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Renormalization group theory outperforms other approaches in statistical comparison
between upscaling techniques for porous media

Shravan Hanasoge*

Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India

Umang Agarwal and Kunj Tandon
Shell India Markets Pvt. Ltd., Bangalore Hardware Park, Devanahalli Industrial Park, Bengaluru 562149, India

J. M. Vianney A. Koelman
Center for Computational Energy Research, Eindhoven University of Technology / Dutch Institute For Fundamental

Energy Research, Eindhoven, The Netherlands
(Received 18 July 2017; published 25 September 2017)

Determining the pressure differential required to achieve a desired flow rate in a porous medium requires
solving Darcy’s law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the
permeability coefficient is sampled at high spatial resolution, which makes solving Darcy’s equation numerically
prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective
models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore
the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to
characterize the relative success of upscaling methods on a large sample of permeability coefficients that are
above the percolation threshold. We introduce a technique based on mode-elimination renormalization group
theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled
using other methods, we find that MG is consistently more accurate, particularly due to its ability to address
the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we
have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that
approach or are beyond the percolation threshold.
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I. INTRODUCTION

Hydrocarbons are often recovered from reservoirs by
applying a pressure differential across a pair of locations and
extracting the output fluid from one of them. The reservoir
performance is dependent on the flow behavior of hydrocarbon
and pumped fluid through the reservoir section. The hetero-
geneities across different length scales in reservoir formations
are typically captured in the reservoir simulations by an
effective gridblock value. This effective value is derived using
an upscaling process in which the heterogeneous medium
represented by the upscaled grid block would essentially have
the same flow at its boundaries under the same pressure
gradient as the finer scale medium. The physics of fluid flow
through a porous medium, described by the time-independent
Darcy’s law, is

∇ · (a · ∇φ) = 0, (1)

where φ = φ(x) is the pressure distribution, x is the spatial co-
ordinate, a = axx êx êx + axy êx êy + ayx êy êx + ayy êy êy is the
tensor permeability, êx and êy are unit vectors along the x and
y directions, and ∇ is the spatial gradient. Although we limit
the current discussion to two dimensions (2D), Eq. (1) applies
in 3D as well. The specific quantity of interest to us is the flow
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rate, defined by

f = −
∫

S

dA n̂ · a · ∇φ, (2)

where S represents the surface perpendicular to the direction in
which the pressure differential is applied, n̂ is the normal vector
to that surface (and therefore coaligned with the direction of
the pressure differential), and the area integral is over the
entire surface S. The negative sign indicates that the flow
is in the direction of decreasing pressure. The solution to
Eq. (1), therefore, gives the flow rate f associated with a
specific pressure differential. Since the equation is linear, the
solution φ scales directly with the magnitude of the pressure
difference, i.e., the flow rate obtained through the solution of
Eq. (1) is directly proportional to the pressure contrast.

Contemporary methodologies [1–8] allow for building
models of the spatial distribution of permeabilities in reservoirs
at high spatial resolution, resulting in ∼10243-sized blocks in
3D. Additionally, the permeabilities may display large con-
trasts, and both issues render the computation intractable (or
difficult, at any rate), and certainly so on a routine basis. The
commonly adopted approach is to design an effective coarse
version of the coefficient such that low-wave-number aspects
of the solution are preserved, thereby ensuring that the flow
rate changes minimally. A variety of prevailing approaches
are applied to derive the coarsened or upscaled coefficient
from the original high-resolution representation. The simplest
method is to directly filter out high wave numbers from the
coefficient and project it onto a coarser grid. Depending on the
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types of spatial variations present in the coefficient, this may
be an accurate approximation, but success is by no means
always assured. Indeed, for the types of spatial variations
seen in realistic coefficients, straightforward averaging may
not be the best technique of upscaling (see, e.g., Ref. [1]).
Additionally, simple averaging does not explicitly account
for how the spatial geometry and tensor components of the
coefficient participate in influencing the solution. In particular,
the solution φ to Eq. (1) is sensitively dependent on both
diagonal (axx and ayy) and off-diagonal components (axy).
Most upscaling methodologies do not set out a procedure to
accommodate the off-diagonal component, choosing rather
to ignore them, i.e., axy = 0. Depending on the magnitude
of the off-diagonal relative to the diagonal component, this
assumption may lead to potentially significant errors and
systematic biases in estimates of flow rates.

