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Emergent Lévy behavior in single-cell stochastic gene expression
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Single-cell gene expression is inherently stochastic; its emergent behavior can be defined in terms of the
chemical master equation describing the evolution of the mRNA and protein copy numbers as the latter tends to
infinity. We establish two types of “macroscopic limits”: the Kurtz limit is consistent with the classical chemical
kinetics, while the Lévy limit provides a theoretical foundation for an empirical equation proposed in N. Friedman
et al., Phys. Rev. Lett. 97, 168302 (2006). Furthermore, we clarify the biochemical implications and ranges of
applicability for various macroscopic limits and calculate a comprehensive analytic expression for the protein
concentration distribution in autoregulatory gene networks. The relationship between our work and modern
population genetics is discussed.
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Introduction. The mesoscopic stochastic theory of chemical
reaction kinetics is a powerful analytic paradigm for single-cell
biochemical dynamics [1]. At the center of this theory is a limit
theorem, first proved by Kurtz in the 1970s [2], which states
that when the size V of the reaction vessel tends to infinity, the
kinetics of a well-mixed reaction system can be described by
a set of ordinary differential equations (ODEs), as intuitively
expected from the macroscopic chemical reaction kinetics.
It is the macroscopic limit, instead of the mean value, that
should be identified as the emergent behavior of the stochastic
dynamics, as incisively pointed out by Anderson [3]: “It is
only as it is considered to be a many body system—in what is
often called the N → ∞ limit—that such [emergent] behavior
is rigorously definable.” Investigating the limit of V → ∞
or N → ∞, therefore, provides a way to reveal the inherent
fundamental character of a stochastic biochemical system.

In general, the stochastic biochemical reaction kinetics has
two complementary representations: the stochastic trajectory
and the probability distribution. The former is governed by
a continuous-time Markov chain that can be simulated via
Gillespie’s algorithm and the latter is governed by the chemical
master equation first appearing in the work of Delbrück [4].
To emphasize this dual perspective, the underlying stochastic
dynamics is usually termed the Delbrück-Gillespie process
(DGP) [5].

In recent years, significant progress has been made in
the kinetic theory of single-cell stochastic gene expression
based on the central dogma of molecular biology [6–17]. A
thorough study based on the DGP framework, in terms of the
protein copy number, was carried out by Shahrezaei and Swain
[11]. However, in bulk experiments and many single-cell
experiments without single-molecule resolution such as RNA
sequencing and flow cytometry, data are usually obtained as
continuous variables at a macroscopic scale. At the center
of the kinetic theory in terms of the protein concentration is
an empirical equation proposed by Friedman, Cai, and Xie
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(FCX) [10]. However, the mathematical foundation of the
now classical FCX equation still remains unclear. This Rapid
Communication addresses its theoretical foundation.

Emergent behavior in single-cell stochastic gene expres-
sion. We consider the canonical three-stage representation of
stochastic gene expression in a single cell with size V , with
V → ∞ corresponding to a macroscopic scale, as illustrated
in Fig. 1(a) [11]. The size V in chemistry stands for the reaction
volume [2], but in molecular biology it could also be the
maximum protein copy number [8], etc. The biochemical state
of the gene of interest can be described by three variables:
the promoter activity i with i = 1 and i = 0 corresponding
to the active and inactive states of the promoter, respectively,
the mRNA copy number m, and the protein copy number n.
Then the kinetics can be described by the DGP depicted in
Fig. 1(b). Here s1 and s0 are the transcription rates when the
promoter is active and inactive, respectively; u, v, and d are the
rate constants for translation, mRNA degradation, and protein
degradation, respectively; and an and bn are the switching rates
of the promoter between the active and inactive states [18]. In
living cells, the products of many genes also regulate their
own expression to form an autoregulatory gene network. This
suggests that the promoter switching rates an and bn generally
depend on the protein copy number n.

