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A variational formulation of a quantitative phase-field model is presented for nonisothermal solidification in a
multicomponent alloy with two-sided asymmetric diffusion. The essential ingredient of this formulation is that
the diffusion fluxes for conserved variables in both the liquid and solid are separately derived from functional
derivatives of the total entropy and then these fluxes are related to each other on the basis of the local equilibrium
conditions. In the present formulation, the cross-coupling terms between the phase-field and conserved variables
naturally arise in the phase-field equation and diffusion equations, one of which corresponds to the antitrapping
current, the phenomenological correction term in early nonvariational models. In addition, this formulation
results in diffusivities of tensor form inside the interface. Asymptotic analysis demonstrates that this model can
exactly reproduce the free-boundary problem in the thin-interface limit. The present model is widely applicable
because approximations and simplifications are not formally introduced into the bulk’s free energy densities
and because off-diagonal elements of the diffusivity matrix are explicitly taken into account. Furthermore, we
propose a nonvariational form of the present model to achieve high numerical performance. A numerical test of
the nonvariational model is carried out for nonisothermal solidification in a binary alloy. It shows fast convergence
of the results with decreasing interface thickness.
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I. INTRODUCTION

Solidification in practical alloys is generally a multiphysics
problem involving multicomponent solute diffusion, heat dif-
fusion, and fluid dynamics. The understanding and control of
solidification microstructures require the multiphysics nature
to be taken into account in detail. The phase-field model is
a viable computational tool for describing microstructural
evolution processes in multiphysics phenomena including
solidification [1–4]. The most appealing feature of this diffuse
interface approach is that explicit tracking of a moving
interface can be avoided by introducing an order parameter
called a phase-field variable φ, which takes different constant
values in different bulks and exhibits rapid spatial variation
inside the interface.

Another important feature of the phase-field model is that
it can be constructed on the basis of a variational principle
of nonequilibrium thermodynamics. More precisely, once the
thermodynamic potential (free energy or entropy) of a system
is defined in the form of a Ginzburg–Landau type functional,
the time evolution equations for φ and the related state
variables (composition, temperature, etc.) can be obtained
from the variational derivative of the thermodynamic potential
[5–10]. Such a formulation ensures a solid linkage between
the phase-field model and the thermodynamics. Moreover,
it provides a basic recipe for generalization of the model to
a variety of important application fields. However, models
constructed in the variational manner are generally not suitable
for the quantitative description of microstructural processes
involving diffusive transport such as solute and heat diffusion.
This problem arises because the conventional models can
be mapped onto the corresponding free-boundary problem
only in the limit of vanishing interface thickness W (sharp-

interface limit), whereas a finite thickness must be employed
in simulations of this diffuse interface approach. It has been
demonstrated that the models suffer from abnormal interface
effects that scale with W [11].

The development of quantitative phase-field models opened
the way for quantitative simulations of solidification mi-
crostructures [12–17]. These models were developed to re-
produce the solution of the free-boundary problem in the
thin-interface limit, where W is taken to be smaller than any
length scale of the microstructure but much larger than the
atomistic scale. The first quantitative model was proposed for
solidification in a pure substance with equal thermal diffusivity
in the solid and liquid (symmetric diffusion) [12]. In this
case, the abnormal interface effects can be eliminated by
imposing certain symmetries on model functions (polynomial
functions of φ) and by revising the relation between a model
parameter (phase-field mobility) and measurable quantities.
A quantitative model was later developed for isothermal
solidification in a dilute binary alloy with negligible solid
diffusion (one-sided diffusion) [13]. The one-sided case
involves an additional interface effect that originates from the
discontinuity of the diffusion potential in the interface. This
additional effect is proportional to the interface velocity and is
removed by introducing a correction term of the diffusion flux
proportional to the interface velocity, i.e., ∂tφ [14]. This term is
called the antitrapping current, which represents the coupling
between φ and the conserved variable. The one-sided model
was extended to deal with nonisothermal [15] and two-phase
solidification [16] in a binary alloy and isothermal solidifica-
tion in a multicomponent alloy [17]. The simulation results
of quantitative models rapidly converge to unique values (the
solutions of the free-boundary problem) with decreasing W ,
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indicating good numerical performance [11,14]. Quantitative
phase-field models are increasingly utilized in studies on the
formation processes of solidification microstructures [18–23].

There is a difficulty in developing the quantitative phase-
field model for alloy solidification with unequal diffusivities in
the solid and liquid (asymmetric diffusion). The asymmetric
two-sided diffusion involves additional abnormal interface
effects proportional to the diffusion flux and hence not all
interface effects can be eliminated by the antitrapping current.
An assumption on the diffusion flux near the interface was
accordingly imposed in the early quantitative models for two-
sided diffusion [24–27]. In a recent study on the solidification
of a pure substance with asymmetric diffusion [28], Boussinot
and Brener demonstrated that all abnormal interface effects
can be successfully removed by introducing a new coupling
term into the φ equation in addition to the antitrapping
current. Namely, they reported the important finding that the
quantitative phase-field modeling of two-sided asymmetric
diffusion can be accomplished by introducing cross-coupling
terms between φ and the conserved variable into the time
evolution equations of both variables.

The antitrapping current was introduced in a phenomeno-
logical manner in early works on quantitative phase-field
modeling [13–17,24–27]. This is a correction term formulated
based on the result of asymptotic analysis of the model
equations. Importantly, it cannot be naturally derived in
a variational manner from the functional derivative of the
thermodynamic potential. In this regard, the early quantitative
phase-field models do not have a sound theoretical basis of
nonequilibrium thermodynamics. Progress has recently been
made regarding this matter. In the conventional variational
formulation, the diffusion flux is related to the functional
derivative of the thermodynamic potential with respect to
the only corresponding conserved variable (composition or
energy field). In Refs. [28–30], on the other hand, the kinetic
cross coupling between φ and the conserved variable is
taken into account by introducing the corresponding transport
coefficients. Then, the coupling term in the diffusion equation
is regarded as the antitrapping current. In this approach,
a coupling term is also introduced into the φ equation to
maintain the Onsager’s symmetry. As described above, this
new coupling term in the φ equation plays an important role
in eliminating the interface effects in asymmetric diffusion
[28]. This approach thereby enables the variational derivation
of a quantitative phase-field model. As discussed in Ref. [28],
however, the ratio of solid diffusivity to liquid diffusivity in
this approach is limited to a certain small range to ensure
the positive entropy production rate. Accordingly, there is a
limitation in range of application of this approach. In addition,
the cross-coupling terms must carefully be tuned on the basis
of asymptotic analysis of the model equations in this approach,
which may not always be straightforward when the approach
is extended to describe new systems. These facts indicate
the necessity for a further attempt to develop an approach
of variational formulation of quantitative phase-field models.

A different method for the variational formulation of a
quantitative phase-field model was recently proposed for
isothermal solidification in a dilute binary alloy [31]. In
this formulation, the kinetic cross coupling is not directly
introduced and new transport coefficients therefore do not

need to be taken into account. This formulation is based on
the so-called two-phase approach, where the composition and
thermodynamic quantities in the solid and liquid are separately
defined and the interface is treated as a mixture of two phases
[10,32]. In the conventional variational derivation, a local
equilibrium condition (more precisely, the condition of equal
diffusion potentials) is imposed on the thermodynamic poten-
tial, which results in mutual dependence of the solid and liquid
compositions. Then the time evolution equations of φ and
the single composition are derived from the thermodynamic
potential. This conventional procedure results in a standard
phase-field model in which the antitrapping current does not
exist. Note that in reality, the local equilibrium condition
should essentially be realized as a result of the kinetics [33].
Therefore, in the previous work [31], the diffusion fluxes of
both the solid and liquid compositions were first derived in a
variational manner and then the local equilibrium condition
was applied to the diffusion fluxes. This is more natural
than the conventional method of variational formulation from
the viewpoint of thermodynamics and it actually yields a
quantitative phase-field model for a two-sided case. The
cross-coupling terms in the φ equation and diffusion equation
naturally emerge in this variational formulation and the forms
of the cross-coupling terms are automatically determined.
Furthermore, there is no limitation on the diffusivity ratio.
Asymptotic analysis showed that this model can reproduce
the solution of the free-boundary problem in the thin-interface
limit. In the present paper, this approach is called the two-phase
variational approach to distinguish it from the approach based
on the direct introduction of kinetic cross-coupling with the
additional transport coefficients [28–30].

In the previous study on the two-phase variational approach
[31], the focus was directed at a simple case, isothermal
solidification in a dilute binary alloy where the independent
variables are only φ and a single composition field. To establish
this approach and verify its usefulness, it is indispensable
to tackle more general cases such as nonisothermal solid-
ification in multicomponent alloys. Furthermore, such an
attempt is essential for widening the range of applications
of quantitative phase-field simulations. So far, quantitative
models have been developed only for some specific systems.
Several simplifications and approximations are employed for
bulk’s quantities in these models such as a constant heat
capacity, constant diffusivity, a linearized driving force, and
so forth. This is because it is not straightforward to develop a
quantitative model in the conventional manner without several
simplifications and approximations.

In this paper, we show the variational formulation of a
quantitative phase-field model for nonisothermal solidification
in a multicomponent alloy based on the two-phase variational
approach. The present model is able to describe two-sided
asymmetric diffusion in a system without specific approxima-
tions in the forms of bulk’s free energy densities and other
thermodynamic quantities. In addition, the contributions of
off-diagonal elements of the diffusivity matrix are explicitly
considered. Hence, this model can be applied to a variety
of practical problems. In this paper, we also describe in
detail important aspects and consequences of the two-phase
variational approach such as the natural derivation of the tensor
diffusivity and the proportionality between the phase-field
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mobility and interface mobility, which were not clarified in the
previous study [31]. This paper is organized as follows. The
variational formulation of the quantitative phase-field model
is demonstrated in the next section. The essential points of
analysis in the thin-interface limit are briefly explained in
Sec. III. The model equations are illustrated for some specific
cases in Sec. IV, which is followed by the numerical testing
of the model in Sec. V. Conclusions are given in Sec. VI.

II. VARIATIONAL FORMULATION BASED ON
ENTROPY FUNCTIONAL

A. Entropy functional and time evolution equations

We focus on nonisothermal solidification in a multicom-
ponent alloy consisting of n solute and solvent atoms, i.e.,
a n + 1 component system. The phase-field variable φ takes
values of +1 in a solid and −1 in a liquid and it continuously
changes from +1 to −1 inside the solid-liquid interface. In this
formulation, we employ the two-phase approach, in which the
thermodynamic quantities in the solid and liquid are separately
defined and the interface is described as a mixture of two
phases [10,32,34,35]. As briefly mentioned in the previous
section, one of the important points in the present formulation
is that the diffusion fluxes for the conserved variables in both
the solid and liquid are first formulated and then they are related
to each other by introducing the local equilibrium conditions.
This is in contrast to the conventional procedure, where the
local equilibrium condition is imposed on the thermodynamic
potential before the formulation of the diffusion flux.

A free energy functional was employed as the fundamental
thermodynamic potential in the previous variational formu-
lation for isothermal solidification [31]. On the other hand,
the entropy is the fundamental thermodynamic potential for
nonisothermal solidification processes [5,7]. In this study, the
entropy functional is defined as

S =
∫ (

−ε2
ent

2
(∇φ)2 − ωentfdw(φ)

+ 1 + g(φ)

2
ss,bulk(es,{cs,i})

+ 1 − g(φ)

2
sl,bulk(el,{cl,i})

)
dv, (1)

where εent and ωent are constants related to the interfacial
energy and interface thickness. For simplicity, the anisotropy
of the interface energy is omitted in the discussion. In Eq. (1),
fdw(φ) is the double-well function given as

fdw(φ) = 1
4 (1 − φ2)2. (2)

g(φ) is a monotonically increasing function and it should be
an odd function of φ. Among several possible forms for g(φ),
the following function is used in this study:

g(φ) = 15

8

(
φ − 2

3
φ3 + φ5

5

)
. (3)

In Eq. (1), sp,bulk is the bulk’s entropy density of phase
p, which is a function of the energy density ep and solute
compositions {cp,i}, where i specifies the type of solute atom

(i � n). When the solid-liquid interface is stationary, ep and
cp,i should obey the following conservation laws:

∂tep + ∇ · Jp,e = 0, (4)

∂tcp,i + �∇ · Jp,i = 0, (5)

where � is the molar volume, which is assumed constant in this
study, Jp,e is the energy flux in phase p, and Jp,i is the diffusion
flux of solute i in phase p. When the interface migrates, ep and
cp,i are not conserved variables because the release of latent
heat and redistribution of solutes take place in the interface.
Such effects can be described by introducing reaction terms
into Eqs. (4) and (5) [31]. On the other hand, when the interface
migrates, one should consider the conservation of the local
molar energy e and the local composition ci of solute i, which
are respectively given as

e = 1 + g

2
es + 1 − g

2
el, (6)

ci = 1 + g

2
cs,i + 1 − g

2
cl,i . (7)

The conservation laws of these quantities are expressed as

∂te + ∇ · Je = ∂te + ∇ ·
(

1 + g

2
Js,e + 1 − g

2
Jl,e

)
= 0,

(8)

∂tci + �∇ · Ji = ∂tci + �∇ ·
(

1 + g

2
Js,i + 1 − g

2
Jl,i

)
= 0.