More sophisticated techniques such as renormalization
group theory and the technique of [9], termed KK hereafter, ex-
plicitly address the tensorial nature of the coefficient (although
KK only handles diagonal components of the coefficient ten-
sor). The renormalization group, which has a celebrated history
in particle physics, made possible the construction of effective
(low-wave-number) theories in multiscale, multicomponent
systems. Here we use a variant termed mode-elimination
renormalization group theory (MG), which was introduced by
Wilson (and therefore known as the Wilsonian renormalization
group [10]). Let us consider the Fourier transform of Eq. (1);
the spatial coordinate is replaced by the wave number, i.e.,
x → k, and functions of real space by their transforms. To
minimize the notational burden, we use the same symbol to
denote the transformed and original quantities, e.g., φ(k) and
φ(x) are transform pairs, as are a(k) and a(x). Consider the
discrete Fourier transform of Eq. (1),

∑
x

e−ik·x∇ · (a · ∇φ)

=
∑

k′
ik · a(k − k′) · ik′ φ(k′) = −[BC]

= −
∑

k′
k · a(k − k′) · k′ φ(k′), (3)

where the spatial gradient Fourier transforms into the wave
number, i.e., ∇ → −ik, the spatial product turns into a
convolution, and the boundary-condition term (denoted BC) is
moved to the right side (thereby acting as a source). Equation
(3) shows that the wave numbers of a and φ are fully mixed
as a consequence of the convolution. Given N discrete wave
numbers, Eq. (3) may be written as an N × N matrix inversion
problem, {k · a(k − k′) · k′}[φ(k′)] = [BC], where the first
term in curly brackets indicates an N × N matrix with rows
being associated with wave numbers k and columns with
k′, and the terms in square brackets denote N × 1 column
vectors. Since we are only interested in ensuring that the
low-wave-number components of φ are faithfully reproduced,
the challenge is to build an appropriate reduced version of
the matrix inversion. In particular, the diffusion problem
has a long history in applied mathematics as well, where
it is known as “homogenization”, which has been gaining
prominence through the work of [11] and [12]. A treatment

for finite-wave-number cutoff in this context was developed
in [13].

II. RENORMALIZATION GROUP

Here we apply MG, among other methods, to develop a
coarse-scale representation of the coefficient a. Building on the
work of [14,15], we analyzed the performance of the method
in the context of the diffusion equation. We introduce a cutoff
wave number denoted by kc, and we describe wave numbers
that are greater or less than this by k> (all wave numbers
k > kc) and k< (all wave numbers k < kc). Only the coarse-
scale part of the solution φ(k<) interests us, and we do not
wish to compute φ(k>). Since Eq. (3) holds for each wave
number k, we split it into two equations, one each for low and
high wave numbers,

−
∑

k′
k< · a(k< − k′) · k′ φ(k′) = [BC]<, (4)

−
∑

k′
k> · a(k> − k′) · k′ φ(k′) = −[BC]>. (5)

If the boundary condition [BC] has no high-wave-number
power, the right-hand side of Eq. (4) is zero,

∑
k′

k> · a(k> − k′) · k′ φ(k′) = 0. (6)

The sum over k′ in Eq. (6) applies to the entire range of wave
numbers and may be split, as in Eqs. (4) and (5), into two
partial sums, i.e., for low and high wave numbers,

∑
k′

>

k> · a(k> − k′
>) · k′

> φ(k′
>)

+
∑
k′

<

k> · a(k> − k′
<) · k′

< φ(k′
<) = 0, (7)

which is ultimately written in matrix form to assist the analysis,

{a>>}[φ]> = −{a><}[φ]<, (8)

where {a>>} = k> · a(k> − k′
>) · k′

> is a square matrix of
size N> × N>, where N> is the count of high wave numbers,
and {a><} = k> · a(k> − k′

<) · k′
< is of size N< × N>, where

N< is the count of the (desired) low wave numbers, likely a
nonsquare matrix. The elements of these matrices correspond
to the allowed values of k>,k′

>, and [φ]< = φ(k′
<) and

[φ]> = φ(k′
>) are column vectors. This allows us to express

the high-spatial-frequency component of the solution, φ(k′
>)

in terms of the low-wave-number part (that we are interested
in computing),

[φ]> = −{a>>}−1 {a><}[φ]<. (9)

Now we study the low-wave-number part of Eq. (3),
∑

k′
k< · a(k> − k′) · k′ φ(k′) = [BC], (10)

where for the sake of notational convenience, [BC]< is
written as [BC]. Expanding Eq. (10) into low and high wave
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numbers again,

∑
k′

>

k< · a(k< − k′
>) · k′

> φ(k′
>)

+
∑
k′

<

k< · a(k< − k′
<) · k′

< φ(k′
<) = [BC], (11)

or in matrix notation,

{a<<}[φ]< + {a<>}[φ]> = [BC]. (12)

Note that the same notations as employed in, e.g., Eq. (9) are
used here as well. We now substitute the expression for [φ]>
from Eq. (9) in Eq. (12) to obtain

({a<<} − {a<>}{a>>}−1 {a><})[φ]< = [BC], (13)

which is an effective equation for solely the low wave numbers
of φ, or [φ]<, as we term it here. Equation (13) encapsulates the
principles of mode-elimination renormalization group theory.
It represents computing the Schur complement of the full
N × N matrix {k · a · k′} and is equivalently known as
numerical homogenization (or homogenization) in applied
mathematics.

