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This work presents a method of model reduction that leads to models with three solutions of increasing fidelity
(multifidelity models) for solute transport in a bounded layered porous media with random permeability. The
model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with
a known velocity covariance function. In the reduced model, we represent (random) concentration in terms of its
cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-
type equation for the average concentration and a stochastic Poisson equation for the variation function, as well
as expressions for the effective velocity and dispersion coefficient. In contrast to the linear scaling with the
correlation length and the mean velocity from macrodispersion theory, our model predicts a nonlinear and a
quadratic dependence of the effective dispersion on the correlation length and the mean velocity, respectively. We
observe that velocity fluctuations enhance dispersion in a nonmonotonic fashion (a stochastic spike phenomenon):
The dispersion initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity
(correlation). Maximum enhancement in dispersion can be obtained at a correlation length about 0.25 the size
of the porous media perpendicular to flow. This information can be useful for engineering such random layered
porous media. Numerical simulations are implemented to compare solutions with varying fidelity.

DOI: 10.1103/PhysRevE.96.033314

I. INTRODUCTION

Many scientific applications (e.g., barotropic flow, con-
taminant transport, and functionally graded materials) are
multiscale and stochastic in nature with uncertainties stem-
ming from random initial and/or boundary conditions and/or
stochastic parameter fields. Solving these stochastic problems
is both theoretically and computationally challenging.

Most existing approaches to solute transport in hetero-
geneous media compute the lower-order moments of con-
centration. Perturbation-based moment methods for solving
stochastic advection-dispersion equations develop nonphys-
ical bimodal behavior for average concentration [1,2]. The
moment solution based on the macrodispersion theory [3]
requires knowledge of Green’s function, which is expensive to
compute numerically and can only be found analytically for
a small class of problems (e.g., infinite domains). Another
drawback to these methods is that their accuracy rapidly
deteriorates with increasing variance of the random param-
eters (i.e., advection velocity and/or dispersion coefficient).
Other methods focus on deriving the evolution equations for
probability density functions of concentration that contain
more complete information than moment-based methods [4].
An assumption of negligible transverse dispersion has to
be made in order to obtain explicit expressions for layered
heterogeneous media. Other statistical approaches, including
Monte Carlo methods, suffer from a low convergence rate
[O(N–1/2), where N is the number of samples] and are destined
to fail when directly applied to problems with large numbers
of degrees of freedom [5].

Polynomial-chaos-based methods [6–8] currently are the
best choice for quantifying uncertainty [9–11]. However, these
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methods suffer from the so-called curse of dimensionality
and become prohibitively expensive when applied to problems
with correlated-in-space random parameters characterized by
small correlation length and/or large variance [12–18].

In this paper we present a reduction method for solute
transport in layered heterogeneous porous media with a
random distribution of the hydraulic conductivity across the
layers. We derive stochastic equations for the spatial average
of concentration and variations around the average. The
spatial average represents the large-scale concentration and
is governed by a stochastic advection-dispersion equation
with the effective stochastic advection velocity and dispersion
coefficient. The small-scale variability of the concentration,
caused by the small-scale velocity fluctuations, is captured by
the variation function, depending on the velocity covariance.
The resulting hierarchical stochastic models enable efficient
solutions of the original problem with significantly reduced
dimensionality.

Taylor and Aris’s classical dispersion theory was developed
for long-time evolution of solute concentration [19–21] (see
also [22–29]). Whitaker, Adler, Brenner, and later Bear
generalized this theory to (deterministic) flow in porous media.
Neuman [3] and Koch and Brady [30] derived deterministic
effective dispersion equations for solute transport in the
stochastic velocity field. Our method generalizes the Taylor
dispersion theory [19,20] for transport in the stochastic veloc-
ity field. Unlike Neuman’s macrodispersion theory [3] (which
results in deterministic macroscale equations), our method
yields a stochastic macroscale advection-dispersion equation
and an expression for microscale concentration fluctuations.
A stochastic form of the effective equation allows efficient
uncertainty quantification and parameter and state estimations
using small-scale concentration measurements.