(9)

As can be understood from Eqs. (4)–(9), the energy and
compositions obey similar relations. For convenience, we
employ the notations of cp,n+1 = �ep, cn+1 = �e, Jp,n+1 =
Jp,e, and Jn+1 = Je in the following discussion.

Next, we consider the time change in the entropy functional
S. Equations (6) and (7) are taken into account by using the
Lagrange multipliers �i as follows:

S̄ = S +
∫ n+1∑

i=1

�i

(
1 + g

2
cs,i + 1 − g

2
cl,i − ci

)
dv. (10)

Then, the time derivative of S̄ is given as

dS̄

dt
=
∫ (

δS

δφ
∂tφ +

n+1∑
i=1

[
δS

δcs,i

∂t cs,i + δS

δcl,i

∂t cl,i

])
dv

+
∫ n+1∑

i=1

�i

(
1 + g

2
∂tcs,i + 1 − g

2
∂tcl,i − ∂tci

+ (cs,i − cl,i)
g′

2
∂tφ

)
dv. (11)

Here, the terms proportional to ∂tcp,i indicate the contributions
due to time changes of solute compositions and energy without
the change of φ, i.e., without the motion of interface. Hence,
∂tcp,i should be represented by Eqs. (4) and (5) [36]. Then, by
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substituting Eqs. (4), (5), (8), and (9) into Eq. (11), one obtains

dS̄

dt
=
∫ {(

δS

δφ
+ g′

2

n+1∑
i=1

�i(cs,i − cl,i)

)
∂tφ

−�

n+1∑
i=1

[
δS

δcs,i

∇ · Js,i + δS

δcl,i

∇ · Jl,i

]

+ �
g′

2

n+1∑
i=1

�i(Js,i − Jl,i) · ∇φ

}
dv. (12)

Using the divergence theorem, this equation is rewritten as

dS̄

dt
= −

∫
Jent · nsysdsa +

∫
σentdv, (13)

where nsys is the unit vector normal to the surface of the whole
system, dsa indicates the unit surface area, and

Jent = �

n+1∑
i=1

[
δS

δcs,i

Js,i + δS

δcl,i

Jl,i

]
, (14)

σent =
(

δS

δφ
+ g′

2

n+1∑
i=1

�i(cs,i − cl,i)

)
∂tφ

+�

n+1∑
i=1

[(
∇ δS

δcs,i

+ g′

2
�i∇φ

)
· Js,i

+
(

∇ δS

δcl,i

− g′

2
�i∇φ

)
· Jl,i

]
. (15)

Note that

δS

δcs,i

= −1 + g

2


μs,i

Ts

, (16)

δS

δcl,i

= −1 − g

2


μl,i

Tl

, (17)

for i � n. Here, 
μp,i is the difference in the chemical
potential between solute atom i and a solvent atom in phase p

and Tp is the temperature in phase p. In the case of i = n + 1,

δS

δes

= 1 + g

2

1

Ts

, (18)

δS

δel

= 1 − g

2

1

Tl

. (19)

The substitution of Eqs. (16)–(19) into Eq. (14) yields

Jent = 1 + g

2

(
1

Ts

Js,e − 1

Ts

�

n∑
i=1


μs,iJs,i

)

+ 1 − g

2

(
1

Tl

Jl,e − 1

Tl

�

n∑
i=1


μl,iJl,i

)
. (20)

The first and second terms of Eq. (20) represent well-known
relationships for the entropy fluxes in the solid and liquid,
respectively [37]. Therefore, Jent is identified as the entropy
flux in the two-phase approach. In Eq. (13), accordingly,
σent corresponds to the entropy production and it should

monotonically increase during solidification. σent is now
rewritten as

σent =
(

δS

δφ
+ g′

2

n+1∑
i=1

�i(cs,i − cl,i)

)
∂tφ

+
n+1∑
i=1

[(
∇n

δS

δcs,i

+ g′

2
�i∇φ

)
· �Jn

s,i

+
(

∇n

δS

δcl,i

− g′

2
�i∇φ

)
· �Jn

l,i

]

+
n+1∑
i=1

[(
∇t

δS

δcs,i

)
· �Jt

s,i +
(

∇t

δS

δcl,i

)
· �Jt

l,i

]
,

(21)

where Jn
p,i and Jt

p,i are the diffusion fluxes of normal and
tangential directions to the interface in phase p, respec-
tively. Therefore, Jp,i = Jn

p,i + Jt
p,i . ∇n and ∇t are operators

of the spatial derivative in the normal and tangential directions
to the interface, respectively. In writing Eq. (21), we employed
the relations ∇nφ = ∇φ and ∇tφ = 0, which are always
valid in this diffuse interface approach. This separation of the
diffusion flux was not considered in the previous study [31].
However, the term associated with the Lagrange multiplier
is related to the diffusion flux in the only normal direction.
Therefore, it is necessary to define the diffusion flux for each
direction. As demonstrated later, this separation brings an
important consequence that the diffusivity is tensor inside the
interface.

The time evolution equation of φ and the diffusion fluxes
are formulated on the basis of the principle that σent given
by Eq. (21) is always positive or equal to zero. This can be
achieved by introducing phenomenological transport coeffi-
cients [5,7,35]. Care must be taken to ensure the following
points [31]. The first term in the integrand of Eq. (21)
should contribute to the entropy production only inside the
interface. This will be automatically satisfied without special
care because ∂tφ is zero outside the interface, which will be
understood from the final form of the time evolution equation.
In addition, one must ensure the condition that Js,i (Jl,i) does
not contribute to the entropy production in the liquid (solid)
phase. This is because Js,i (Jl,i) is a fictitious flux in the liquid
(solid) phase. However, this condition is not automatically
realized. As discussed later, the local equilibrium conditions
establish the relation between cs,i and cl,i in the interface and
also in both bulk phases. Then, Js,i (Jl,i) changes in accordance
with Jl,i (Js,i). Therefore, Js,i (Jl,i) is finite even in the liquid
(solid). This is a situation commonly involved in the two-phase
approaches. Hence, in order for Js,i (Jl,i) not to contribute to
the entropy production in the liquid (solid), we consider the
following form of σent:

σent = ∂tφ

Mφ

∂tφ +
n+1∑
i=1

⎡⎣⎛⎝1 + g

2

n+1∑
j=1

M−1
s,ij�Jn

s,j

⎞⎠ · �Jn
s,i

+
⎛⎝1 − g

2

n+1∑
j=1

M−1
l,ij�Jn

l,j

⎞⎠ · �Jn
l,i

⎤⎦
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+
n+1∑
i=1

⎡⎣⎛⎝1 + g

2

n+1∑
j=1

M−1
s,ij�Jt

s,j

⎞⎠ · �Jt
s,i

+
⎛⎝1 − g

2

n+1∑
j=1

M−1
l,ij�Jt

l,j

⎞⎠ · �Jt
l,i

⎤⎦, (22)

where Mφ is the phase-field mobility with Mφ > 0 and Mp,ij

is the i-j element of the transport coefficient matrix Mp which
is a positive-definite matrix in phase p, ensuring that σent �
0.M−1

p,ij is the i-j element of the inverse matrix of Mp. Mp and
thus M−1

p are symmetric matrices and this property is utilized
in the following discussion without explicitly mentioning it.
By comparing Eqs. (21) and (22), one can obtain the following
equations:

∂tφ

Mφ

= δS

δφ
+ g′

2

n+1∑
i=1

�i(cs,i − cl,i), (23)

1 + g

2

n+1∑
j=1

M−1
s,ij�Jn

s,j = ∇n

δS

δcs,i

+ g′

2
�i∇φ, (24)

1 − g

2

n+1∑
j=1

M−1
l,ij�Jn

l,j = ∇n

δS

δcl,i

− g′

2
�i∇φ, (25)

1 + g

2

n+1∑
j=1

M−1
s,ij�Jt

s,j = ∇t

δS

δcs,i

, (26)

1 − g

2

n+1∑
j=1

M−1
l,ij�Jt

l,j = ∇t

δS

δcl,i

. (27)

B. Lagrange multipliers and local equilibrium conditions

The substitution of Eqs. (4)–(7) into Eqs. (8) and
(9) yields the following equation, which corresponds to
the Stefan condition expressed in the diffuse interface
approach [31,35]:

(cs,i − cl,i)∂tφ = −�
(
Jn

s,i − Jn
l,i

) · ∇φ. (28)

By substituting the diffusion fluxes given by Eqs. (24) and
(25) into Eq. (28), one finds that

�i

g′

2
∇φ = −1 − g

2

∑
j,k

M−1
c,ijMs,jk∇n

δS

δcs,k

+ 1 + g

2

∑
j,k

M−1
c,ijMl,jk∇n

δS

δcl,k

− 1 − g2

4|∇φ|
∑

j

M−1
c,ij (cs,j − cl,j )∂tφ

∇φ

|∇φ| , (29)

where M−1
c,ij is the inverse of the following matrix:

Mc,ij = 1 − g

2
Ms,ij + 1 + g

2
Ml,ij . (30)

The time evolution equation of φ can be obtained by
substituting Eq. (29) into Eq. (23). Also, diffusion fluxes
can be expressed by substituting Eq. (29) into Eqs. (24) and
(25). Then, by using Eqs. (4) and (5) with the addition of

appropriate reaction terms, one can formulate the diffusion
equations for cs,i and cl,i separately. Here, it is important
to note that the local equilibrium condition is realized for
slow solidification processes in which nonequilibrium effects
such as solute trapping are negligible. As discussed by Hillert
[33], transinterface diffusion, which redistributes solute atoms
between the solid and liquid in the interface, is usually a very
fast process that results in the reduction of a part of the free
energy change associated with the solidification. Then, in the
slow solidification process, the diffusion potential in the solid
becomes identical to that in the liquid. This corresponds to
the local equilibrium condition. In Kim, Kim, and Suzuki’s
model [10], this condition is introduced into the free energy
functional and then the time evolution equations are derived.
In the present formulation, on the other hand, Eqs. (23)–(27)
were derived without the local equilibrium condition. In the
case of a nonisothermal process, which is our main concern,
the condition of equal diffusion potential can be expressed as
follows:

∂ss,bulk

∂cs,i

= ∂sl,bulk

∂cl,i

= 
sc,i for i � n + 1. (31)

More specifically,

∂ss,bulk

∂es

= ∂sl,bulk

∂el

. (32)

Hence,

1

Ts

= 1

Tl

= 1

T
. (33)

For the solute,


μs,i

Ts

= 
μl,i

Tl

for i � n. (34)

When Eq. (33) is satisfied, Eq. (34) is equivalent to


μs,i = 
μl,i = 
μc,i for i � n. (35)

In the present modeling of slow solidification, instead of
solving the diffusion equations of cs,i and cl,i separately, we
introduce the local equilibrium conditions, Eqs. (33) and (35).
Then, by substituting Eqs. (16)–(19) into Eq. (29) and also by
considering Eqs. (33) and (35), the Lagrange multiplier �i is
rewritten as

�i

g′

2
∇φ = −g′

2
∇φ
sc,i

−1 − g2

4

∑
j,k

M−1
c,ij (Ms,jk − Ml,jk)∇n(
sc,k)