Experimentally, it has been consistently observed that the
mRNA decays substantially faster than its protein counterpart
[11]. Then the process of protein synthesis followed by mRNA
degradation is essentially instantaneous: Protein synthesis in
single cells occurs in random bursts [19]. Once an mRNA is
synthesized, it can either produce a protein with probability
p = u/(u + v) or be degraded with probability q = v/(u + v).
Thus the probability that j proteins are synthesized in a single
burst will be pjq, which follows the geometric distribution
[20]. The average number of proteins synthesized per mRNA,
also called the mean burst size, is then

∑∞
j=0 jpjq = p/q.

These considerations yield the reduced Markov model illus-
trated in Fig. 1(c) [7].

In fact, the reduced model can be derived rigorously from
the original DGP. To do this, let ε = d/v denote the ratio of
the mRNA and protein lifetimes. Let q(i,m,n) denote the rate at
which the system leaves state (i,m,n), which is defined as the
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FIG. 1. (a) The canonical three-stage representation of stochastic
gene expression. (b) The transition diagram of the DGP. (c) The
transition diagram of the reduced model when ε � 1. (d) The Kurtz
and Lévy limits.

sum of transition rates from state (i,m,n) to other states [21].
Since ε � 1, we say that (i,m,n) is a fast state if q(i,m,n) → ∞
as ε → 0. Otherwise, (i,m,n) is called a slow state. If (i,m,n) is
a fast state, then the time that the system stays in this state will
be very short. By a recently developed simplification method of
two-time-scale Markov chains [22–24], the DGP can be sim-
plified by removal of all the fast states. It is easy to check that

q(0,m,n) = md(u/v + 1)ε−1 + an + s0 + nd,

q(1,m,n) = md(u/v + 1)ε−1 + bn + s1 + nd.

This indicates that all the states (i,m,n) with m � 1 are
fast states and can be removed and only the states (i,0,n)
are retained. Thus the original DGP can be simplified to
the reduced model with effective transition rates depicted
in Fig. 1(c) [21]. In the reduced model, the biochemical
state of the gene is only described by the variables i

and n. It yields large increments of the protein number,
which suggests that protein synthesis occurs in random
bursts.

Let α(t) and N (t) denote the promoter activity and
protein copy number in a single cell at time t , respec-
tively. Then XV (t) = N (t)/V stands for the protein con-
centration. When ε � 1, (α(t),N (t)) can be described by
the reduced model. Thus (α(t),XV (t)) is a continuous-
time Markov chain with state space {(i,n/V ) : i = 0,1, n =
0,1,2 . . .}. Under mild conditions, the evolution of a
Markov process is uniquely determined by its genera-
tor. In particular, the generator AV of the Markov chain

(α(t),XV (t)) is given by
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Let x = n/V and y = j/V and let a(x) = an and b(x) =
bn. Under the framework of mesoscopic chemical reaction
kinetics, DNA → mRNA is a zero-order reaction and thus the
transcription rate should scale with size V , that is, si = ŝiV

[2]. As V → ∞, the generator AV will converge to another
operator B:

Bf1(x) = (ŝ1p/q − dx)f ′
1(x) + b(x)[f0(x) − f1(x)],

Bf0(x) = (ŝ0p/q − dx)f ′
0(x) + a(x)[f1(x) − f0(x)].

This shows that the discrete-valued Markov chain (α(t),XV (t))
will converge to a continuous-valued Markov process
(α(t),X(t)) with generator B. Mathematically, the limiting
process is a piecewise deterministic Markov process (PDMP),
as illustrated in Fig. 1(d). This macroscopic limit will be
named as the Kurtz limit because it is consistent with
the classical chemical kinetics: Given a particular promoter
state, the protein concentration evolves as an ODE with no
fluctuations. The PDMP was introduced in [13,14] for studying
stochastic phenotype switching. In [15], Lin and Doering
considered a gene network with positive autoregulation and
obtained the PDMP by taking a different but mathematically
equivalent limit. Recently, there have been many studies on
gene expression kinetics based on the PDMP model and the
detailed analysis can be found in [13,16].

