0.030 67.69 0.55 33.18 0.61
0.050 19.82 0.60 16.47 0.63

75 0.006 1734.08 0.70
0.010 356.41 0.73
0.020 152.14 0.48 96.69 0.63
0.030 108.00 0.48 63.51 0.72
0.050 34.49 0.45 12.75 0.57

decays exponentially for both the confinements for T � 0.02
[Figs. 22(c)–22(f)].

APPENDIX H: DETAILS OF THE FITTING PARAMETERS
FOR STRUCTURAL RELAXATION TIME, τα

In the main text, we discussed that the structural relaxation
time, τα , computed from the overlap function, Q(t), shows
following functional dependency on T for any given N :
τα ∝ exp[−A/T ]. Table IV shows the fitting parameter A for
different N for irregular and circular confinements.

APPENDIX I: DETAILS OF THE FITTING PARAMETERS
FOR CAGE CORRELATION FUNCTION

The cage correlation function, cg(t), is fitted with the
following functional form:

cg(t) ∝ exp

[
−

(
t

τg

)β]
.

FIG. 23. t dependence of exponent cg(t) for different N at T =
0.006 [panels (a) and (b)], T = 0.020 [panel (c) and (d)], and T =
0.050 [panels (e) and (f)] for irregular and circular confinements,
respectively.

For both the confinements, cg(t) shows stretched exponential
decay (β < 1) and values of τg and β at different T is given
in Table. V. Here, we find that τg , the characteristic time scale
associated with the local rearrangement of particles, grows
more rapidly with decrease in T , for irregular confinement,
reinstating the glassy dynamics in V Ir

conf .

APPENDIX J: t DEPENDENCE OF Cg(t) FOR
DIFFERENT N

Figure 23 shows the N dependence of cg(t) for T = 0.006
[Figs. 23(a) and 23(b)], T = 0.020 [Figs. 23(c) and 23(d)], and
T = 0.050 [Figs. 23(e) and 23(f)] for irregular and circular
confinements, respectively. Like overlap function Q(t), the
characteristic time scale τg also increases with N . Note that
for circular confinement cg(t) decays quite rapidly at T =
0.006 for N = 75, implying significant local rearrangement of
particles for smaller N . This is also similar to what is observed
for g6(t).
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