−1 − g2

4|∇φ|
∑

j

M−1
c,ij (cs,j − cl,j ) ∂tφ

∇φ

|∇φ| . (36)

The second term on the right-hand side of Eq. (36) is
the origin of the cross-coupling term in the φ equation,
while the third term yields the antitrapping current in the
diffusion equations as shown below. Note that cs,i is now
related to {cl,i} such that Eqs. (33) and (35) are satisfied.
Therefore, the independent variables are φ and {cl,i} in this
model.
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C. Time evolution equation for φ

The substitution of Eq. (36) into Eq. (23) yields

1

M̃φ

∂tφ = ε2
ent∇2φ − ωentf

′
dw + g′

2

(
ss,bulk − sl,bulk −

n+1∑
i=1

(cs,i − cl,i)
sc,i

)

− 1 − g2

4|∇φ|
∑
i,j,k

(cs,i − cl,i)M
−1
c,ij (Ms,jk − Ml,jk)∇n(
sc,k) · ∇φ

|∇φ| , (37)

where

1

M̃φ

= 1

Mφ

+ 1 − g2

4|∇φ|2
∑
i,j

(cs,i − cl,i)M
−1
c,ij (cs,j − cl,j ). (38)

The third term on the right-hand side of Eq. (37) is associated with the driving force for the migration of the solid-liquid
interface. It is rewritten as

ss,bulk − sl,bulk −
n+1∑
i=1

(cs,i − cl,i)
sc,i = −fs,bulk − es − fl,bulk + el

T
−

n+1∑
i=1

(cs,i − cl,i)
sc,i

= − 1

T

(
fs,bulk − fl,bulk −

n∑
i=1

(cs,i − cl,i)
μc,i

)
= −
Gdriv

T
, (39)

where fp,bulk is the bulk’s free energy density of phase p. The driving force is important only inside the interface, where the
temperature does not significantly change. Hence, T in the denominator of Eq. (39) is approximated as a constant T0, which is
called the interface temperature in this study. Then, by multiplying both sides of Eq. (37) by T0, it is rewritten as

T0

M̃φ

∂tφ = ε2∇2φ − ω f ′
dw − g′

2

Gdriv − 1 − g2

4|∇φ| T0

∑
i,j,k

(cs,i − cl,i)M
−1
c,ij (Ms,jk − Ml,jk)∇n(
sc,k)

∇φ

|∇φ| , (40)

where ε2 = T0ε
2
ent and ω = T0ωent. For convenience, this equation is further modified by considering the steady-state profile of

φ in the interface. In two-phase equilibrium, ∂tφ, 
Gdriv, and ∇(
sc,k) vanish in Eq. (40) and hence the spatial gradient of φ is
given by

|∇φ| =
√

2fdw

W
, (41)

where W = ε/
√

ω is a measure of the thickness of the solid-liquid interface. Also, the interface energy is given as

γ = Iω W, (42)

with I = 2
√

2/3. Using Eqs. (41) and (42), the φ equation is finally given as

τ ∂tφ = W 2∇2φ − f ′
dw − g′

2

IW

γ

Gdriv − 1 − g2

4
√

2fdw

IW 2

γ
T0

∑
i,j,k

(cs,i − cl,i)M
−1
c,ij (Ms,jk − Ml,jk)∇n(
sc,k) · ∇φ

|∇φ| , (43)

where

τ = T0

ωM̃φ

= IW

γ
T0

⎛⎝ 1

Mφ

+ 1 − g2

8fdw

W 2
∑
i,j

(cs,i − cl,i)M
−1
c,ij (cs,j − cl,j )

⎞⎠. (44)

The last term on the right-hand side of Eq. (43) represents the coupling term, which does not appear in the conventional
procedure of the variational formulation. This term plays an important role in eliminating the abnormal interface effects in the
thin-interface limit. Moreover, note that τ depends on {cp,i}, as shown by Eq. (44). In the conventional quantitative models, τ is
inversely proportional to the phase-field mobility Mφ , which is made {cp,i} dependent in accordance with the result of asymptotic
analysis [14,24]. In the present variational model, on the other hand, Mφ is exactly proportional to the interface mobility defined
later. These points will be discussed in more detail in Sec. III.
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D. Diffusion equations

The diffusion flux in the solid can be obtained by substituting Eq. (36) into Eq. (24) as follows:

1 + g

2
�Jn

s,i = 1 + g

2

∑
j

Ms,ij∇n(
sc,j ) − 1 − g2

4

∑
j,k,k′

Ms,ijM
−1
c,jk(Ms,kk′ − Ml,kk′)∇n(
sc,k′)

− 1 − g2

4

W√
2fdw

∑
j,k

Ms,ijM
−1
c,jk(cs,k − cl,k) ∂tφ

∇φ

|∇φ| . (45)

Here, Eq. (41) was employed for the last term on the right-hand side of Eq. (45). Similarly, the diffusion flux in the liquid is
given as

1 − g

2
�Jn

l,i = 1 − g

2

∑
j

Ml,ij∇n(
sc,j ) + 1 − g2

4

∑
j,k,k′

Ml,ijM
−1
c,jk(Ms,kk′ − Ml,kk′)∇n(
sc,k′)

+ 1 − g2

4

W√
2fdw

∑
j,k

Ml,ijM
−1
c,jk(cs,k − cl,k) ∂tφ

∇φ

|∇φ| . (46)

Therefore, one can obtain the following relation:

�Jn
i = 1 + g

2
�Jn

s,i + 1 − g

2
�Jn

l,i =
∑

j

Mt,ij∇n(
sc,j ) − 1 − g2

4

∑
j,k,k′

(Ms,ij − Ml,ij )M−1
c,jk(Ms,kk′ − Ml,kk′)∇n(
sc,k′)

− 1 − g2

4

W√
2fdw

∑
j,k

(Ms,ij − Ml,ij )M−1
c,jk(cs,k − cl,k) ∂tφ

∇φ

|∇φ| , (47)

where Jn
i is the diffusion flux in the normal direction to the interface and

Mt,ij = 1 + g

2
Ms,ij + 1 − g

2
Ml,ij . (48)

Note that the following transformation is possible:∑
j

Mt,ij∇n(
sc,j ) =
∑
j,k,k′

Mt,ijM
−1
c,jkMc,kk′∇n(
sc,k′). (49)

Then, Eq. (47) is rewritten as

�Jn
i =

∑
k′

Mn,ik′∇n(
sc,k′) − 1 − g2

4

W√
2fdw

∑
j,k

(Ms,ij − Ml,ij )M−1
c,jk(cs,k − cl,k) ∂tφ

∇nφ

|∇nφ| , (50)

where

Mn,ik′ =
∑
j,k

Mt,ijM
−1
c,jkMc,kk′ − 1 − g2

4

∑
j,k

(Ms,ij − Ml,ij )M−1
c,jk(Ms,kk′ − Ml,kk′)

=
∑
j,k

(
1 + g

2
Ms,ijM

−1
c,jkMl,kk′ + 1 − g

2
Ml,ijM

−1
c,jkMs,kk′

)
=
(

1 + g

2
M−1

s,ik′ + 1 − g

2
M−1

l,ik′

)−1

. (51)

This transformation is explained in Appendix A.
The diffusion flux in the tangential direction Jt

i is obtained from Eqs. (26) and (27) as

�Jt
i = 1 + g

2
�Jt

s,i + 1 − g

2
�Jt

l,i =
∑

j

Mt,ij∇t (
sc,j ). (52)

Therefore,

�Ji = �
(
Jn

i + Jt
i

) =
∑

j

[Mn,ij n ⊗ n + Mt,ij (1 − n ⊗ n)]∇(
sc,j )

− 1 − g2

4

W√
2fdw

∑
j,k

(Ms,ij − Ml,ij )M−1
c,jk(cs,k − cl,k) ∂tφ

∇φ

|∇φ| , (53)
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where n = −∇φ/|∇φ|, ⊗ represents the tensor product and 1 is the unit tensor. Here, we employed ∇n = n ⊗ n∇ and ∇t =
(1 − n ⊗ n)∇.

When the local equilibrium conditions given by Eqs. (33) and (35) are realized, cs,i depends on {cl,i} and hence it is written
as cs,i = cs,i({cl,i}). Then, the time derivative of ci is given as

∂tci = ∂t

(
1 + g

2
cs,i + 1 − g

2
cl,i

)
= 1 + g

2

∑
j

kc
ij ∂t cl,j + 1 − g

2
∂tcl,i + (cs,i − cl,i)

g′

2
∂tφ, (54)

where

kc
ij = ∂cs,i

∂cl,j

=
∑

k

χ−1
s,ikχl,kj , (55)

with

χp,jk = ∂
sc,j

∂cp,k

= ∂2sp,bulk

∂cp,j ∂cp,k

. (56)

The second equality in Eq. (55) originates from the local equilibrium condition given by Eq. (31). By combining Eqs. (53)
and (54), therefore, the diffusion equation is obtained as follows:

1 + g

2

∑
j

kc
ij ∂t cl,j + 1 − g

2
∂tcl,i = ∇ ·

⎛⎝∑
j

Dij (φ)∇cl,j + 1 − g2

4

W√
2fdw

∑
j,k

(Ms,ij − Ml,ij )M−1
c,jk(cs,k − cl,k) ∂tφ

∇φ

|∇φ|

⎞⎠
− (cs,i − cl,i)

g′

2
∂tφ, (57)

where Dij is the diffusivity function given as

Dij (φ) = −
∑

k

Mn,ik(φ)χl,kj n ⊗ n −
∑

k

Mt,ik(φ)χl,kj (1 − n ⊗ n). (58)

Here, Dij (φ = −1) = −�kMl,ikχl,kj = Dl,ij and
Dij (φ = +1) = −�kMs,ikχl,kj = −�k,k′Ms,ikχs,kk′kc

k′j =
�k′Ds,ik′kc

k′j where Dl,ij and Ds,ij correspond to the
diffusivities in the liquid and solid, respectively. Therefore,
the present formulation leads to the important consequence
that the diffusivity is tensor inside the interface.

It is worth noting the following two points: First, the term
proportional to ∂tφ in the parenthesis on the right-hand side
of Eq. (57) naturally arises in the present formulation. This
is the antitrapping current, which corrects the diffusion flux
inside the interface, thereby eliminating the abnormal interface
effects. Second, the diffusivity is formulated as the tensor
given by Eq. (58). This is a consequence of the separate
definition of the diffusion fluxes in the normal and tangential
directions to the interface as given by Eqs. (24)–(27). In
solidification with two-sided asymmetric diffusion, there are
abnormal interface effects associated with the diffusion fluxes
in the normal and tangential directions. The elimination of such
effects requires stringent constraints on the φ dependence of
the diffusivity [11,24]. It is difficult to satisfy these constraints
simultaneously when the scalar diffusivity is employed. On the
other hand, such a problem does not occur when the diffusivity
is tensor [31,38].

E. Free-boundary problem and summary of the present model

As described above, the model for nonisothermal so-
lidification in a multicomponent alloy was derived in the

variational manner. The validity of the model must be carefully
investigated by the asymptotic analysis of Eqs. (43) and (57).
As described in detail in Sec. III, in the thin-interface limit
of this model, the following sharp-interface equations are
reproduced:

∂tci = ∇ ·
(

n+1∑
i=1

Dp,ij ({ck})∇cj

)
in phase p, (59)


Gdriv({ck}) = − 1

μint
Vn − γ κ, (60)

(cl,i − cs,i) Vn =
n+1∑
i=1

Ds,ij ({ck})∂rcj |−

−
n+1∑
i=1

Dl,ij ({ck})∂rcj |+, (61)

where μint is the interface mobility and Vn is the interface
velocity in the direction normal to the interface. ∂rcj |+ (∂rcj |−)
represents the spatial gradient of cj in the normal direction
on the liquid (solid) side of the interface. The diffusion in
the bulk is represented by Eq. (59), where the off-diagonal
elements of the diffusivity matrix and also their dependencies
on {ck} are taken into account. Equation (60) indicates the
Gibbs-Thomson relation. It is important to point out that
approximations and simplifications are not introduced into
the forms of the bulk’s free energy densities in this model.
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Therefore, any type of free energy model, such as the solution
model in the CALPHAD method [39], can be employed
to describe 
Gdriv in Eq. (60). Finally, Eq. (61) indicates
the conservation of solute atoms and energy during the
migration of the interface (Stefan condition). These equations
are reproduced in the present variational model without any
modification. Hence, the present model can be applied to a
variety of practical alloy systems.