Up to this point, there have been no assumptions, except
with regard to periodic boundary conditions, which may
be relaxed by using a non-Fourier basis. In principle, this
should give us the exact low-frequency solution, with the
added bonuses that computing this portion of φ is ostensibly
computationally tractable, and Eq. (13) fully accounts for
the tensor nature of a. However, there can be a significant
cost attached to this, for the following reasons. First of
all, computing the Schur complement is very expensive,
specifically when attempting to substantially reduce the size
of the matrix. Secondly, due to an uncertainty principle that
governs convolutional operators [15], what was once a purely
differential equation turns into a mixed integrodifferential
equivalent, and it is therefore difficult to solve.

As a consequence, we adopt an empirical approach broadly
based on MG, where we gradually decimate (reduce in size) the
coefficient matrix into a coarse version. The high-resolution
coefficient is divided up into blocks of a given size, and
each block is decimated into one coefficient and the process
is repeated. The size of the block, the eventual size of the
coefficient, and the decimation technique are choices that must
be determined.

III. PROBLEM SETUP

To develop insight into the performance of upscaling
techniques, we limit the problem to 2D. We operate under
the assumption that what we learn in 2D can be naturally
extended to 3D. The first step lies in developing a means to
obtain solutions to Eq. (1), which we solve in real space.

A. Solving Darcy’s equation in 2D

The conditions we apply are φ(x = 0,y) = 1, φ(x =
1,y) = 0 on the horizontal sides and ∂φ/∂y|(x,y=0) = 0 =

∂φ/∂y|(x,y=1) on the vertical boundaries. We expand Eq. (1) as

(∂xaxx + ∂yayx)
∂φ

∂x
+ (∂xaxy + ∂yayy)

∂φ

∂y
+ axx

∂2φ

∂x2

+ ayy

∂2φ

∂y2
+ 2axy

∂2φ

∂x∂y
= 0, (14)

where the tensor components of the coefficient are
a = {axx,axy,ayx,ayy}, and axy = ayx is honored. We
use the following centered fourth-order stencils to resolve
first- and second-order derivatives in the x and y directions,
although only shown here for the x derivative,

∂φ

∂x

i,j

= a2(φi+2j − φi−2j ) + a1(φi+1j − φi−1j ), (15)

∂2φ

∂x2

i,j

= b2(φi+2j + φi−2j ) + b1(φi+1j + φi−1j ) + b0 φij ,

(16)

where a1 = 8/12, a2 = −1/12 and b0 = −30/12, b1 =
16/12, b2 = −1/12, and i,j denote x and y grid-point indices,
respectively. Because the normal derivative ∂φ/∂y = 0 on the
upper and lower boundaries, as the conditions dictate, we
introduce ghost nodes. For instance, on the lower boundary,
this would imply φi,−1 = φi,1 and φi,−2 = φi,2. Because we
apply Dirichlet conditions on the horizontal sides, we do not
introduce ghost nodes; instead, the derivative drops to second
order at points adjacent to the x boundaries. The x-boundary
conditions themselves are shifted to the right-hand side.
Standard centered second-order accurate schemes are used
for the first and second derivatives (we do not list them here).

With this approach, we reformulate the differential equation
as a classic matrix-inversion problem of the sort A[φ] = b,
where in this case A is a banded matrix comprising the
discretized terms of Eq. (14), and b is the boundary condition.
Note that the bandwidth of A directly scales with the order
of accuracy of the derivative scheme. Once the matrix is
constructed, we use the Portable Extensible Scientific Toolkit
(PETSc) [16], a freely available library to solve the matrix
equation. PETSc provides a variety of preconditioners such
as geometric and algebraic multigrids, and numerous options
for iterative Krylov solvers. Because we are dealing with
a sufficiently small problem in 2D, and given that iterative
solutions take a long time to converge, we rely on an LU
decomposition algorithm to directly solve for φ. Currently
PETSc solves (512 × 512)-sized problems with high accuracy
quickly, but extending to larger blocks possibly requires
preconditioned iterative solutions (and is an avenue for future
work). We work here with the largest possible grid size, i.e.,
512 × 512.