Interestingly, there is another macroscopic limit that is more
consistent with single-cell experiments. To see this, we assume
that the mean burst size p/q = V/k scales with size V . Here
we shall treat si and k as constants and take the limit V →
∞. Under these assumptions, we have p → 1, qV → k, and
pj = ej log(1−q) → e−ky . Thus the generator AV will converge
to a different operator A:

Af1(x) = − dxf ′
1(x) + b(x)[f0(x) − f1(x)]

+ s1

∫ ∞

0
ke−ky[f1(x + y) − f1(x)]dy,

Af0(x) = − dxf ′
0(x) + a(x)[f1(x) − f0(x)]

+ s0

∫ ∞

0
ke−ky[f0(x + y) − f0(x)]dy.

This shows that the Markov chain (α(t),XV (t)) will converge
to a different Markov process (α(t),X(t)) with generator A.
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FIG. 2. (a) The two-stage representation of stochastic gene
expression. (b) Trajectories of the Kurtz (red) and Lévy (blue)
limits. In the simulation, the model parameters are chosen as s = 1,

d = 0.1, k = 1, and V = 50.

Mathematically, the limiting process is a switching (hybrid)
stochastic differential equation (SDE) driven by Lévy noises,
as illustrated in Fig. 1(d). Here Ci(t) is a compound Poisson
process, a particular kind of Lévy process, with arrival rate si

and jump distribution w(x) = ke−kx . This can be explained as
follows. When the promoter is in state i, the process of mRNA
synthesis can be described by a Poisson process with arrival
rate si and each mRNA can produce proteins with the burst
size having the exponential distribution w(x), which can be
viewed as the continuous limit of the geometric distribution.
Thus the process of protein synthesis can be described by
the compound Poisson process Ci(t). We shall name this
macroscopic limit as the Lévy limit. Given a particular
promoter state, the protein concentration still evolves as a
stochastic process with large fluctuations.

Figure 2(b) illustrates the simulated trajectories of the two
kinds of macroscopic limits when the promoter is always
active, that is, bn = 0. It can be seen that the trajectories
of the Kurt limit are continuous, while the Lévy limit has
discontinuous trajectories. The jump point of the trajectory
corresponds to the burst time and the jump height corresponds
to the burst size. For any fixed protein concentration x, consider
the transition rate q(i,n),(i,n+xV ) = sip

xV q of the reduced model
from state (i,n) to (i,n + xV ), where xV is assumed to
be an integer for simplicity. Under the assumption of the
Kurtz limit, q(i,n),(i,n+xV ) = ŝiqVpxV , which decays to zero
at exponential speed. Under the assumption of the Lévy limit,
q(i,n),(i,n+xV ) ≈ sike−kx/V , which decays to zero with a power
law. Thus the Lévy limit allows a larger probability to yield
large increments. This explains why the trajectories of the
Lévy limit are discontinuous.

Let pi(x) denote the probability density of the protein
concentration when the promoter is in state i and let p(x) =
p0(x) + p1(x) denote the total probability density of the
protein concentration. Then the evolution of the Lévy limit
is governed by the Kolmogorov forward equation ∂tpi(x) =
A∗pi(x), that is,

∂tp1(x) = d∂x[xp1(x)] + s1

∫ x

0
ke−k(x−y)p1(y)dy

+ a(x)p0(x) − [b(x) + s1]p1(x),

∂tp0(x) = d∂x[xp0(x)] + s0

∫ x

0
ke−k(x−y)p0(y)dy

+ b(x)p1(x) − [a(x) + s0]p0(x), (1)

where A∗ is the adjoint of A. Based on this equation, we can
obtain a general form of the steady-state distribution of the
protein concentration, instead of the protein copy number as
discussed in [11], in autoregulatory networks. For simplicity,
we assume that the promoter switching rates have the form
of an = a and bn = b + γ n [12], where b is the spontaneous
switching rate from the active to the inactive states and γ

is the feedback strength. This model can be used to analyze
networks with either positive or negative autoregulation. When
s1 > s0, the feedback term γ n inhibits protein synthesis and
leads to negative feedback. In contrast, s1 < s0 leads to
positive feedback. In autoregulatory networks, the steady-state
protein distribution is given by pss(x) = u ∗ v(x) [21], where
∗ denotes the convolution,

u(x) = ks0/d

�(s0/d)
xs0/d−1e−kx

is the gamma distribution, and

v(x) = �(β)

�(α1)�(α2)2F1(α1,α2; β; γ /dw)
we[(γ /d)−(w/2)]x

× (wx)(α1+α2−3)/2W(α1+α2+1)/2−β,(α1−α2)/2(wx).