Note that the model derived in a variational manner does
not necessarily exhibit high numerical performance, i.e., fast
convergence of the results with decreasing W [12,31]. It is
therefore beneficial to develop a nonvariational form of the
quantitative model for its practical use. Once the variational
model is derived, it is basically straightforward to construct
the nonvariational form. In the asymptotic analysis in the next
sections, we focus on both the variational and nonvariational
models. For this purpose, Eq. (43) is rewritten as

τ ∂tφ = W 2∇2φ − f ′
dw − g̃′a1

W

d0


Gdriv

χe

− W 2

d0

∑
i

ac,i∇cl,i · ∇φ

|∇φ| , (62)

where g̃′ = Jg′/2, J = 16/15, a1 = I/J , d0 = γ /χe, and χe

is a constant thermodynamic factor that will be defined later.
d0 is a characteristic length of the microstructural process and
it generally corresponds to the capillary length. Also,

ac,i = aI√
2fdw

fac(φ)
1 − hinv

2

1 + h

2

T0

χe

×
∑
j,k,k′


Ck′M−1
c,k′k(Ml,kj − Ms,kj )χl,ji , (63)

with


Ci = cl,i − cs,i . (64)

Here, aI = I , fac(φ) = 1 and h = hinv = g in the variational
model as demonstrated in the previous sections. For the
nonvariational model, we append degrees of freedom in the
choice of the forms of fac(φ), h, and hinv. aI is automatically
determined from the forms of fac(φ), h, and hinv as shown
later. τ is given as

τ = IW

d0

T0

χe

1

Mφ

+ aI

1 − h2

8fdw

W 3

d0

T0

χe

×
∑
i,j

fτ,ij (φ)
CiM
−1
c,ij
Cj , (65)

where fτ,ij (φ) = 1 in the variational model, while its form is
later determined for the nonvariational model.

The diffusion equation (57) is written as

1 + h

2

∑
j

kc
ij ∂t cl,j + 1 − h

2
∂tcl,i

= ∇ ·
⎛⎝∑

j

Dij∇cl,j + aAT,iW∂tφ
∇φ

|∇φ|

⎞⎠
+
Ci

h′

2
∂tφ, (66)

with

aAT,i = 1√
2fdw

1 − h

2

1 + hinv

2

×
∑
j,k

(Ml,ij − Ms,ij )M−1
c,jk
Ck, (67)

where g in the variational model is replaced by h and hinv. In
addition, g in the expressions for Mc,ij [Eq. (30)] and Mn,ij

[Eq. (51)] is replaced by hinv, while g in Mt,ij [Eq. (48)] is
replaced by h. These replacements are made because it was
shown by numerical testing of the quantitative models that
the numerical performance strongly depends on the order of
the polynomial of φ [40]. In particular, the function hinv is
introduced to avoid a rapid change of Mn,ij across the interface,
which causes low numerical accuracy [31] as will be explained
later.

Let us emphasize the differences between the previous
work [31] and the present work. In the previous study on the
two-phase variational approach [31], the focus was directed
at a simple case, isothermal solidification in a dilute binary
alloy where the independent variables are only φ and the
composition fields of a solute. The formulation started from
the free energy functional and a local equilibrium condition
equivalent to Eq. (35) was considered. In the present paper,
we have focused on nonisothermal solidification in a multi-
component alloy where the independent variables are φ, the
energy density, and composition fields. The thermodynamic
function is the entropy functional and the local equilibrium
condition for each diffusion field [Eqs. (33) and (35)] is
taken into consideration in the present case. In addition, the
contributions of off-diagonal diffusivities are included. In the
present case, importantly, the tensor diffusivity is naturally
derived as a consequence of separate definitions of diffusion
fluxes in normal and tangential directions to the interface.
This is in contrast to the previous approach where the natural
derivation of tensor diffusivity was not achieved. Note that the
present variational model is reduced to the previous variational
model of Ref. [31] when isothermal solidification in a dilute
binary alloy is considered. However, the nonvariational form
proposed in this study is different from those in the previous
models. In the present nonvariational models, there are degrees
of freedom in choosing the functions h(φ), hinv(φ), fac(φ),
and fτ,ij (φ). The nonvariational model can be mapped onto
the free-boundary problem upon satisfying some relations
and requirements for aI , h(φ), hinv(φ), fac(φ), and fτ,ij (φ)
as described in detail in the next section. The previous non-
variational models contain a solvability integral that must be
calculated in accordance with changes in the solid diffusivity
and the partition coefficient during the solidification processes.
As discussed later, the present form is more convenient because
one can avoid introducing such an integral.

Note that the transport coefficients Mp,ij are employed in
Eqs. (63), (65), and (67); they can be replaced by Dp,ij using
the relation Mp,ij = −�kχ

−1
p,ikDp,kj . The diffusivity is more

convenient than the transport coefficient as the input parameter
in terms of the availability of the measured and/or calculated
values.
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III. THIN-INTERFACE LIMIT ANALYSIS

We perform the asymptotic analysis of the present model
[Eqs. (62) and (66)] to investigate the behavior of the solution
for small W . For the sake of convenience, the spatial and time
scales are normalized in terms of d0 and d2

0/Dl,0, where Dl,0

is a reference value of the diffusivity, which can be given
by Dl,ii with an arbitrary chosen solute atom i at a temper-
ature. Equation (62) is rewritten in the normalized scale as
follows: ⎛⎝α0 + ε

∑
i,j

αij
CiM
−1
c,ij
Cj

⎞⎠ ε2∂tφ

= ε2∇2φ − f ′
dw − εa1g̃

′ 
Gdriv

χe

− ε2
∑

i

ac,i∇cl,i

∇φ

|∇φ| , (68)

where

α0 = IDl,0
1

Wd0

T0

χe

1

Mφ

(69)

and

αij = aIDl,0
T0

χe

1 − h2

8fdw

fτ,ij (φ). (70)

Also, the diffusion equation is given as

1 + h

2

∑
j

kc
ij ∂t cl,j + 1 − h

2
∂tcl,i

= ∇
⎛⎝∑

j

qij∇cl,j + aAT,i ε ∂tφ
∇φ

|∇φ|

⎞⎠+ 
Ci

h′

2
∂tφ,

(71)

where qij = Dij /Dl,0. Note that qij = qij (φ = −1) =
Dl,ij /Dl,0 for φ = −1 and qij = qij (φ = +1) =
�kDs,ikk

c
kj /Dl,0 for φ = +1.

The solutions of Eqs. (68) and (71) are analyzed in a pertur-
bative manner by expanding them in inner and outer regions
in powers of ε in the same manner as in Refs. [14,24,27,31].
The inner region is the interface region, while the outer region
is the bulk region away from the interface. φ rapidly varies
in the inner region and takes a constant value (+1 or −1) in
the outer region. Equations (68) and (71) are rewritten using
a local orthogonal set of curvilinear coordinates, the signed
distance to the φ = 0 level set r , and the arc length along the
interface s. In the inner region, moreover, the length scale is
rescaled as η = r/ε. Then, the time evolution equation of φ is
given as

∂2
ηφ − f ′

dw + ε(α0vn + κ)∂ηφ − εa1g̃
′ 
Gdriv

χe

+ ε
∑

i

ac,i∂ηcl,i − ε2κ2η∂ηφ + ε2∂2
s φ

+ ε2vn

∑
i,j

αij
CiM
−1
c,ij
Cj∂ηφ = 0, (72)

where vn and κ are the normal interface velocity and the
curvature in the dimensionless scale, respectively. Equation
(71) is given as

ε−2∂η

⎛⎝∑
j

qn
ij ∂ηcl,j

⎞⎠+ ε−1κ
∑

j

qn
ij ∂ηcl,j

−ε−1vn
Ci

h′

2
∂ηφ + ε−1vn∂η(aAT,i ∂ηφ)

+ ε−1vn

1 + h

2

∑
j

kc
ij ∂ηcl,j + ε−1vn

1 − h

2
∂ηcl,i

− κ2η
∑

j

qn
ij ∂ηcl,j + ∂s

⎛⎝∑
j

qt
ij ∂scl,j

⎞⎠
+κvnaAT,i ∂ηφ = 0, (73)

where qn
ij = −∑k Mn,ikχl,kj /Dl,0 and qt

ij =
−∑k Mt,ikχl,kj /Dl,0 and therefore qn

ij (φ = ±1) =
qt

ij (φ = ±1) = qij (φ = ±1). The inner expansions of φ and
ci are represented by φ = φ0 + εφ1 + ε2φ2 + · · · and cl,i =
cl,i,0 + εcl,i,1 + ε2cl,i,2 + · · · , respectively, while the outer
expansions are represented by � = �0 + ε�1 + ε2�2 + · · ·
and Cl,i = Cl,i,0 + εCl,i,1 + ε2Cl,i,2 + · · · . The expansions in
the inner region are substituted into Eqs. (72) and (73) and
they are matched order by order in powers of ε to those in the
outer region. The matching conditions are the same as those
reported in Ref. [14]. The asymptotic analysis for the present
model is carried out in the same way as in our previous work
[31]. However, several important relations must be taken into
account for the present case, especially regarding the diffusion
matrix and the thermodynamic factor. Hence, details of the
analysis are explained in Appendix B and only the essential
points are described below.

Equation (72) at order ε0 yields φ0(η) = − tanh(η/
√

2) and
∂ηφ0 = (φ2

0 − 1)/
√

2 with the boundary conditions φ0 → −1
for η → +∞ and φ0 → +1 for η → −∞. One obtains∑

j qn
ij ∂ηcl,j,0 = 0 from Eq. (73) at order ε−2. This equation

must be satisfied for the regular matrix qn
ij . Hence, ∂ηcl,j,0 = 0

and cl,j,0 = Cl,j,0(s). Equation (72) at order ε yields


Gdriv({Ci,0})
χe

= −α0vn − κ. (74)

This equation represents the Gibbs-Thomson relation at the
lowest order. These solutions can be found in the same manner
as in Refs. [14,24,27,31]. Next, from Eq. (73) at order ε−1, one
obtains

vn
Ci({Ci,0}) =
∑

j

qij (+1)∂rCl,j,0|−

−
∑

j

qij (−1)∂rCl,j,0|+, (75)

where A|+ and A|− represent the values of A on the liquid
and solid sides of the interface, respectively. Equation (75)
represents the Stefan condition at the lowest order. In addition,
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the following relation is obtained:

− 1

Dl,0

∑
j

χl,ijCl,j,1|±

= 1

2
vn

∑
j

M−1
l,ij
CjH

± +
∑
j,k

G±
ij qjk(+1)∂rCl,k,0|−

+Ai,0, (76)

where Ai,0 is the integral constant and

H± =
∫ ±∞

0
(h ± 1)dξ, (77)

G±
ij =

∫ ±∞

0

[
M−1

n,ij (φ0) − M−1
n,ij (∓1)

]
dξ

=
(
M−1

s,ij − M−1
l,ij

)
2

∫ ±∞

0
(hinv ± 1)dξ. (78)

Therefore, H+ = H− and G+
ij = G−

ij are required for the dif-
fusion potential to be continuous across the diffuse interface.
This requirement is automatically satisfied in the variational
model because h = hinv = g. Furthermore, this requirement
can be satisfied when h and hinv are an odd function of φ.
Details of the analysis of Eq. (73) at order ε−1 are explained
in Appendix B.