B. Solution validation and quantification of error

Since the geometry of the problem is such that the flow is
in the x direction, the flow rate f is given by

f = −
∫ 1

0
dy

(
axx

∂φ

∂x
+ axy

∂φ

∂y

)
. (17)

Because the boundary condition on the left side is φ = 1 and
on the right side is φ = 0, ∂xφ < 0 over most of the domain,
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(a) axx, Exact, n = 512
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(b) ayy, Exact, n = 512
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(c) axy, Exact, n = 512
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(a1) axx, MG, n = 32
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(b1) ayy, MG, n = 32
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(a2) axx, Mean, n = 32
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(b2) ayy, Mean, n = 32
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(c1) axy, MG, n = 32
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(c2) axy, Mean, n = 32
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(a3) axx, KK, n = 32
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(b3) ayy, KK, n = 32
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(c3) axy, KK, n = 32
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FIG. 1. A single tortuous channel is seen to cross from one horizontal end of the computational box to the other of a model coefficient
that has crossed the percolation threshold. The leftmost column (panels a, b, and c) shows the “real” coefficient (resolution of 512 × 512), and
the three successive columns show coefficients decimated using MG (a1), (b1) and (c1), mean (a2), (b2) and (c2), and KK (a3), (b3) and (c3)
methods to a size of 32 × 32. Note that the color bars of the different panels are all different, and that, with successive upscaling, the magnitudes
of the coefficients continue to decrease. The background permeability for the axx and ayy coefficients is 10−6, whereas the background for the
axy coefficient is zero. The flow associated with this model is shown in Fig. 2.

which results in a negative value of the integral and therefore
a positive value for f .

To ensure that the solution is numerically accurate, we may
compute the flow rate f from Eq. (17), seen to be a function
of the x coordinate since it is an integral over the entire
y range. However, the flow rate must be an invariant quantity,
and therefore f has to be constant. To validate the solution,
we calculate f max/f min, i.e., the maximum-to-minimum ratio
of the flow rate f as obtained from estimates at all the
x coordinates. If this ratio is smaller than some critical
threshold (user-prescribed), we declare the corresponding
solution admissible. The solution associated with the full
coefficients (i.e., with no upscaling) is more susceptible to
numerical errors because of the presence of sharper and
spatially complicated features in the permeability coefficients.
For a given coefficient, we therefore only require the exact
solution to pass this test.

Given these solutions, the primary question of interest is as
follows: Do the upscaled coefficient models produce the right
flow rate? If not, how erroneous are the estimates? We define
the error ε as

ε = f exact − f model

f exact
× 100, (18)

allowing us to characterize the performance of upscaling
methods.

C. Generating permeabilities

In realistic scenarios, the coefficient a may display large
contrasts, and some regions in a reservoir are altogether
impermeable. Setting a = 0 or to an extremely small value
in a numerical calculation signals trouble because the matrix
becomes singular or ill-conditioned. In our tests we set the
water level for the coefficient to 10−6, and the maximum may
locally reach a value of 1–2, which implies a maximum-to-
minimum ratio of ≈106 for the coefficient. Despite operating
at this degree of stiffness, we are able to extract accurate
solutions.

We consider flow through a medium that lies above the
percolation threshold. This implies that at least one permeable
channel, albeit tortuous, forms an unbroken path from one end
of the domain to the other. The percolation channel is built
using a sequence of connected, permeable, smaller pieces that
are parametrized according to their length, length-to-width
ratio, and magnitudes of the xx, xy, and yy component
permeabilities. The dimensions of these pieces are randomly
chosen, within allowed limits, ensuring that the length of any
individual piece is at most a tenth of the total horizontal side of
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Solution without background gradient, φ − 1 + x
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FIG. 2. The flow pattern associated with applying a pressure
gradient in the x direction, i.e., φ(x = 0,y) = 1, φ(x = 1,y) = 0,
and impermeability conditions on the upper and lower boundaries,
∂φ/∂y|(x,y=0) = 0 = ∂φ/∂y|(x,y=1). The overplotted contours show
the “exact” coefficient axx from the top-left panel of Fig. 1 to assist in
identifying flow features. To obtain φ, we solve Eq. (14) using PETSc
[16]. Nominally, for constant permeability, we have φ = 1 − x. To
highlight the spatial complexity of the solution, we display φ − 1 + x.
The choices that determine the size and orientation of the percolation
channel (randomly assigned within allowed ranges) have an impact
on the total flow rate. To avoid being overly sensitive to the associated
finite-size effects, we perform a statistical survey over a broad range
in sizes and orientations.

the domain but also sufficiently large in order that it is resolved
accurately by the numerical scheme. The fourth-order accurate
scheme we employ here loses fidelity at a third of the Nyquist
sampling rate (the von Neumann analysis suggests as much;
also see, e.g., [17]), implying that we must resolve each feature
using at least six grid points. This sets a minimum size for
features, below which solutions are untrustworthy.