Here 2F1(α1,α2; β; x) is the Gaussian hypergeometric func-
tion, Wα,β (x) is the Whittaker function, and

α1 + α2 = a + b + s1 − s0

d
, α1α2 = a(s1 − s0)

d2
,

β = γ s1 + (a + b)(dk + γ )

d(dk + γ )
, w = k + γ

d
.

When a = 0 or s1 = s0, there is only one promoter state
and we have α1 = 0 and v(x) = δ(x). In this case, the
protein concentration has the gamma distribution: pss(x) =
u ∗ δ(x) = u(x) [10]. If we assume that the mRNA produces
no proteins when the promoter is inactive, that is, s0 = 0, we
have u(x) = δ(x) and thus the protein concentration has the
Whittaker-type distribution: pss(x) = δ ∗ v(x) = v(x).

The emergent Lévy behavior of single-cell stochastic gene
expression is itself a stochastic process with large fluctuations,
which shows that the stochastic effects cannot be averaged out
at the macroscopic scale. This provides a mechanistic founda-
tion, from the viewpoint of many-body theoretical physics, for
intracellular variations at the epigenetic and phenotypic levels.
The Lévy limit of the DGP is on par with the Feller-Kimura
diffusion limit of the Wright-Fisher random mating model
[25], which has become the theoretical foundation for “nearly
all of modern population genetics” [26]. As a comparison, the
DGP and the Wright-Fisher model are both discrete-valued
Markov chains, while the Lévy limit of the former and the
diffusion limit of the latter are both continuous-valued Markov
processes. However, they are subtly different because the
diffusion limit has continuous trajectories, while the Lévy limit
has discontinuous ones: The intracellular diversity is much
greater. This insight may have far-reaching implications to
many biological phenomena such as bacterial drug resistance
and nongenetic cancer heterogeneity [27]. The full comparison
between our theory and the theory of population genetics is
listed in Table I.

Two special cases. There are two special scenarios that are
most interesting. The first one occurs when the promoter is
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TABLE I. Comparison between our theory and the theory of
population genetics.

Epigenetics Population genetics

Discrete model DGP Wright-Fisher model
Continuous model Lévy limit Feller-Kiruma limit
Noise term Lévy process Brownian motion
Trajectories Discontinuous Continuous

always active, that is, bn = 0. In this case, stochastic gene
expression in a single cell has the two-stage representation
illustrated in Fig. 2(a), where s is the transcription rate. If the
transcription rate s = ŝV scales with size V , the two-stage
model has the following Kurtz limit, which is an ODE:

ẋ = −dx + ŝp/q, (2)

where ŝp/q is the mean synthesis rate of the protein. If the
mean burst size p/q = V/k scales with size V , however, the
two-stage model has the following Lévy limit, which is an
SDE driven by Lévy noise:

dX(t) = −dX(t)dt + dC(t),

where C(t) is a compound Poisson process with arrival rate
s and jump distribution w(x) = ke−kx . From Eq. (1), the
evolution of the Lévy limit is governed by

∂tp(x) = d∂x[xp(x)] + s

∫ x

0
w(x − y)p(y)dy − sp(x).

This is exactly the empirical equation proposed by FCX [10],
in which the authors made clear that w(x − y) stands for
the transition probability of the protein concentration from
y to x in a single burst. They further combined experimental
observations [19,28] to show that the burst size x − y has an
exponential distribution w(x − y). Our theory shows that the
classical FCX equation can be derived theoretically from the
fundamental single-cell biochemical reaction kinetics without
resorting to experimental information.