The integral constant Ai,0 in Eq. (76) can be obtained from
Eq. (72) at order ε2, and one can derive the following relation:∑

i

∂
Gdriv

∂cl,i

Cl,i,1

∣∣±
= vnT0Dl,0

⎧⎨⎩∑
i,j


CiM
−1
l,ij
Cj (a1a2 + a3,ij )

⎫⎬⎭. (79)

where a1 = I/J and

a2 = JH± + K

2I
, (80)

a3,ij = aI

I

∫ +∞

−∞

[
M−1

c,ij

M−1
l,ij

[fac(φ) − fτ,ij (φ)] − fac(φ)

]

× 1 − h2

4
dξ (81)

with

K =
∫ +∞

−∞

(∫ η

0
hdξ

)
g̃′(φ0)∂ηφ0dξ. (82)

For Eq. (79) to be valid, aI must satisfy

aI = I

(∫ +∞

−∞
(1 − hinvg)dξ

)/
∫ +∞

−∞
fac(φ)(1 − hinv)(1 + h)dξ. (83)

In the variational model, Eq. (83) always holds because h =
hinv = g, fac(φ) = 1 and aI = I . In the nonvariational model,
aI must be determined based on Eq. (83) to remove a constant

error in the Gibbs-Thomson relation which appears not in
one-sided diffusion but in two-sided asymmetric diffusion. In
addition, in deriving Eq. (79), we employed the following
relation for the thermodynamic quantities:∑

i

∂
Gdriv

∂ci

χ−1
l,ij = −T0
Cj, (84)

which can be obtained from Eq. (39). More details are
explained in Appendix B. By combining Eqs. (74) and (79),
one obtains

Gdriv({Xi,0})

χe

+ ε
∑

i

1

χe

∂
Gdriv

∂cl,i

Cl,i,1

∣∣± = −βvn − κ,

(85)

where

β = α0 − εT0
Dl,0

χe

⎧⎨⎩∑
i,j


CiM
−1
l,ij
Cj (a1a2 + a3,ij )

⎫⎬⎭.

(86)

Equation (85) is equivalent to the Gibbs-Thomson relation
described by Eq. (60) with β = Dl,0/(γ μint). It is important to
point out that in the variational model, a3,ij is calculated to be
−a1a2 and the second term on the right-hand side of Eq. (86)
vanishes, which results in β = α0. Namely, the phase-field
mobility Mφ is exactly proportional to the interface mobility
μint. This is in contrast to the conventional quantitative models,
where the phase-field mobility depends on {cl,i} even though
μint is assumed to be a constant [14,24]. This fact was not
explicitly discussed in the previous study [31].

One can obtain the following relation from Eq. (73) at
order ε0:

vn

⎛⎝Cl,i,1|+ −
∑

j

kc
ijCl,j,1|−

⎞⎠
=
∑

j

qij (+1)∂rCl,j,1|− +
∑
j,k

∂qij (+1)

∂ck

Cl,k,1|−∂rCl,j,0|−

−
∑

j

qij (−1)∂rCl,j,1|+

−
∑
j,k

∂qij (−1)

∂ck

Cl,k,1|+∂rCl,j,0|+. (87)

This relation is valid as long as the following requirements
are satisfied:∫ −∞

0

[
qt

ij − qij (+1)
]
dξ =

∫ +∞

0

[
qt

ij − qij (−1)
]
dξ, (88)

∂

∂cl,k

∫ −∞

0

[
qt

ij − qij (+1)
]
dξ

= ∂

∂cl,k

∫ +∞

0

[
qt

ij − qij (−1)
]
dξ, (89)

that are related to the correction associated with surface
diffusion. According to Eq. (48), when g is replaced by
h, Eqs. (88) and (89) are equivalent to the requirement of
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H+ = H−. Hence, Eqs. (88) and (89) are satisfied in both the
variational and nonvariational models. One finally obtains the
following relation from Eqs. (75) and (87):

vn

⎛⎝
Ci + εCl,i,1

∣∣+ − ε
∑

j

kc
ij Cl,j,1

∣∣−⎞⎠
=
∑

j

qij (+1)∂rCl,j,0

∣∣− −
∑

j

qij (−1)∂rCl,j,0

∣∣+
+ ε

∑
j

qij (+1)∂rCl,j,1

∣∣− − ε
∑

j

qij (−1)∂rCl,j,1

∣∣+
+ ε

∑
j,k

∂qij (+1)

∂cl,k

Cl,k,1|−∂rCl,j,0|−

− ε
∑
j,k

∂qij (−1)

∂cl,k

Cl,k,1

∣∣+ ∂rCl,j,0

∣∣+. (90)

This equation is equivalent to the Stefan condition given by
Eq. (61).

As demonstrated above, the variational phase-field model
developed in this study exactly reproduces the sharp-interface
equations (59)–(61) without any modification in the thin-
interface limit. This fact demonstrates the validity and use-
fulness of the present variational formulation. In the case
of a nonvariational model, furthermore, the sharp-interface
equations can be reproduced as long as H+ = H− and G+

ij =
G−

ij are satisfied, aI is given by Eq. (83), and a0 (hence, the
phase-field mobility Mφ) is given by Eq. (86).

IV. SPECIFIC EXAMPLES FOR SOME SYSTEMS

A. Definition of functions in nonvariational model

Equations (62) and (66) represent the general form of the
present model. This model can be applied to a variety of so-
lidification problems and also diffusion-controlled solid-solid
transformations. It should be helpful for further understanding
of the present model and its practical use to illustrate specific
forms of the model for well-known problems. In this section,
specific forms are demonstrated for solidification in a pure
substance, isothermal solidification in a binary alloy and also
nonisothermal solidification in a multicomponent alloy with
an approximated driving force. In particular, the nonvariational
forms are discussed. Before going into the details of each case,
we explain the forms of h(φ), hinv(φ), fac(φ), and fτ,ij (φ) that
are employed in all these models.

As described in Sec. II E, the model derived in a variational
manner does not necessarily exhibit high numerical perfor-
mance, i.e., fast convergence of the results with decreasing
W [12,31]. Our preliminary simulations showed that the
convergence of the present variational model is also slow.
This is because of two reasons. The first reason is related
to h(φ) which interpolates ci inside the interface. h(φ) of
a high-order polynomial causes rapid variation of ci near
the center of the interface and description of such rapid
variation requires a small spatial grid spacing as discussed
in Ref. [40]. To avoid this problem, in this study, h(φ) is
defined as h(φ) = φ, which generally yields good numerical
performance [12,40]. The second reason for slow convergence

in the variational model originates from Mn,ij [Eq. (51)] where
the inverse of the transport coefficient (or diffusivity) in each
bulk is interpolated inside the interface, which is called inverse
interpolation in this paper. In the variational model where
hinv(φ) = g(φ), Mn,ij sharply changes inside the interface
when the difference in the transport coefficient (diffusivity)
between the solid and liquid is large. This is numerically
unfavorable [31]. In nonvariational models, a form of hinv(φ)
can be chosen so as to prevent this problem. In this section,
hinv(φ) is given as hinv(φ) = φ because this choice makes it
possible to illustrate specific forms of the model in a concise
way. Also, preliminary simulations showed that this choice
yields reasonable numerical performance in some cases where
differences in diffusivity between the solid and liquid are not
very large. In the next section, we propose a different form of
hinv(φ) to achieve much better numerical performance.

In defining fac(φ), one must pay attention to the require-
ment that the cross-coupling term in the φ equation must
vanish outside the interface. Note that the right-hand side of
Eq. (62) must vanish outside the interface because φ should
take constant values of +1 in the bulk solid and −1 in the
bulk liquid. In the variational model, this is automatically
satisfied because ac,i in Eq. (63) becomes zero at φ = ±1.
It can be readily confirmed by noting h = hinv = g and
(fdw)1/2 = (1 − φ2)/2. However, ac,i does not automatically
vanish at φ = ±1 when h = hinv = φ is employed in the
nonvariational model. Hence, fac needs to be defined so as to
satisfy the condition of ac,i = 0 at φ = ±1. There are several
possible forms for fac(φ). In this study, fac(φ) is given as

fac(φ) = 2(1 − φ2). (91)

Then, aI can be calculated from Eq. (83) as

aI = 2a1a2I

/∫ +∞

−∞
(1 − φ2)

2
dξ = a1a2, (92)

where a1 = 5
√

2/8 and a2 = 0.6267. For fτ,ij (φ), we employ
the following form:

fτ,ij (φ) = fac(φ)

(
1 − M−1

l,ij

M−1
c,ij

)
, (93)

which results in a3,ij = 0. Therefore, Mφ can be obtained from
Eq. (86) as follows:

1

Mφ

= W

IT0

1

μint
+ W 2

I

⎧⎨⎩∑
i,j


CiM
−1
l,ij
Cj

⎫⎬⎭a1a2. (94)

By substituting Eqs. (92)–(94) into Eq. (65), one obtains

τ = W 2

d0χe

1

μint
+ a1a2

W 3

d0

T0

χe

∑
i,j


CiM
−1
c,ij
Cj . (95)

In our previous nonvariational models for isothermal
solidification [31], the solvability integral included in the
expression for τ depends on the solid diffusivity and
the partition coefficient. Hence, one must calculate the change
in the integral during the solidification process unless the solid
diffusivity and partition coefficient are assumed constant. On
the other hand, the present nonvariational model does not
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include such an integral and it is more convenient for numerical
implementation than the previous models.

It is important to point out that the entropy is the
thermodynamic potential in the present formulation and
therefore the thermodynamic quantities such as 
Gdriv and
χp,ij in this model are functions of the energy density
and the compositions. This point should be taken into account
when approximations and simplifications are introduced into
the present model. In particular, care must be paid to the
thermodynamic relation given by Eq. (84), which must be
satisfied to ensure the consistency of the model with the free-
boundary problem. As long as these points are appropriately
taken into account when applying the present model to specific
cases, the set of independent variables can be changed to a set
of different variables. For instance, the energy density el can
be changed to the temperature field T when the temperature
dependence of el is defined as shown below.

B. Solidification in a pure substance

We first focus on the solidification in a pure substance. In
this case, the independent variables are φ and el . However, it is
convenient for the description of the heat conduction problem
to use the temperature instead of the energy. Therefore, we
choose the temperature field T as the independent variable by
using a relation el = el(T ). Equations (62) and (66) can be
rewritten as

τ ∂tφ = W 2∇2φ − f ′
dw − g̃′a1

W

d0


Gdriv

χe

− W 2

d0
ac∇T · ∇φ

|∇φ| , (96)(
1 + φ

2
Cs,V + 1 − φ

2
Cl,V

)
∂tT

= ∇ ·
(

λT ∇T + aAT W∂tφ
∇φ

|∇φ|
)

+ 
L

2
∂tφ, (97)

where 
Gdriv = fs,bulk(T ) − fl,bulk(T ), Cl,V = del/dT ,
Cs,V = des/dT = kcCl,V with kc = des/del =
(d2sl/de2

l )/(d2ss/de2
s ), and 
L = el − es . Cl,V and Cs,V

are the specific heat per unit volume in the liquid and solid,
respectively and 
L is the latent heat per unit volume. Also,

τ = W 2

d0χe

1

μint
+ a1a2

W 3

d0

2
L

λs,T (1 − φ) + λl,T (1 + φ)

× 1

χe

d
Gdriv

dT
, (98)

ac = −
√

2a1a2(1 − φ2)
(λl,T − λs,T )

λs,T (1 − φ) + λl,T (1 + φ)

× 1

χe

d
Gdriv

dT
, (99)

aAT = 1√
2

(λl,T − λs,T )

(1 − φ)λs,T + (1 + φ)λl,T


L, (100)

λT = 2λs,T λl,T

(1 − φ)λs,T + (1 + φ)λl,T

n ⊗ n

+
(

1 + φ

2
λs,T + 1 − φ

2
λl,T

)
(1 − n ⊗ n), (101)

where λp,T is the thermal conductivity of phase p

given as λp,T = Dp,T Cp,V with thermal diffusivity
Dp,T = −Mp,T (d2sp/de2

p). In deriving Eqs. (98) and
(99), χl,ee = d2sp/d(�ep)2 was calculated using Eq. (84).
This model can reproduce the solution of the following
free-boundary problem:

Cp,V ∂tT = ∇ · (λp,T ∇T ) in phase p, (102)

fs,bulk − fl,bulk = − 1

μint
Vn − γ κ, (103)


LVn = λs,T ∂rT |− − λl,T ∂rT |+. (104)

Here, one can utilize, for instance, the free energy function
of the SGTE database [41] for fp,bulk. When λl,T = λs,T

is considered, the present model becomes very tractable in
numerical implementation because the cross-coupling terms
between φ and T (ac and aAT terms) vanish and λT

in Eq. (101) becomes scalar (λT = λl,T ). Also, the early
model for a pure substance [12] can be reproduced by
introducing the following simplifications and approximations:

Gdriv = fs,bulk(T ) − fl,bulk(T ) ≈ (
L/Tm)(T − Tm), 
L =
const, Cl,V = Cs,V = const, λl,T = λs,T = const, and χe =

L2/(TmCl,V ), with which d0 becomes the thermal capillary
length.