The inclination of each piece with respect to the axes and
coefficient magnitude is also randomly assigned, within a fixed
range—inclinations must be chosen so that the percolation
channel makes effective progress across the domain. The
finite dimensions of these pieces can directly impact the
overall flow rate. Therefore, to mitigate the sensitivity to any
individual choices in these permeability models, we generate
500 models of permeability coefficients, each with at least
one percolating channel, which is in turn built using randomly
chosen channel paths, sizes, and permeability magnitudes. We
show an examples of one such coefficient model above the
percolation threshold in Fig. 1 and the corresponding solution
in Fig. 2.

D. Upscaling methods and cost

A number of different strategies may be employed in the
process of upscaling (see, e.g., Ref. [9] and references therein).
Coarsening a highly resolved coefficient first requires a target

resolution, e.g., we might wish to upscale a 512 × 512 model
to 32 × 32. Secondly, this coarsening may be accomplished
either all at once or through a sequence of steps. For instance,
we might decimate an (N × N )-sized model of a coefficient
by operating on blocks of size Nblock × Nblock, reducing each
block to an effective coefficient. This would spatially coarsen
the model of the coefficient to size N/Nblock × N/Nblock

(assuming that Nblock is a divisor of N ). The process is repeated
K times on successively spatially reduced coefficients, where
K = logNblock

(N/Ntarget), eventually arriving at the target grid
size Ntarget × Ntarget (note that the goal is Ntarget � N ). In 2D,
one upscaling sweep with MG requires inverting (N/Nblock)2

matrices of size N2
block × N2

block. The cost of each inversion

scales as (N2
block)

3
, and the first sweep (i.e., going from

N × N to N/Nblock × N/Nblock), which requires (N/Nblock)2

inversions, has an associated computational cost that scales
as (N/Nblock)2 × N6

block = N2N4
block. If the total number of

required sweeps K is larger than 1, then the computational
cost associated with the subsequent sweep (going from
N/Nblock × N/Nblock to N/N2

block × N/N2
block) is N2 N2

block,
and so on. Assuming that the block size Nblock is the same at
each sweep (note that this is not necessary), the total cost is
N2N2

block

∑K−1
k=0 N−2k

block.
Consider the case of N = 512, Ntarget = 32, and the sim-

plest possible block size of Nblock = 2. Assuming that inverting
an N2

block × N2
block = 4 × 4 matrix can be accomplished in

10 μs, sequentially upscaling a 512 × 512 model to 32 × 32
requires four sweeps (from 512 to 256, 256 to 128, 128
to 64, and finally 64 to 32), and typically takes 0.5 s or
so in MATLAB. To illustrate the escalating cost with block
size, consider 16 × 16 blocks, i.e., N2

block = 256. One sweep
over the 512 × 512 grid with this block size will reduce it
to 32 × 32, and the computational time, using the scaling
described above, would take some 512 s. Therefore, although
the number of sweeps required decreases with increasing block
size, the cost of the matrix inversion dramatically increases,
resulting in potentially long compute times.

Our empirical tests (fortuitously) revealed that in the limit of
small block size, i.e., Nblock � N (we tried Nblock = 2,4,8,16
for N = 512), the eventual accuracy in retrieving the flow rate
does not change very much with block size. We may thus
employ the computationally cheap Nblock = 2 strategy.

It is important to keep in mind that computing solutions
to Darcy’s equation comes down to solving an implicit
boundary-value problem, which translates to inverting a matrix
of size N2 × N2 for a grid size N × N . The computational
cost of a direct matrix inversion scales as O[(N2)3] = O(N6),
although indirect solutions using sophisticated sparse-matrix
techniques such as a multigrid can significantly mitigate the
cost. For instance, solutions on a 512 × 512 grid take about
60 s, whereas the solution on a 32 × 32 grid takes just
a few milliseconds. While 60 s can still be considered as
reasonably fast, the time required to solve for the flow through
a permeability with sharp contrasts in 3D on a 10243 is a
factor of about 329 ≈ 1013 more expensive than a solution on
a 323 grid. Running MG to upscale the coefficient is therefore
a trivial cost to pay to obtain accurate solutions, especially
when using the lowest block size. We study three upscaling
techniques here:
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FIG. 3. The statistical distribution of numerical errors associated with upscaling 500 models of permeability using three techniques:
MG (panels a1, b1, and c1), KK (panels a2, b2, and c2), or straightforward averaging (panels a3, b3, and c3). In these tests, we explicitly
set axy = 0 at the highest resolution (512 × 512). The x axis is the error in predicting the correct flow rate [Eq. (18)] and the y axis is the
probability of incurring that error. The original coefficient is sampled at 512 × 512 resolution and subsequently decimated to resolutions of
256 × 256 (row a), 128 × 128 (row b), and finally 32 × 32 (row c). With greater rates of decimation, MG introduces a nontrivial axy coefficient,
whereas KK and straight mean do not address this aspect. The models lie above the percolation threshold, with a single channel linking the
two horizontal boundaries. The channel may assume a tortuous path. It is seen that although all the methods show a systematic theoretical bias
toward overpredicting the flow rate, MG is the method that performs best.