In the proposed method, for known statistics of the
advective velocity, the variation function, effective advection
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FIG. 1. Flow confined by two parallel plates with a stochastic
velocity profile v(y).

velocity, and effective dispersion coefficient can be com-
puted analytically. The stochastic parameters in the effective
equation have smaller variance and larger correlation lengths
than their small-scale counterparts in the original advection-
dispersion equations. Therefore, the effective stochastic equa-
tion can be solved using Monte Carlo simulations (MCSs)
with significantly coarser resolution than the one required
in the MCS solution for the original equation. In addition,
as the accuracy of these methods increases with decreasing
variance of the random parameters in the stochastic equations,
the moment equation and macrodispersion methods should be
more accurate for the effective equation than for the original
equations.

II. FORMULATION OF THE MODEL

Here we consider solute transport in porous media con-
sisting of homogeneous layers with random permeability
distribution across the layers. The randomness in permeability
leads to randomness of the advective velocity. The two-
dimensional (2D) geometry of the problem is defined in Fig. 1.
The flow domain is bounded in the y direction (a is the size of
the domain in the y direction) and is infinite in the x direction.
Conservative solute transport in this domain can be described
by the 2D advection-dispersion equation

∂c/∂t + v · ∇c = D∇2c (1)

subject to no-flux boundary conditions

∂c

∂y

∣∣∣∣
y=0,a

= 0 (2)

at the top and bottom of the domain. The advection velocity
is in the x direction and only depends on the coordinate y.
It satisfies Darcy’s law v(y) = −K(y)∂h/∂x, where K(y) is
random conductivity and ∂h/∂x is the constant (in time and
space) head gradient. In the preceding equations, c(x,y,t) is
the solute concentration at position (x, y) and time t , and D is
the dispersion coefficient assumed here to be constant and the
same for each layer. Numerical solutions c(x,y,t) via directly
solving Eq. (1) can be expensive but with high fidelity.

For transport in a channel [v(y) having a parabolic profile],
Taylor derived an analytical expression for the dispersion co-
efficient [19]. Here we derive an expression for the dispersion
coefficient for random velocity v(y) with the prescribed mean,
variance, and correlation function. For an infinite domain in
the x direction or a domain with the length L, such as L � a,

motivated by the original Taylor formulation [19,28], we may
write the total concentration as

c(x,y,t) ≈ c1(x,y,t) = c̄(x,t) + η(y)
∂c̄

∂x
, (3)

where c̄(x,t) is the cross-sectional average of total concen-
tration c(x,y,t). The cross-sectional averaging operator •̄ is
defined as

•̄ = 1

a

∫ a

0
(•)dy. (4)

Both solutions c1(x,y,t) and c̄(x,t) are approximations of
the high-fidelity solution c(x,y,t), where c1(x,y,t) is a mid-
fidelity solution with corrections on top of c̄(x,t) to consider
the variations in y, and c̄(x,t) is a low-fidelity solution.

The in-plane variation function η(y) is a measure of
the velocity variation along the y direction and will be
derived later. Equation (3) decomposes the total stochastic
concentration solution c(x,y,t) in terms of the cross-sectional
average concentration c̄ and its first-order gradient ∂c̄/∂x,
which can be a result of homogenization [31–35]. Though
a higher-order expression for the correction [in terms of the
spatial derivatives of c̄(x,t)] may be obtained [28,36] and
included in Eq. (3), only the first-order correction is considered
in this study. The total uncertainty in the solution c(x,y,t) can
be further decomposed into the ensemble contribution to the
average solution c̄(x,t) and the configurational contribution to
the variation function η(y) [35].

Similarly, the total velocity field is decomposed into the
cross-sectional average v̄,

v̄ = 1

a

∫ a

0
v(y)dy, (5)

and velocity fluctuation v′ around that average

v(y) = v̄ + v′(y), (6)

where both v̄ and v′ are random. The velocity fluctuation v′
has a zero cross-sectional average

v′ = 1

a

∫ a

0
v′(y)dy = 0. (7)

The zero ensemble average 〈v′〉 = 0 is satisfied only if the
ensemble average 〈v(y)〉 = 〈v〉 is independent of y, which is
assumed in the present study.