C. Isothermal solidification in a binary alloy

In the case of isothermal solidification in a binary alloy, the
independent variables are φ and cl . The interface temperature
T0 corresponds to the holding temperature. Then, the time
evolution equations of φ and cl are given as

τ ∂tφ = W 2∇2φ − f ′
dw − g̃′a1

W

d0


Gdriv

χe

− W 2

d0
ac∇cl · ∇φ

|∇φ| , (105)(
1 + φ

2
kc + 1 − φ

2

)
∂tcl = ∇ ·

(
D∇cl + aAT W∂tφ

∇φ

|∇φ|
)

+ (cl − cs)

2
∂tφ, (106)

where

τ = W 2

d0χe

1

μint
+ a1a2

W 3

d0

2(cl − cs)2

(1 − φ)kcDs + (1 − φ)Dl

× 1

χe

∂
μc

∂cl

, (107)


Gdriv = fs,bulk − fl,bulk − 
μc(cs − cl), (108)

ac = −
√

2a1a2(1 − φ2)(cl − cs)
Dl − kcDs

(1 − φ)kcDs + (1 − φ)Dl

× 1

χe

∂
μc

∂cl

, (109)

aAT = 1√
2

(cl − cs)
Dl − kcDs

kcDs(1 − φ) + Dl(1 − φ)
, (110)
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D = 2kcDsDl

(1 − φ)kcDs + (1 + φ)Dl

n ⊗ n

+
(

1 + φ

2
kcDs + 1 − φ

2
Dl

)
(1 − n ⊗ n), (111)

where kc = dcs/dcl = (d2sl/dc2
l )/(d2ss/dc2

s ),
Dl = −Ml(d2sl/dc2

l ), and kcDs = −Ms(d2sl/dc2
l ) =

−kcMs(d2ss/dc2
s ). d0 is the chemical capillary length when

χe is defined as (ce
l − ce

s )2 ∂
μl/∂cl|e, where ce
p is the

equilibrium composition of phase p and A|e represents the
value of A at equilibrium. This model is consistent with
the following free-boundary problem:

∂tc = ∇ · (Dp∇c) in phase p, (112)

fs,bulk − fl,bulk − 
μc(c∗
s − c∗

l ) = − 1

μint
Vn − γ κ, (113)

(c∗
l − c∗

s ) Vn = Ds ∂rc|− − Dl∂rc|+, (114)

where c∗
l and c∗

s are the compositions at the interface in the
liquid and solid, respectively, at the interface. Note that one
can utilize any type of free energy model for fp,bulk, such as
the solution model in the CALPHAD method [38], and one
can consider the concentration dependence of the diffusivities.

Let us remark on a numerical issue in this model. Except
for a case that a simplified model such as a dilute solution
model is employed for bulk’s free energy density, cs must
be calculated at each spatial point such that the condition of
equal diffusion potentials [Eq. (35)] is satisfied. Although this
can be carried out by an iterative calculation method such
as the Newton-Raphson method, it is often time consuming.
On the other hand, instead of conducting such an iterative
calculation, one can directly calculate the temporal change
in cs from ∂tcs = kc∂tcl with ∂tcl and kc obtained from
cl and cs at t . The calculated cs satisfies Eq. (35) as
long as the initial value of cs satisfies Eq. (35).

D. Nonisothermal solidification in a multicomponent alloy:
Linearized driving force

A simplified model for nonisothermal solidification in a
multicomponent alloy with n solute atoms is next demon-
strated. The independent variables are chosen to be T and cl,i

with i � n. The contributions of off-diagonal diffusivities are
neglected for simplicity. In addition, we employ the approxi-
mation called the multibinary extrapolation [42] for the driving
force. The following form of the driving force is assumed:


Gdriv = 
Sdriv(T − T0) + 
Sdriv

∑
i

ml,i

(
cl,i − c0

l,i

)
,

(115)

where 
Sdriv is the entropy contribution of the driving force
and ml,i is the liquidus slope of solute i, which are both
approximated as constants. c0

l,i is the equilibrium composition
of i at the liquidus temperature T0. Also, χl,ij = 0 is assumed
for i �= j . Then, from Eq. (84), the second derivative of the
entropy density is expressed as

χl,ee = ∂2sl,bulk

�2∂el
2

= − 1

�2T0
L

∂
Gdriv

∂T

∂T

∂el

= − 
Sdriv

�2T0
L

1

CV

(116)

for the energy density and

χl,ii = ∂2sl,bulk

∂c2
l,i

= − 1

T0
Ci

∂
Gdriv

∂ci

= −
Sdrivml,i

T0
Ci

(117)

for solute i. In these expressions, ∂el/∂cl,i is assumed to be
negligible and ∂el/∂T is set to CV , which is the constant
specific heat with Cl,V = Cs,V = CV . Then, the φ equation is
given as

τ ∂tφ = W 2∇2φ − f ′
dw − g̃′a1

W

d0


Gdriv

χe

− W 2

d0

(
ac,T ∇T +

n∑
i=1

ac,i∇cl,i

)
· ∇φ

|∇φ| , (118)

τ = W 2

d0χe

1

μint
+ 2a1a2

W 3

d0


Sdriv

χe

(

L
/
CV

(1 − φ)Ds,T + (1 + φ)Dl,T

+
n∑

i=1

(cl,i − cs,i)ml,i

(1 − φ)kc
i Ds,i + (1 + φ)Dl,i

)
, (119)

ac,T = −
√

2a1a2(1 − φ2)
Dl,T − Ds,T

(1 − φ)Ds,T + (1 + φ)Dl,T


Sdriv

χe

, (120)

ac,i = −
√

2a1a2(1 − φ2)
Dl,i − kc

i Ds,i

(1 − φ)kc
i Ds,i + (1 + φ)Dl,i


Sdrivml,i

χe

, (121)

where Dp,T and Dp,i are the thermal diffusivity and diffusivity
of solute i in phase p, respectively, and kc

i = ml,i/ms,i with
ms,i the solidus slope of solute i. The time evolution of the
temperature is described by

∂tT = ∇ ·
(

DT ∇T + aAT,T W∂tφ
∇φ

|∇φ|
)

+ 
L

CV

∂tφ

2
, (122)

with

aAT,T = 1√
2

(Dl,T − Ds,T )

(1 − φ)Ds,T + (1 + φ)Dl,T


L

CV

, (123)

where DT is given by Eq. (111) with kcDs and Dl replaced by
Ds,T and Dl,T , respectively. The diffusion equation of solute
i is given as

(
1 + φ

2
kc
i + 1 − φ

2

)
∂tci = ∇ ·

(
Di∇ci + aAT,iW∂tφ

∇φ

|∇φ|
)

+ (cl,i − cs,i)
∂tφ

2
, (124)
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with

aAT,i = 1√
2

(cl,i − cs,i)
Dl,i − kc

i Ds,i

(1 − φ)kc
i Ds,i + (1 + φ)Dl,i

, (125)

where Di is given as Eq. (111) with kcDs and Dl replaced by
kc
i Ds,i and Dl,i , respectively.

V. NUMERICAL TEST

Numerical testing was carried out to evaluate the per-
formance of the present nonvariational model. The conver-
gence behavior of the simulation result was investigated by
decreasing the interface thickness W in a similar manner
as in the previous studies [14,24,27,31,40]. We performed
two-dimensional simulations of dendritic growth during non-
isothermal solidification in a ternary alloy using the model
described in Sec. IV D. The independent variables are φ,
T , cl,1, and cl,2. For simplicity, we assumed 1/μint = 0,
CV = const, and 
L = const. Also, the partition coefficients
kc
i , the thermal diffusivities of the solid Ds,T and liquid Dl,T ,

and the solute diffusivities of the solid Ds,i and liquid Dl,i were
assumed constant. A test with these simplifications is sufficient
for the present purpose. χe is given as χe = 
Sdriv(
L/CV )
and then d0 corresponds to the thermal capillary length.

As described in Sec. IV A, a model with h(φ) = φ

generally yields good numerical performance [12,40] and
hence we employ h(φ) = φ in this test. Although the model
with hinv(φ) = φ was presented for illustrative purpose in
Sec. IV, we put forward a different form of hinv(φ) to achieve
good numerical performance in this section. For clarity, the
diffusivity Di in Eq. (124) is described as

Di

Dl,i

= 2qs,i

(1 − hinv)qs,i + 1 + hinv
n ⊗ n

+
(

1 + φ

2
qs,i + 1 − φ

2

)
(1 − n ⊗ n)

= qn
i n ⊗ n + qt

i (1 − n ⊗ n), (126)

with qs,i = kc
i Ds,i/Dl,i for i = 1, 2 and T . kc

T is given as
kc
T = 1.0. qn

i is described by inverse interpolation with hinv(φ),
while qt

i is given by normal interpolation with h(φ) = φ. When
qs,i is low, qn

i abruptly changes near φ = −1 in models with
hinv(φ) = g(φ) or φ, which causes low accuracy in numerical
simulations. In nonvariational models, a form of hinv(φ) can
be chosen so as to prevent this problem. Note that hinv(φ)
does not need to be an odd function. Any function can be
employed for hinv(φ) as long as it satisfies hinv(±1) = ±1 and
G+

ij = G−
ij [Eq. (78)]. In this study, the following function is

employed:

hinv(φ) = qa − 1 + (qa + 1) hnorm(φ)

qa + 1 + (qa − 1) hnorm(φ)
, (127)

where qa is a constant and hnorm(φ) is the odd function
given as

hnorm(φ) = φ + a4φ(1 − φ2), (128)
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FIG. 1. (a) Dependence of a4 and aI on qa . (b) Dependence of
diffusivity qn

i on φ calculated for qs,i = 10−2, 10−3, and 10−4. qa =
10−3 and a4 = 0.5478 were employed in (b).

with a constant a4. This function was chosen because it can be
rewritten as

2qa

(1 − hinv)qa + (1 + hinv)
= 1 + hnorm

2
qa + 1 − hnorm

2
,

(129)

where the left-hand side represents the inverse interpolation
between 1 and qa with hinv(φ), while the right-hand side
represents the normal interpolation between 1 and qa with
hnorm(φ). This property of hinv(φ) is beneficial in suppressing
an abrupt change of qn

i associated with the inverse interpo-
lation. The constant a4 must be determined so as to satisfy
G+

ij = G−
ij for each value of qa . The calculated value of a4 is

shown in Fig. 1(a) where four values are denoted for reference.
The advantage of hinv(φ) given by Eq. (127) is exemplified
in Fig. 1(b) which shows dependence of qn

i on φ calculated
for qs,i = 10−2, 10−3, and 10−4. In these calculations, qa =
10−3 (a4 = 0.5478) is employed as an example. qn

i smoothly
changes from qs,i to 1.0 in all cases. Hence, the problem
with the abrupt change of qn

i can be avoided by using
hinv(φ) given by Eq. (127). In the present simulation, qa =
10−3 was chosen by considering values of {qs,i} mentioned
below. Note that aI given by Eq. (83) depends on the form
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of hinv(φ) and thereby qa . The calculated value of aI for
different qa is shown in Fig. 1(a).