(i) MG: codes, written in MATLAB, take as input (N × N )-
sized (grid) tensor permeabilities and decimate them down to
desired (Ntarget × Ntarget)-sized coefficients. The MG analysis
in Sec. II relies on the Fourier basis; however, one may
equally derive the technique using the Haar wavelet basis. The
computational cost scales as N2N2

block

∑K−1
k=0 N−2k

block, where
K = logNblock

N .
(ii) Straight mean: we replace blocks of size Nblock ×

Nblock by arithmetic averages for each of the component
coefficients xx, xy, and yy. Thus, one level of decimation
causes the size of the coefficient to drop from N × N to
N/Nblock × N/Nblock. Depending on the target grid size,
several sweeps may need to be performed. It may be shown that
the total cost scales as N2N2

block

∑K−1
k=0 N−2k

block, which evidently
requires fewer operations, notwithstanding a proportionality

constant, than MG. For sufficiently small block size Nblock,
however, there is little practical difference in cost between the
methods.

(iii) KK method: this is an algorithm designed to replace
(2 × 2)-sized blocks of xx and yy components by combi-
nations of their arithmetic and geometric means (see [9]
and Appendix A). By construction, KK can only handle
a block size of Nblock = 2, i.e., KK is designed specifi-
cally to decimate (2 × 2)-sized blocks (axx,ayy), at adjacent
x- and y-grid points, to corresponding effective values. The
algorithm does not account for xy coefficients, i.e., axy = 0
pre- and post-upscaling. For the sake of completeness and com-
parison, we state the analytical expressions for KK and cor-
responding Nblock = 2 decimation using MG in Appendix A.
The computational cost is similar to that of the straight mean.
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FIG. 4. Probability of incurring an error less than x in calculating the flow rate [Eq. (18)] when decimating from 512 × 512 to various
resolutions for the three methods being considered here: MG (panel a), KK (panel b), and straight mean (panel c). This is concluded from
a statistical survey of 500 randomly generated models that are above the percolation threshold. The off-diagonal coefficient axy = 0 for the
original model at the highest resolution of 512 × 512. The upscaled coefficients obtained using MG have finite axy and are therefore of higher
accuracy than KK and the straight mean, which do not take these into account.

IV. STATISTICAL STUDY AND DISCUSSION

It is to be expected that the less the coefficient is upscaled,
the greater the accuracy of the corresponding solution. Due to
computational restrictions, the maximum-allowed size for the
coarsened coefficient is set at 32 × 32 (user defined), and we
therefore operate at this limit. We decimate the coefficient
down to this spatial size, thereby defining the extent of
coarsening.

The size of the block, i.e., the Nblock × Nblock tile that is
decimated to one tensor (following the notation in Sec. III D),
is also an important choice. Based on a number of tests (not
discussed here) for the flow rate, we find that the error is
mostly insensitive to the choice of block size, at least when it is
much smaller than the entire grid dimension of the coefficient,
i.e., Nblock � N . In fact, preliminary calculations reveal that
Nblock = 2 is the best choice, although more thorough testing
may be required to support this. Setting Nblock = 2, we will
need to decimate the (512 × 512)-sized model four times to
arrive at the eventual grid size of 32 × 32.

We must choose the basis on which to project the coeffi-
cients; based on preliminary tests, we proceed with the Fourier
basis, finding it to be more accurate (in terms of flow-rate
prediction) than the Haar. Indeed, more careful testing is
required to justify this choice.

We performsimulations for 500 models of permeabilities,
each possessing a randomly generated tortuous channel from

the left boundary to the right, ensuring that we have a
percolation pathway running through the medium. For each
realization, we compute the “exact” solution for the original
512 × 512 model, decimate the model according to MG, KK,
and the straight mean prescriptions to various levels, i.e.,
256 × 256, 128 × 128, and so on. Because of the sparsity
of permeable channels, decimating below a target grid size
Ntarget × Ntarget = 32 × 32 causes the information about the
channel to be lost. To avoid confusion, we recall here that
the block size controls the number of steps in the upscaling
process, whereas the target size denotes the extent to which
upscaling is performed. Too much upscaling (i.e., when the
target grid size is too small) causes the permeability coefficient
to fall to the background value (10−6 in this case), and the
medium is deemed impermeable. As for the block size, small
Nblock implies low computational cost and vice versa.