The key part of the proposed solution method for the
stochastic partial differential equation (PDE) (1) is to formu-
late the equations and solutions for the cross-sectional average
concentration c̄(x,t) and in-plane variation function η(y). The
boundary condition of c(x,y,t) [Eq. (2)] immediately leads to
the boundary conditions for η(y):

∂η

∂y

∣∣∣∣
y=0,a

= 0. (8)

By applying the cross-sectional operator to both sides of
Eq. (3), the cross-sectional average of the function η(y) is
found as

η̄ = 1

a

∫ a

0
η(y)dy = 0. (9)
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Substitution of Eq. (3) into the original stochastic PDE (1)
and applying the cross-sectional average operator to both sides
of Eq. (1) leads to the equation for c̄(x,t):

∂c̄

∂t
+

(
v̄ − D

∂2η

∂y2

)
∂c̄

∂x
= (D − vη)

∂2c̄

∂x2
. (10)

It is evident that the reduced model for c̄(x,t) [Eq. (10)],
a one-dimensional stochastic PDE, is easier to solve than the
original Eq. (1). According to Eq. (7), the statistical ensemble
average of velocity fluctuation is

〈v′(y)〉 = 1

a

∫ a

0
〈v(y)〉dy − 〈v(y)〉, (11)

where the operator 〈•〉 represents the statistical ensemble
average of a field variable •.

Using the boundary condition (8), we find the conditions
for η(y),

∂2η

∂y2
= ∂η

∂y

∣∣∣∣
y=a

− ∂η

∂y

∣∣∣∣
y=0

= 0. (12)

By substituting Eq. (12) into Eq. (10), the equation for
c̄(x,t) is further reduced to

∂c̄

∂t
+ v̄ · ∂c̄

∂x
= D̃

∂2c̄

∂x2
, (13)

where

D̃ = D − vη = D − v′η (14)

is a stochastic scalar function representing the effective dis-
persion coefficient for c̄(x,t) due to the random velocity v(y).
The term v′η represents the contribution of the nonuniform
advection velocity field v(y) to the dispersion.

Thus far, we have formulated the stochastic advection-
dispersion equation (13) for c̄(x,t) with stochastic advection
velocity v̄ and stochastic effective dispersion D̃ that depends
on the in-plane function η(y). To derive an equation for η(y),
Eqs. (3) and (13) are substituted into the original stochastic
PDE (1), which leads to

∂c̄

∂x

(
v − v̄ − D

∂2η

∂y2

)
+ ∂2c̄

∂x2
(vη − v̄η − vη)

− ∂3c̄

∂x2
ηvη = 0. (15)

Because the expansion of total concentration c(x,y,t)
[Eq. (3)] only retains a first-order correction, we obtain an
equation for η(y) satisfying Eq. (15) to the first order:

D
∂2η

∂y2
= v − v̄ = v′. (16)

Equation (15) needs to be satisfied to higher order if
higher-order gradients are included in the original expansion of
Eq. (3). By integrating Eq. (16) twice and using the boundary
conditions (8) and constraint (9), we obtain the solution for

η(y):

η(y) = 1

D

[∫ y

0

∫ y2

0
v′(y1)dy1dy2

− 1

a

∫ a

0

∫ y

0

∫ y2

0
v′(y1)dy1dy2dy

]
. (17)

Taking the ensemble average of both sides of Eq. (17), we
find that the necessary condition for

〈η(y)〉 = 0 (18)

is 〈v′〉 = 0.
The stochastic effective dispersion coefficient D̃ can be

derived from Eq. (14). First, we integrate Eq. (17) by parts and
the boundary condition for η(y) in Eq. (8) to obtain

−v′η = −D
∂2η

∂y2
η = D(∂η/∂y)2. (19)

Substituting this into Eq. (14), we obtain the solution for D̃:

D̃ = D[1 + (∂η/∂y)2]

= D

(
1 + 1

D2

∫ y

0
v′(y1)dy1

∫ y

0
v′(y2)dy2

)
. (20)

It can be seen from Eq. (20) that the stochastic effective
dispersion D̃ � D, i.e., the heterogeneity (fluctuations) in ad-
vective velocity v(y), always enhances the effective dispersion.