To further compare the two kinds of limits, we introduce
the Laplace transform f (λ) = ∫ ∞

0 p(x)e−λxdx. Then the FCX
equation is converted to the first-order linear partial differential
equation

∂tf = −dλ∂λf − sλf

λ + k
.

It is easy to see that the mean protein concentration 〈x〉 can be
recovered from f (λ) as 〈x〉 = −∂λf (0). Thus the evolution of
〈x〉 is governed by the following ODE:

d〈x〉
dt

= −d〈x〉 + s

k
. (3)

Since s = ŝV and p/q = V/k, we have ŝp/q = s/k. Com-
paring Eqs. (2) and (3), we clearly see that the Kurtz limit is
exactly the mean of the Lévy limit, as illustrated in Fig. 2(b).

The biochemical implications of the two kinds of limits can
be seen as follows. Recall that the mean protein copy number in
a single cell is the product of the mean burst frequency s/d and
the mean burst size p/q. If s/d 
 p/q, the Kurtz limit is valid.
This condition is consistent with bulk experiments in which a

TABLE II. Macroscopic limits of single-cell gene expression
kinetics and their ranges of applicability.

Macroscopic limits Ranges of applicability

ODE s1/d 
 p/q, bn = 0
PDMP s1/d 
 p/q

Lévy-driven SDE p/q 
 s1/d, bn = 0
Switching Lévy-driven SDE p/q 
 s1/d

Lévy-type process p/q 
 s1/d, an,bn 
 s1,d

large number of cells are ground to form a cell extract and thus
the DNA copy number is very large. If p/q 
 s/d, the Lévy
limit is applicable. In living cells, the mean burst size p/q is
relatively large, typically on the order of 100 for an Escherichia
coli gene [9]. Thus this condition corresponds to single-cell
experiments in which the DNA copy number is very small.

We stress here that our theory can be also applied
to model stochastic mRNA expression with transcriptional
bursts. Recent bulk [29] and single-cell [30] experiments
have shown that mRNA abundances in individual eukaryotic
cells generally scale with cellular volume. Single-molecule
imaging techniques [30] have further shown that cellular
volume affects mRNA abundances through modulation of
transcriptional burst size. As a result, the Lévy limit is also
applicable to describe mRNA fluctuations in single cells with
large volumes.

Many previous studies also focused on the scenario when
the promoter switches rapidly between the active and inactive
states, that is, an,bn 
 s1,d [10]. Under this assumption, the
protein concentration will reach a quasisteady state between
the active and inactive states, which suggests that

p1(x) ≈ a(x)p(x)/[a(x) + b(x)],

p0(x) ≈ b(x)p(x)/[a(x) + b(x)].

From Eq. (1), the evolution of the Lévy limit is governed by

∂tp(x) = d∂x[xp(x)] +
∫ x

0
ke−k(x−y)c(y)p(y)dy

− c(x)p(x),

where c(x) = [a(x)s1 + b(x)s0]/[a(x) + b(x)] is the effective
transcription rate. This empirical equation has also appeared
in [10] and here we provide a theoretical foundation of
this equation as the emergent behavior of the fundamental
biochemical reaction kinetics. In this case, the Lévy limit is
no longer an SDE driven by Lévy noise. However, it falls
into the category of Lévy-type processes [31], which behave
locally like Lévy processes. As a summary, we list all kinds of
macroscopic limits and their ranges of applicability in Table II.

Conclusions. We show that deterministic Kurtz and stochas-
tic Lévy behaviors naturally emerge from the fundamental
single-cell gene expression kinetics. When the transcription
rate scales with size, the macroscopic limit is a PDMP which is
consistent with the classical deterministic chemical kinetics in
aqueous solution. When the mean burst size scales with size,
however, the macroscopic limit is a switching Lévy-driven
SDE which captures intracellular variations at the epigenetic
level. The Lévy limit provides a theoretical foundation for
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the classical FCX empirical equation and gives by far the
most general form for the steady-state distribution of the
protein concentration. Our theory unifies various continuous
gene expression models proposed in the previous literature
and clarifies their biochemical implications and ranges of
applicability.
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