We perform two statistical surveys, one where the highest-
resolution starting model (512 × 512) has no off-diagonal
permeability coefficient, i.e., axy = 0, and another where it
is finite. The former reflects the contemporary practice of
ignoring off-diagonal coefficients in flow through porous
media, whereas the latter is an investigation of how such
terms might influence the eventual flow estimate. In line
with expectation, we find that the accuracy in estimating the
flow rates diminishes with the extent of upscaling. Note that
“mild” upscaling refers to moderate Ntarget/N ratios, whereas
“aggressive” upscaling involves pushing Ntarget toward smaller
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FIG. 5. Probability of incurring an error less than x in calculating
the flow rate [Eq. (18)] when decimating from 512 × 512 to 32 × 32
for the three methods being considered here: MG, KK, and straight
mean. This is concluded from a statistical survey of 500 randomly
generated models that are above the percolation threshold. The off-
diagonal coefficient axy = 0 for the original model at the highest
resolution of 512 × 512. When decimating down to lower resolutions,
only MG is able to address the tensorial nature of the coefficient and
thereby introduces finite axy at 32 × 32, resulting in greater accuracy.

and smaller values. The ideal upscaling method would be
very aggressive and return one effective coefficient for the
entire medium, which would then describe the flow rate
(see Appendix B), thereby requiring no further computation.
However, we find that, irrespective of the technique, upscaling
to resolutions Ntarget × Ntarget = 16 × 16 and smaller results
in a total loss of information about the percolation channel.
The effective flow rate for such highly coarsened models is
comparable to the background rate of 10−6 and therefore
deemed to be impermeable. We therefore halt upscaling at
32 × 32.

Figure 3 shows a histogram of probabilities of incurring
a given error in the case in which axy = 0 in the highest
resolution case, as a function of the degree of upscaling.
MG is seen to outperform KK slightly and the straight-
mean technique significantly. This is because MG takes into
account the interplay between different tensor components
of the permeability. The influence between xx, xy, and yy

coefficients becomes more significant with the degree of
upscaling, and MG is therefore more accurate than the other
two techniques. A curious feature of the coarsened solution
is that it systematically overestimates the flow rate when
compared to the true solution, as seen in Fig. 3.

Figure 4 plots the probability of incurring an error ε < x as
a function of x, for different methods and various extents of
upscaling with axy = 0 at the highest resolution. Because of
this, KK continues to perform reasonably well at successively
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FIG. 6. Probability of incurring an error less than x in calculating the flow rate [Eq. (18)] when decimating from 512 × 512 to 32 × 32 for
the three methods being considered here: MG (a), KK (b), and straight mean (c). The difference between this and Fig. 4 is that the off-diagonal
coefficient axy is now nonzero for the original model at the highest resolution of 512 × 512. These results are concluded from a statistical
survey of 500 randomly generated models that are above the percolation threshold. The upscaled coefficients obtained using MG and straight
mean techniques have finite axy , performing better than KK, which does not take these into account and is therefore prone to significant error,
even at 256 × 256. In general, it is seen that the errors are systematically larger for all methods when finite off-diagonal permeabilities are
included (compare the x axes between this and Fig. 4).
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FIG. 7. Probability of incurring an error less than x in calculating
the flow rate [Eq. (18)] when decimating from 512 × 512 to 32 × 32
for the three methods being considered here: MG, KK, and straight
mean. The difference between this and Fig. 5 is that the off-
diagonal coefficient axy is nonzero for the original model at the
highest resolution of 512 × 512. The results are concluded from a
statistical survey of 500 randomly generated models that are above
the percolation threshold. The upscaled coefficients obtained using
MG and straight mean techniques have finite axy and are therefore
of higher accuracy than KK, which does not take these into account.
In general, it is seen that the errors are systematically larger for
all upscaling methods when finite off-diagonal permeabilities are
included (compare with Fig. 5).

lower resolutions. Figure 5 tracks the probability of incurring
an error ε < x as a function of x, where the error is defined in
Eq. (18) for upscaling to a size of 32 × 32 and with axy = 0
at the highest resolution. MG outperforms KK and straight
mean.