By considering the anisotropy of the fourfold symmetry in
the interfacial energy, Eq. (118) is rewritten as

τ0 as(n)2

[∑
i

Mu,i

Lei

(
1 + 1 − qc,i

qc,i

aI

a1a2

)[
1 + (1 − kc

i

)
ui

]]
∂tφ

= ∇ · [W (n)2∇φ
]+ ∂x

(
|∇φ|2W (n)

∂W (n)

∂(∂xφ)

)
+ ∂y

(
|∇φ|2W (n)

∂W (n)

∂(∂yφ)

)

− f ′
dw − g̃′λ

(∑
i

Mu,iui

)
+ W (n)2

d0

∑
i

āc,iMu,i∇ui · ∇φ

|∇φ| , (130)

where the summation is carried out for i = 1, 2 and T . uT = θ is the dimensionless undercooling given by

θ = T − T0


L/CV

, (131)

and ui with i = 1, 2 is the dimensionless supersaturation given by

ui = cl,i − c0
l,i

c0
l,i

(
1 − kc

i

) . (132)

Also,

W (n) = W0as(n) = W0

(
1 − 3ε4 + 4ε4

(∂xφ)4 + (∂yφ)4

|∇φ|4
)

, (133)

where W0 = ε/
√

ω and ε4 is the anisotropic strength of the interfacial energy. In Eq. (130), Lei with i = 1, 2 is the Lewis
number of solute i given by Lei = DT /Dl,i and Mu,i with i = 1, 2 is the ratio of thermal capillary length to the chemical
capillary length of solute i given by Mu,i = ml,i(1 − kc

i )c0
l,i/(
L/CV ). Also, LeT = 1.0, Mu,T = 1.0, kc

T = 1.0, λ = a1W0/d0,
τ0 = a2λW 2

0 /Dl,T , and qc,i is given as

qc,i = 1 − hinv

2
qs,i + 1 + hinv

2
. (134)

āc,i is given as

āc,i = 1

2
√

2
aI (1 − φ2)[1 − a4φ(1 + φ)]

(1 − hinv)qa + 1 + hinv

qa

(
1 − qs,i

qc,i

)
. (135)

The time evolution equation of ui with i = 1, 2 and T (uT = θ ) is given as

1

2

[
1 + kc

i − (1 − kc
i

)
φ
]
∂tui = ∇ ·

(
Di∇ui + āAT ,iW0∂tφ

∇φ

|∇φ|
)

+ 1

2

[
1 + (1 − kc

i

)
ui

]
∂tφ, (136)

where Di is given by Eq. (126) and

āAT ,i = 1

4
√

2

[
1 + (1 − kc

i

)
ui

]
[1 + a4φ(1 − φ)][(1 − hinv)qa + 1 + hinv]

(
1 − qs,i

qc,i

)
. (137)

Equations (130) and (136) were discretized using a second-
order finite difference scheme with grid spacing 
x and were
solved using a first-order Euler scheme. The discretization of
the diffusion flux with the tensor diffusivity in Eq. (136) was
carried out in the same manner as in Appendix B of Ref. [31].

In this test, the spatial and time scales were normalized
by d0 and d2

0/Dl,T , respectively. We employed a square
computational box with an edge length of 5000d0. The
simulations were carried out for a model alloy with kc

1 = 0.2,
kc

2 = 0.5, Le1 = 5.0, Le2 = 10.0, qs,T = 0.5, qs,1 = 10−2,
qs,1 = 10−3, Mu,1 = 0.08, Mu,2 = 0.05, and ε4 = 0.02. The
time step 
t was given as 
t = 
x2/(5DT ) and W0 was set
to 1.5
x. The number of spatial grid points was changed

from 2562 to 15362 and W0/d0 was accordingly changed
from 29.30 to 4.88. A small half disk of a solid was initially
placed at the origin of the x axis and the center of the y

axis. The initial undercooling and supersaturation were set
to θ = −0.5 and u1 = u2 = 0.0, respectively. The simulation
was carried out until steady-state growth was achieved. Note
that we employed the low Lewis numbers. This is because high
Lewis numbers require a long time until steady-state growth
is realized. In addition, to reduce the computational cost, the
growth of the solid in the x direction was simulated by moving
the computational box in the x direction along with the growth
front of the solid. The simulation was accelerated by using a
TESLA K40 graphics processing unit (GPU) [21–23].
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FIG. 2. (a) Convergence behavior of (a) the interface velocity
(open plots) and the tip radius (filled plots), (b) the compositions
in the solid near the dendrite tip, c∗

s,1 and c∗
s,2 (φ ≈ 0.99), and

(c) error in the Gibbs-Thomson relation, calculated by the present
model (squares), the present model without cross-coupling terms in
φ equation (circles), and the standard model (triangles).

Figure 2 shows the results of the convergence test. The
calculated dendrite tip velocity Vn and tip radius ρ are shown
in Fig. 2(a) and the compositions of the solid behind the tip
c∗
s,i are presented in Fig. 2(b). The tip radius ρ was calculated

by fitting the φ = 0 contour at the dendrite tip to a parabola.
Figure 2(c) shows the error in Gibbs-Thomson relation 
Eerror

which is given as [15,27,31]


Eerror =
∑

i

Mu,iu
∗
i + d0(1 − 15ε4)

ρ
, (138)

where u∗
i is a value of ui evaluated at φ ≈ 0.99. The results of

the present model are indicated by square plots (this model).
We compare the results of this model and a standard model.
The standard model corresponds to the present model without
the coupling term in the φ equation [the last term in Eq. (130)]
and the antitrapping current in the diffusion equation. More
specifically, aI = 0 and accordingly āc,i = 0 in Eq. (130)
and āAT ,i = 0 in Eq. (136). Also, the diffusivity Di is the
scalar as given by Di = [(1 + φ)kc

i Ds,i + (1 − φ)Dl,i]/2 in
the standard model. Therefore, the standard model suffers
from abnormal interface effects. The results of the standard
model are indicated by triangle plots. In Fig. 2(a), Vn

and ρ calculated by the present nonvariational model show
monotonic convergence. Although they do not yet completely
converge, the change of Vn and ρ are not significant when
W0/d0 is small. On the other hand, Vn of the standard model
exhibits nonmonotonic behavior, which stems from abnormal
interface effects. A significant difference between the present
nonvariational model and the standard model appear for c∗

s,i in
Fig. 2(b), which is sensitive to the abnormal interface effect
originating from the discontinuity of the diffusion potential.
The calculated c∗

s,i of the standard model deviates from the
well-converged values obtained by the present nonvariational
model even for the smallest value of W0/d0. Furthermore, the
large error exists in the Gibbs-Thomson relation in the case of
the standard model even for the smallest value of W0/d0, which
is in marked contrast to the result of the present nonvariational
model. Hence, this numerical test shows that the performance
of the present nonvariational model is much better than that of
the standard model.

To understand the importance of the cross-coupling term
in the φ equation, the same simulations were carried out by
means of the present model without the cross-coupling term
as specified by “this model w.o. ac,i” (circle plots) in Fig. 2.
The results of this model w.o. ac,i obviously differ from those
of the present nonvariational model. Vn and ρ of the former
model are always lower and larger than those of the latter
model, respectively. Although the differences in cs,i between
these models are small, the notable error still exists in the
Gibbs-Thomson relation in the case of this model w.o. ac,i

even for the smallest value of W0/d0. It is consistent with
the result of the matched asymptotic analysis that a constant
error appears in the Gibbs-Thomson relation without the cross-
coupling term in the φ equation. This comparison indicates that
the addition of the cross-coupling term improves the numerical
accuracy.

Figure 2 demonstrates that the present nonvariational model
exhibits good numerical performance by comparison to the
other models. As already described, the numerical accuracy of
the nonvariational model depends on the choice of the forms of
h(φ), hinv(φ), fac(φ), and fτ,ij (φ). Here we tested the accuracy
of only one nonvariational model. Numerical testing of the
nonvariational models with different sets of these functions
may reveal the model which yields the highest accuracy as
was carried out for the one-sided model [40]. This is one of
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the important works tackled for practical use of the quantitative
phase-field model.

VI. CONCLUSIONS

In this study, we have demonstrated a variational formu-
lation of a quantitative phase-field model for nonisothermal
solidification in a multicomponent alloy with two-sided asym-
metric diffusion. The essential point of this procedure is that
the diffusion fluxes of the conserved variables in the solid and
liquid are separately formulated in the variational manner from
the entropy functional, which is followed by the introduction of
the local equilibrium conditions. In this procedure, the cross-
coupling terms naturally arise in the φ equation and diffusion
equation, one of which corresponds to the antitrapping current
phenomenologically introduced in early models. Owing to
both the coupling terms, this model becomes equivalent to the
sharp-interface free-boundary problem of solidification in the
thin-interface limit. This model is applicable to many practical
problems because approximations and simplifications are not
formally introduced into the bulk’s free energy densities and
off-diagonal elements of the diffusivity matrix are explicitly
considered in this model. Furthermore, we have shown the
nonvariational form of the present model which is more
advantageous for numerical implementation than those in the
previous study [31]. The numerical test of the model for
nonisothermal solidification in a ternary alloy showed fast

convergence of the results with decreasing interface thickness,
i.e., good numerical performance.

Phase-field models generally require a high computational
cost, which has imposed restrictions on their application.
However, recent advances in high-performance computing
techniques have enabled large-scale phase-field simulations of
the competitive growth of a bunch of dendrites [21–23,43,44].
Furthermore, molecular dynamics (MD) simulations have
contributed to the estimation of the interfacial properties
required for quantitative phase-field simulations [45,46] and
large-scale MD simulations are now closing the gap in the
knowledge between the microstructural and atomistic scales
[47,48]. We believe that, coupled with these recent advances,
the present quantitative phase-field model will contribute
to further progress in our understanding of the formation
processes of solidification microstructures.
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APPENDIX A: TRANSFORMATION FOR Mn,i k′

The transformation for Mn,ik′ shown in Eq. (51) is explained here. First, note that a constant a and a regular matrix A obeys
the relation (aA)−1 = (1/a)A−1. Also, the sum of regular matrices A and B satisfies the following relation:

(A + B)−1 = A−1(A−1 + B−1)−1B−1. (A1)

Hence, the inverse matrix of Mc,ij is written as

M−1
c,ij =

(
1 − g

2
Ms,ij + 1 + g

2
Ml,ij

)−1

=
∑
k,k′

2

1 − g
M−1

s,ik

(
2

1 − g
M−1

s,kk′ + 2

1 + g
M−1

l,kk′

)−1 2

1 + g
M−1

l,k′j

=
∑
k,k′

M−1
s,ik

(
1 + g

2
M−1

s,kk′ + 1 − g

2
M−1

l,kk′

)−1

M−1
l,k′j . (A2)

Therefore, by substituting Eq. (A2) into Eq. (51), one obtains the following relation:

Mn,ik′ =
∑
j,k

(
1 + g

2
Ms,ijM

−1
c,jkMl,kk′ + 1 − g

2
Ms,kk′M−1

c,jkMl,ij

)
=
(

1 + g

2
M−1

s,ik′ + 1 − g

2
M−1

l,ik′

)−1

. (A3)

APPENDIX B: DETAILS OF THE MATCHED ASYMPTOTIC ANALYSIS

Some details of the matched asymptotic analysis are explained in this appendix. As described in Sec. III, φ0(η) = − tanh(η/
√

2)
and cl,i,0 = Cl,i,0(s) are obtained from Eq. (72) at order ε0 and from Eq. (73) at order ε−2, respectively. The lowest-order expression
of the Gibbs-Thomson relation Eq. (74) is obtained by integrating Eq. (72) at order ε1 with respect to η after multiplying it by
∂ηφ0. Next, Eq. (73) at order ε−1 yields

∂η

⎛⎝∑
j

qn
ij ∂ηcl,j,1

⎞⎠− vn
Ci

h′

2
∂ηφ0 + vn∂η(aAT,i ∂ηφ0) = 0, (B1)
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where the dependencies of quantities on φ0 and Ci,0 such as qij = qij (φ0,{Ck,0}) and 
Ci = 
Ci({Cl,j,0}) are not explicitly
denoted for convenience. By integrating Eq. (B1) once, one obtains∑

j

qn
ij ∂ηcl,j,1 = vn
Ci

h − 1

2
− vnaAT,i ∂ηφ0 +

∑
j

qij (+1)∂rCl,j,0

∣∣−, (B2)

where the integral constant was determined using the matching condition for η → −∞ (φ0 → +1). In the limit of η → +∞
(φ0 → −1), Eq. (B2) yields the following relation:

vn
Ci({Cl,i,0}) =
∑

j

qij (+1,{Cl,i,0}) ∂rCl,j,0|− −
∑

j

qij (−1,{Cl,i,0}) ∂rCl,j,0|+. (B3)

This equation is exactly the same as Eq. (75). Also, by substituting Eq. (67) into Eq. (B2), one obtains