Next we demonstrate the consistency of our formulation
with the Taylor-Aris theory for the (deterministic) parabolic
velocity profile for v(y):

v(y) = 3

2
v̄

(
1 − y2

(a/2)2

)
. (21)

Substitution of the expression (21) into Eq. (17) leads to
the corresponding solution for η(y):

η(y) = v̄a2

60D

⎧⎨
⎩1 − 15

8

[
1 −

(
y

a/2

)2
]2

⎫⎬
⎭. (22)

Then the effective dispersion coefficient D̃ can be computed
via substitution of Eqs. (21) and (22) into Eq. (14) as

D̃ = (D − v′η) = D

(
1 + P 2

e

210

)
, (23)

where the Péclet number is defined as Pe = av̄/D. This result
exactly recovers the Taylor dispersion coefficient [19].

III. STATISTICAL PROPERTIES
OF EFFECTIVE PARAMETERS

Next we study the statistical properties of v̄ and D̃ in
Eq. (13). The mean and variance of v̄ can be analytically
obtained for a given covariance function of stochastic velocity
v(y). Here we assume that v(y) is statistically homogeneous
and has the constant (ensemble) mean 〈v〉 and exponential
covariance function

〈v(y1)v(y2)〉 = 〈v(y)〉2 + σ 2 exp

(
−|y1 − y2|

λ

)
, (24)
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FIG. 2. Fluctuation of variance ratio β with correlation length μ.
The variance σ 2

v̄ < σ 2 but approaches σ 2 when μ → ∞.

where σ 2 is the variance of velocity fluctuation and λ is the
correlation length. Then the ensemble mean and variance of v̄

are given by [34]

〈v̄〉 = 〈v〉, σ 2
v̄ = 〈v̄2〉 − 〈v̄〉2 = 2σ 2μ2(e−1/μ + 1/μ − 1),

(25)

respectively, where μ = λ/a is the dimensionless correlation
length. Figure 2 shows the variation of the nondimensional
ratio β = σ 2

v̄ /σ 2 with the correlation length μ, where β

approaches 1 with increasing correlation length μ or σ 2
v̄ → σ 2

when μ → ∞.
The statistical mean of the effective dispersion D̃ can be

obtained from Eq. (20) as

〈D̃〉
D

= 1 + γ a2σ 2

D2
, (26)

where

γ =
∫ y

0

∫ y

0
〈v′(y1)v′(y2)〉dy1dy2

/
(aσ )2 (27)

is a dimensionless number representing the effect of velocity
fluctuation on mixing enhancement. The covariance function
of the velocity fluctuation v′(y1) can be related to the
covariance function of v(y) using Eq. (6) as

〈v′(y1)v′(y2)〉 = 〈v(y1)v(y2)〉 + 〈v̄2〉
− 〈v̄ · v(y2)〉 − 〈v̄ · v(y1)〉. (28)

The final expression for γ is obtained using Eq. (28) as

γ = 4μ4(e−1/μ − 1) + 4μ3 − 1
3μ2(e−1/μ + 5) + 1

3μ (29)

and is plotted in Fig. 3 as a function of μ. This figure show
that γ increases from zero to its maximum value γ = 0.026,
corresponding to μ ≈ 0.25, and then decreases to zero for
large μ.

FIG. 3. Variation of enhancement in dispersion with the correla-
tion length µ showing a stochastic spike at μmax.

Let us make a comparison with the macrodispersion model
by Neuman [3]. We first write the velocity as a function of
permeability k(y) using Darcy’s law

v(y) = k(y)

υφ
g, (30)

where k(y) is the permeability field for each layer, υ is
kinematic viscosity, φ is the porosity, and g is the force per
unit mass in the x direction with a unit of acceleration. Let us
assume the covariance function of k(y) as

〈k(y1)k(y2)〉 = 〈k〉2 + σ 2
k ρ(|y2 − y1|), (31)

where 〈k〉 and σ 2
k are the mean and variance of the permeability

and ρ is the autocorrelation function. The velocity covariance
can be written as

〈v(y1)v(y2)〉 = 〈v〉2
[
1 + α2

kρ(|y2 − y1|)
]