Figure 6 plots the probability of incurring an error ε < x

as a function of x for different methods and various extents
of upscaling with finite axy at the highest resolution. Because
KK does not take into account off-diagonal permeability terms,
the degradation of its performance is immediate, evidenced by
attendant errors at 256 × 256. The straight-mean method does
reasonably well because successively coarsened models have
finite axy terms. MG continues to maintain good performance.
Figure 7 tracks the probability of incurring an error ε < x as
a function of x, where the error is defined in Eq. (18), for
upscaling to a size of 32 × 32 with finite axy at the highest

resolution. MG outperforms straightforward averaging by a
wide margin (KK does poorly because it does not account for
off-diagonal permeabilities).

V. SUMMARY AND CONCLUSIONS

We have investigated the ability of upscaling approaches
in reproducing the overall flow-rate in realistic porous media.
We assembled several important elements to enable this study,
such as the development of an accurate numerical solver
for Darcy’s equation, parametrizing the permeability and
building realistic models of coefficients, implementation of
upscaling schemes, and a statistical survey over an ensemble
of coefficient models.

The analysis shows that mode-elimination renormalization
group theory (MG) outperforms other upscaling techniques,
and the impact is higher for permeability anisotropies that
are not aligned with the computational grid. One contributing
reason is that MG accounts for nondiagonal terms in the
permeability tensor, i.e., axy , an issue that gains increasing
significance with greater extents of upscaling. The KK tech-
nique has no means of addressing these coefficients. Taking
the straightforward mean is the coarsest method of all since
no ideas pertaining to the physics or mathematics of flow
through porous media are incorporated. We also find that
all the techniques tend to be systematically biased toward
overpredicting the flow rate.

The computational time for reducing a 512 × 512 model
to a 32 × 32 upscaled equivalent by repeatedly decimating
Nblock × Nblock = 2 × 2 blocks using MG takes less than a
second in MATLAB on a conventional desktop. Solving Darcy’s
equation is the most expensive step in this process, taking
about 60 s for a 512 × 512 grid.

The greatest gains are anticipated in 3D, where the
computation to retrieve the solution on a 10243 grid is
about 1013 times more expensive than on an upscaled
323 model. It is therefore critical to develop accurate upscaling
techniques, since the solution of Darcy’s equation for complex
permeabilities on large grids is computationally infeasible.
Our future work will entail looking at this problem in 3D and
applying upscaling methodologies to a broader set of realistic
permeability models.
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APPENDIX A: EXPLICIT COEFFICIENTS

1. Mode-elimination renormalization group (MG)

For a 2 × 2 block with xx coefficients denoted by a11,a12,a21,a22, the yy coefficients by b11,b12,b21,b22, and assuming the
xy,yx coefficients to be zero, the MG permeabilities āxx,āxy,āyy are given by

D = (a11 + a12)(a21 + a22)(b11 + b12 + b21 + b22) + (a11 + a12 + a21 + a22)(b11 + b21)(b12 + b22),

N1 = (a11a12a21 + a11a12a22 + a11a21a22 + a12a21a22)(b11 + b12 + b21 + b22)

+ (a11 + a21)(a12 + a22)(b11 + b21)(b12 + b22), (A1)
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N2 = (a11 + a12)(a21 + a22)(b11 + b12)(b21 + b22)

+ (b11b12b21 + b11b12b22 + b11b21b22 + b12b21b22)(a11 + a12 + a21 + a22), (A2)

āxx = N1

D
, āyy = N2

D
, (A3)

āxy = − (a11a22 − a12a21)(b11b22 − b12b21)

D
= āyx . (A4)

2. The KK method

The equations denoting effective conductivity are described here for the sake of completeness, taken from Eqs. (13) and (14)
of [9],

āxx =
[

(a11 + a21)(a12 + a22)

(a11 + a12)(a21 + a22)

a11 + a12 + a21 + a22

a11a12(a21 + a22) + a21a22(a11 + a12)

] 1
2

, (A5)

āyy =
[

(b11 + b12)(b21 + b22)

(b11 + b21)(b12 + b22)

b11 + b12 + b21 + b22

b11b21(b12 + b22) + b12b22(b11 + a21)

] 1
2

, (A6)

āxy = 0 = āyx . (A7)

APPENDIX B: SOLUTION FOR CONSTANT COEFFICIENT CASE

Given a constant permeability coefficient, the symmetry of the problem implies that there is no variation as a function y (the
boundary conditions on the upper and lower boundaries are both zero-Neumann and the horizontal boundaries are constant). The
y derivatives, therefore, drop out and we are left with axx∂

2
xφ(x) = 0. Given the boundary conditions of φ(x = 0,y) = 1 and

φ(x = 1,y) = 0, the solution is φ(x) = 1 − x. The flow rate is therefore f = − ∫ 1
0 dy axx∂xφ = axx .
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