∑
j

qn
ij (φ0)∂ηcl,j,1 = vn

h − 1

2

⎛⎝
Ci − 1 + hinv

2

∑
j,k

(Ml,ij − Ms,ij )M−1
c,jk
Ck

⎞⎠+
∑

j

qij (+1)∂rCl,j,0|−, (B4)

where the terms in the parenthesis in the first term can be rewritten as


Ci − 1 + hinv

2

∑
j,k

(Ml,ij − Ms,ij )M−1
c,jk
Ck =

∑
j,k


CkMc,ijM
−1
c,jk − 1 + hinv

2

∑
j,k

(Ml,ij − Ms,ij )M−1
c,jk
Ck

=
∑
j,k

Ms,ijM
−1
c,jk
Ck. (B5)

Hence, ∑
j

qn
ij (φ0)∂ηcl,j,1 = vn

h − 1

2

∑
j,k

Ms,ijM
−1
c,jk
Ck +

∑
j

qij (+1)∂rCl,j,0|−. (B6)

Furthermore, using the definition of qn
ij , Eq. (B6) is rewritten as

− 1

Dl,0

∑
j

χl,k′j ∂ηcl,j,1 = vn

h − 1

2

∑
i,j,k

M−1
n,k′iMs,ijM

−1
c,jk
Ck +

∑
i,j

M−1
n,k′iqij (+1)∂rCl,j,0|−. (B7)

Here, the following equation is obtained from Eqs. (A2) and (A3):∑
i,j,k

M−1
n,k′iMs,ijM

−1
c,jk
Ck =

∑
k

M−1
l,k′k
Ck. (B8)

By using Eq. (B8) and by rearranging the subscripts, one obtains

− 1

Dl,0

∑
j

χl,ij ∂ηcl,j,1 = vn

h − 1

2

∑
j

M−1
l,ij
Cj +

∑
j,k

M−1
n,ij qjk(+1)∂rCl,k,0|−. (B9)

The integration of Eq. (B9) yields

− 1

Dl,0

∑
j

χl,ij cl,j,1 = vn

∑
j

M−1
l,ij
Cj

∫ η

0

h − 1

2
dξ +

∑
j,k

qjk(+1)∂rCl,k,0|−
∫ η

0
M−1

n,ij (φ0)dξ + Ai,0, (B10)

where Ai,0 is the integral constant. By considering the matching condition in the limits of η → ±∞ and the Stefan condition
given by Eq. (B3), one obtains the following relation:

− 1

Dl,0

∑
j

χl,ij Cl,j,1

∣∣± = 1

2
vn

∑
j

M−1
l,ij
CjH

± +
∑
j,k

G±
ij qjk(+1)∂rCl,k,0

∣∣− + Ai,0, (B11)

where H± and G±
ij are given by Eqs. (77) and (78), respectively. In the variational model, H+ = H− and G+

ij = G−
ij are satisfied

because h = hinv = g. Furthermore, these requirements can be satisfied when h and hinv are an odd function of φ.
Next, the following relation is derived by integrating Eq. (72) at order ε2 after multiplying by ∂ηφ0 and by considering the

symmetry of the functions in the same manner as discussed in Refs. [14,24]:

a1

χe

∑
i

∂
Gdriv

∂cl,i

∫ +∞

−∞
cl,i,1g̃

′(φ0)∂ηφ0dξ −
∫ +∞

−∞

∑
i

ac,i(φ0)∂ηcl,i,1∂ηφ0dξ

− vn

∫ +∞

−∞

∑
i,j

αij (φ0)
CiM
−1
c,ij
Cj (∂ηφ0)2dξ = 0. (B12)
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By substituting Eq. (B10), Eqs. (63), and (70) into Eq. (B12), one obtains the following relation:∑
i,j

∂
Gdriv

∂cl,i

χ−1
l,ijAj,0 = vn

1

2J

∑
i,j,k

∂
Gdriv

∂cl,i

χ−1
l,ijM

−1
l,jk
CkK + 1

J

∑
i,j,k,k′

∂
Gdriv

∂cl,i

χ−1
l,ijQjkqkk′(+1)∂rCl,k′,0

∣∣−
+ vn

aI

I
T0

∫ +∞

−∞

∑
i,j,k,k′


CiM
−1
c,ij (Ml,jk − Ms,jk)M−1

l,kk′
Ck′fac(φ)
h − 1

2

(1 − hinv)(1 + h)

4
dξ

+ aI

I
T0

∑
i,j,k


Ci

(
M−1

s,ij − M−1
l,ij

)
qjk(+1)∂rCl,k,0|−

∫ +∞

−∞
fac(φ)

(1 − hinv)(1 + h)

4
dξ

+ aI

I
vnT0

∫ +∞

−∞

∑
i,j


CiM
−1
c,ij
Cjfτ,ij (φ)

1 − h2

4
dξ, (B13)

where K is given by Eq. (82) and

Qjk =
∫ +∞

−∞

[∫ η

0
M−1

n,jkdξ

]
g̃′(φ0)∂ηφ0dξ. (B14)

Here, note that the following relation is always satisfied:

∂
Gdriv

∂cl,i

= −T0
∂

∂cl,i

⎛⎝ss,bulk − sl,bulk −
n+1∑
j=1

(cs,j − cl,j )
sc,j

⎞⎠ = −T0

⎛⎝∑
j


Cjχl,ji

⎞⎠. (B15)

Then, one can obtain Eq. (84). By combining Eqs. (B11), (B13), and (84), the following relation can be obtained:

1

T0Dl,0

∑
i

∂
Gdriv

∂cl,i

Cl,i,1

∣∣± = vn

∑
i,j


CiM
−1
l,ij
Cj

(
JH± + K

2J

)

− vn

aI

I

∫ +∞

−∞

∑
i,j,k,k′


CiM
−1
c,ij (Ml,jk − Ms,jk)M−1

l,kk′
Ck′fac(φ)
h − 1

2

(1 − hinv)(1 + h)

4
dξ

− vn

aI

I

∫ +∞

−∞

∑
i,j


CiM
−1
c,ij
Cj

1 − h2

4
fτ,ij (φ)dξ

+
∑
i,j,k


CiG
±
ij qjk(+1)∂rCl,k,0

∣∣− + 1

J

∑
i,j,k


CiQijqjk(+1)∂rCl,k,0

∣∣−
− aI

I

∑
i,j,k


Ci

(
M−1

s,ij − M−1
l,ij

)
qjk(+1)∂rCl,k,0

∣∣− ∫ +∞

−∞
fac(φ)

(1 − hinv)(1 + h)

4
dξ. (B16)

The right-hand side of Eq. (B16) consists of terms proportional to vn and qjk(+1)∂rCl,k,0|−. In the previous models without
the cross-coupling term in the φ equation (i.e., the models with ac,i = 0), the latter terms appear in the Gibbs-Thomson relation,
causing the unphysical magnification of the interface effect. In the present model, on the other hand, the terms proportional to
qjk(+1)∂rCl,k,0|− can be canceled out when the following relation is satisfied:

aI

I

(
M−1

s,ij − M−1
l,ij

) ∫ +∞

−∞
fac(φ)

1 − hinv

2

1 + h

2
dξ = G±

ij + Qij

J
. (B17)

Here, Qij can be rewritten as

Qij =
∫ +∞

−∞

[∫ η

0
M−1

n,ij dξ

]
g̃′(φ0)∂ηφ0dξ = J

2

(
M−1

l,ij − M−1
s,ij

) ∫ +∞

0
(hinv + 1)dξ + J

4

(
M−1

l,ij − M−1
s,ij

) ∫ +∞

−∞
(hinvg − 1)dξ,

(B18)

where we employed the fact that the integral of the odd function from η = −∞ to +∞ vanishes. By using Eqs. (B18) and (78),
the right-hand side of Eq. (B17) is rewritten as

G±
ij + Qij

J
= 1

4

(
M−1

l,ij − M−1
s,ij

) ∫ +∞

−∞
(hinvg − 1)dξ. (B19)
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Hence, if the following relation is satisfied, the terms proportional to qjk(+1)∂rCl,k,0|− vanish in Eq. (B16):

aI = I

∫ +∞

−∞
(1 − hinvg)dξ

/∫ +∞

−∞
fac(φ)(1 − hinv)(1 + h)dξ. (B20)

This relation is automatically satisfied in the variational model because hinv = h = g, fac(φ) = 1, and aI = I . In the
nonvariational model, aI is determined by Eq. (B20). Now, Eq. (B16) is written as Eq. (79) and the Gibbs-Thomson relation is
reproduced.

Finally, Eq. (73) at order ε0 is given as

∂η

⎛⎝∑
j

qn
ij ∂ηcl,j,2

⎞⎠+ ∂η

⎛⎝∑
j

∂qn
ij

∂φ
φ1∂ηcl,j,1

⎞⎠+ ∂η

⎛⎝∑
j,k

∂qn
ij

∂cl,k

cl,k,1∂ηcl,j,1

⎞⎠
− 1

2
vn
Ci∂η

(
h′(φ0)

2
φ1

)
+ vn∂η

⎛⎝1 + h

2

∑
j

kc
ij cl,j,1 + 1 − h

2
cl,i,1

⎞⎠
+ vn∂η(aAT,i ∂ηφ1) + vn∂η

(
∂aAT,i

∂φ
φ1 ∂ηφ0

)
+ vn∂η

⎛⎝∑
j

∂aAT,i

∂cl,j

cl,j,1 ∂ηφ0

⎞⎠
+ ∂s

⎛⎝∑
j

qt
ij ∂sCl,j,0

⎞⎠+ κ
∑

j

qn
ij ∂ηcl,j,1 + κvnaAT,i ∂ηφ0 = 0. (B21)

Integrating Eq. (B21) once yields∑
j

qn
ij ∂ηcl,j,2 +

∑
j,k

∂qn
ij

∂cl,k

cl,k,1∂ηcl,j,1 + vn

1 + h

2

∑
j

kc
ij cl,j,1 + vn

1 − h

2
cl,i,1

+
∑

j

∂2
s Cl,j,0

∫ η

0
qt

ij dξ +
∑
j,k

∂sCl,j,0∂sCl,k,0

∫ η

0

∂qt
ij

∂cl,k

dξ + κ

∫ η

0

⎛⎝∑
j

qn
ij ∂ηcl,j,1 + vnaAT,i ∂ηφ0

⎞⎠dξ = Ai,1, (B22)

where Ai,1 is the integral constant. In Eq. (B22), we omitted the terms proportional to φ1 and ∂ηφ0 because these terms are
negligible in the limits of η → ±∞. Using Eq. (B2), the last term on the right-hand side of Eq. (B22) is given in the limit of
η → ±∞ as

κ

∫ ±∞

0

⎛⎝∑
j

qij ∂ηcl,j,1 + vnaAT,i ∂ηφ0

⎞⎠dξ = κ

∫ ±∞

0
vn
Ci

h ± 1

2
dξ + κ

∑
j

qij (∓1)∂rCl,j,0

∣∣±η. (B23)

Also, the diffusion equation of the outer solution Cl,i,0 is expressed in the curvilinear coordinate as

vn∂rCl,i,0 +
∑

j

qij ∂
2
r Cl,j,0 +

∑
j,k

∂qij

∂Cl,k

∂rCl,k,0∂rCl,j,0 + κ
∑

j

qij ∂rCl,j,0 + ∂s

⎛⎝∑
j

qij ∂sCl,j,0

⎞⎠ = 0, (B24)

where qij = qij (+1) in the solid and qij = qij (−1) in the liquid. Therefore, by taking the limit of Eq. (B22) for η → ±∞ and
calculating the difference between them, one obtains

vnCl,i,1|+ − vn

∑
j

kc
ijCl,j,1|− =

∑
j

qij (+1)∂rCl,j,1|− +
∑
j,k

∂qij (+1)

∂cl,k

Cl,k,1|−∂rCl,j,0|−

−
∑

j

qij (−1)∂rCl,j,1|+ −
∑
j,k

∂qij (−1)

∂cl,k

Cl,k,1|+∂rCl,j,0|+. (B25)

This corresponds to Eq. (87) and is valid as long as Eqs. (88) and (89) are satisfied. From Eqs. (B3) and (B25), one can obtain
Eq. (90), which corresponds to the Stefan condition.
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