(32)

after Eq. (30), where αk = σk/〈k〉 is the coefficient of variance
for permeability field k. A comparison between Eqs. (32) and
(24) leads to the relation σ = αk〈v〉. The macrodispersion
theory predicts the effective dispersion (in the limit of
vanishing D and µ)

D̃N

D
= 1 + a〈v〉

D
α2

kμ, (33)

which scales linearly with both the correlation length µ and
〈v〉. In contrast, our model (26) gives

D̃

D
= 1 +

(
a〈v〉
D

)2

α2
kγ, (34)

where the effective dispersion scales quadratically with 〈v〉 and
is a nonlinear function of µ that exhibits a maximum at μmax =
0.25, a stochastic spike referring to a sharp increase before
μmax followed by a relatively slow decrease to 0 at infinity.
This characteristic is also demonstrated for the stochastic heat
conduction problem [34].

The correlation length μmax leading to the maximum dis-
persion should depend on the particular choice of covariance
function ρ, but not on any other model parameters. Maximum
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FIG. 4. Probability density function of effective velocity v̄.

enhancement in mixing can be achieved for the stochastic
velocity field v(y) with a correlation length λmax ≈ 0.25a,
where a is the total layer thickness. This information can
be useful for engineering a layered medium to achieve the
maximum effect of mixing.

A quick comparison with Taylor dispersion can also be
made here. Note that for the parabolic velocity profile (21),
the velocity variance is

σ 2 = [v(y) − v̄]2= v̄2/5 (35)

and the equivalent γ from Taylor’s theory is γ = 1/42 ≈
0.0238, only slightly smaller than the maximum value γ =
0.026 for the random velocity.

Finally, we perform MCSs to compute the probability
distribution functions (PDFs) of v̄, D̃, and η(y). We assume
that the porous medium is made of 100 layers and the velocity

FIG. 5. Probability density function of effective dispersion D̃

with D = 0.1 corresponding to the dispersion of constant velocity.
The ensemble mean 〈D̃〉 shows the enhancement in dispersion due to
velocity fluctuation.

FIG. 6. Plot of in-plane variation η(y) fluctuating with y from
105 samplings.

in each layer is constant with a uniform distribution defined on
the interval [0,1]. Figures 4 and 5 illustrate the PDFs of v̄ and
D̃ with v̄ and D̃ approaching Gaussian and χ2 distributions,
respectively, for small correlation length μ.

Figure 6 depicts the realizations of η(y) obtained from the
MCS. The PDFs for η(y) at the top (y = 1) and middle (y =
0.5) of the domain are presented in Figs. 7 and 8. The PDF
function for η(y) approaches a Gaussian distribution at all
locations but with a fluctuating variance that is larger at both
upper and lower boundaries and smaller in the middle of the
domain.

IV. NUMERICAL EXAMPLE

To investigate the accuracy of the proposed models, Eq. (1)
was first fully solved by a finite-difference simulator for chosen
parameters to examine flow and transport through a multilayer
random media with ten layers of a total thickness a = 1.
The diffusivity D = 0.1 was used and 100 realizations were
generated on a 2D mesh with velocity v(y) discretized into ten

FIG. 7. Probability density distribution of η(y) at y = 1.
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FIG. 8. Probability density distribution of η(y) at y = 0.5.

random variables vertically following a Gaussian distribution
with 〈v〉 = 1 and a unit variance (σ = 1).

The numerical solutions obtained, i.e., the high-fidelity
numerical solutions c(x,y,t) by solving Eq. (1) directly, will
be used as a reference for comparison. The cross-sectional
average solutions c̄(x,t) can be obtained by solving the one-
dimensional effective equation (13) with effective properties
computed from Eqs. (5) and (20), respectively. The proposed
model will also compute the mid-fidelity solutions c1(x,y,t)
using Eq. (3) to approximate the original high-fidelity solutions
c(x,y,t), where the in-plane variation function η can be
computed from Eq. (17) for all realizations. Variations of η

in the y direction for the first two realizations R1 and R2 are
plotted in Fig. 9. Finally, three solutions (c̄, c1, and c) with
increasing fidelity are obtained for the purpose of comparison,
where c̄ is the low-fidelity and c1 represents the mid-fidelity
solutions.

FIG. 9. Variation of η in the y direction for realizations R1 and
R2.

FIG. 10. Variation of concentration solutions of increasing fi-
delity (c̄, c1, and c) with time t for realization R1. The solution c̄T is
obtained by cross-sectional averaging of the high-fidelity solution c

using Eq. (4).

To assess the discrepancy between c̄, c1, and c, a comparison
of these solutions for the first two realizations is presented in
Figs. 10 and 11, where the concentration variation with time
t at locations (x = 1,y = 0) and (x = 1,y = 1) are plotted.
For both realizations R1 and R2, solutions c̄ solved by the
effective equation (13) (black solid lines) are in very good
agreement with solutions c̄T obtained by a direct cross-
sectional averaging of the high-fidelity solutions c(x,y,t) using
Eq. (4) (black circles), i.e., c̄T (x,t) = 1

a

∫ a

0 c(x,y,t)dy. This
validates our reduced model. The mid-fidelity solutions c1

(blue and red solid lines) approximate the high-fidelity c (blue
and red circles) much better than c̄ for both realizations.

FIG. 11. Variation of concentration solutions of increasing fi-
delity (c̄, c1, and c) with time t for realization R2. The solution c̄T is
obtained by cross-sectional averaging of the high-fidelity solution c

using Eq. (4).
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FIG. 12. Mean and standard deviation of error of c̄ varying with
time t .

In this example, the original high-fidelity solution c from
the 2D stochastic model can be better approximated by the
mid-fidelity model c1 that is decomposed into a 1D low-fidelity
model c̄ and a 1D in-plane variation function η, both of which
can be solved more efficiently than the original solution c.
Finally, the discrepancy εi (L2 norm) between the cross-
sectional average solutions c̄ and c̄T (black lines and circles in
Figs. 10 and 11) can be quantified for each realization,

εi(t) = ∥∥c̄i − c̄T
i

∥∥
2 =

√√√√ 1

Nn

Nn∑
n=1

∣∣c̄i − c̄T
i

∣∣2
, (36)

where i is the realization number from 1 to 100 and Nn is
the total number of discretizations in the x direction. The
variations of the ensemble mean and standard deviation of εi

with time t are plotted in Fig. 12, where both the mean and
deviation are decreasing with time, showing that the proposed
effective model [Eq. (13)] is better at describing the long-time
dynamics of solute transport with a maximum discrepancy on
the order of 10–2.

V. CONCLUSION

We have presented a model reduction method that results
in hierarchical stochastic models for solute transport in
layered porous media with random distributions of advection
velocity across different layers. The model, given by Eq. (3),
approximates the concentration field c(x,y,t) in terms of its
cross-sectional average c̄(x,t) and in-plane variation function
η(y) [given by Eq. (16)], where c̄(x,t) represents the large-
scale variability of c(x,y,t) and is governed by the stochastic
advection-dispersion equation (13) with effective advection
velocity v̄ [given by Eq. (5)] and effective dispersion coeffi-
cient D̃ [given by Eq. (14) or (20)]. The small-scale variability
in c(x,y,t), caused by small-scale variability of the advection
velocity v(y), is captured by the in-plane function η(y). The
resulting multifidelity models can significantly reduce the
problem dimensionality for efficiently solving the original
expensive problem. The effect of correlation field length v(y)
on the enhancement in dispersion also has been analytically
examined. In contrast to the linear scaling with correlation
length and mean velocity from macrodispersion theory, our
model predicts a nonlinear and a quadratic dependence of the
effective dispersion on the correlation length and the mean
velocity, respectively. A stochastic spike that can be identified
with the maximum enhancement (maximum effective disper-
sion coefficient) was found for a correlation length at about
0.25a. There is no enhancement (i.e., the effective dispersion
coefficient is equal to the molecular diffusion coefficient)
for both zero and infinitely large correlation lengths. This
information can be very useful for engineering random layered
porous media with the maximized effect of mixing.
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