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The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous
three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse
problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article,
we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source
profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear
integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation
of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress
profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics.
In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments,
with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists
of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D
optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances
on the optoacoustic signal and the reconstructed pressure profiles.
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I. INTRODUCTION

The inverse optoacoustic (OA) source reconstruction prob-
lem is concerned with the recovery of initial acoustic stress
profiles from measured OA signals upon knowledge of the
mathematical model that mediates the underlying diffraction
transformation [1–3]. It is the conceptual analog of the direct
OA problem (known as the OA forward problem), representing
the calculation of a diffraction-transformed acoustic pressure
signal at a given field point for a given initial acoustic stress
profile on the basis of the OA wave equation [2–5]. In
particular, once the source reconstruction problem is solved,
one might use the obtained initial acoustic stress profile to
solve a further optical inverse problem, i.e., the reconstruction
of the optical absorption coefficient profile.

During the past few decades, the former problem has
received much attention within the field of optoacoustics,
due to its immediate relevance for medical applications (see,
e.g., [6,7]) that are aimed at the reconstructions of “internal”
OA material properties from “external” measurements. In this
regard, current progress is mostly due to photoacoustic to-
mography (PAT) and imaging applications supporting different
approaches [8–12]. In particular, note that the inversion input
for PAT backpropagation approaches consists of a multitude
of signals recorded on a surface enclosing the OA source
volume.

In contrast to PAT, we introduce here an alternate OA
approach that allows for the numerical reconstruction of initial
stress profiles via inversion of signals from “single-shot”
measurements. Therefore, we focus on the direct and inverse
problem in the paraxial approximation to the full OA wave
equation [4,13], where we allude to a numerical treatment
of a linear one-dimensional integral equation, capturing the
diffraction transformation of signals for an on-axis setting and
allowing for an efficient solution of the direct and inverse OA
problem. In particular, the effectively one-dimensional (1D)
approach allows an approximate but highly efficient inversion

of observed OA signals to initial stress profiles for the full 3D
OA problem.

After developing and testing the numerical procedure, we
assess how well the particular source reconstruction problem
performs beyond the paraxial approximation by considering
(i) signals obtained for the full OA wave equation in the
acoustic far-field, and (ii) signals obtained using a detector
with finite size. To the best of our knowledge, within the
field of optoacoustics, no such numerical procedure has been
discussed and put under scrutiny yet.

In Sec. II, we briefly summarize the theoretical background
of OA signal generation and calculation. In Sec. III we
elaborate on our numerical approaches, which yield forward
and inverse solvers for the OA problem in the paraxial approx-
imation, followed by a sequence of numerical experiments
described in Sec. IV. We summarize and conclude upon our
findings in Sec. VI.

II. THEORETICAL ASPECTS OF OA
SIGNAL GENERATION

In the following subsections, we briefly review the theoret-
ical foundation of the mechanism of OA signal generation. In
this regard, in Sec. II A, we first detail a forward solution of the
general problem based on the OA Poisson integral. After this,
in Sec. II B, we allude to a particular “on-axis” variant of the
forward problem based on the paraxial approximation, paving
the way for a highly efficient inversion scheme in terms of a
one-dimensional linear integral equation.

A. General OA signal generation—The OA Poisson integral

There are several microscopic mechanisms that may con-
tribute to the generation of OA signals [14], but we restrict
the subsequent theoretical discussion to the most dominant
photothermal heating effect, i.e., thermal expansion. Further,
we consider a pulsed OA working mode with a pulse duration

2470-0045/2017/96(3)/033308(9) 033308-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.033308


J. STRITZEL, O. MELCHERT, M. WOLLWEBER, AND B. ROTH PHYSICAL REVIEW E 96, 033308 (2017)

that is (i) significantly smaller than the thermal relaxation
time of the surrounding material [15,16], realizing what is
referred to as thermal confinement, and (ii) short enough to
be represented by a δ function on the scale of typical acoustic
propagation times [17], denoted by stress confinement.

Then, focusing on the acoustic aftermath of the thermoe-
lastic expansion mechanism, the scalar excess pressure field
p(�r,t) at time t and field point �r can be related to an initial stress
distribution p0(�r) via the inhomogeneous OA wave equation
[2,14] [

∂2
t − c2 �∇2

]
p(�r,t) = ∂tp0(�r) δ(t), (1)

wherein c signifies the speed of sound. Furthermore, the initial
stress field is related to the volumetric energy density W (�r)
[2,18], deposited in the irradiated region via absorption and
photothermal heating by the short laser pulse, according to
p0(�r) = �W (�r). Therein, � refers to the Grüneisen parameter,
an effective parameter describing the fraction of absorbed
heat that is actually converted to mechanical stress. Note that
in Eq. (1), temporal changes of the local photothermal heat
absorption field W (�r)δ(t) trigger stress waves that propagate
through the medium and constitute the OA signal.

An analytic solution that yields the excess pressure p(�r,t)
according to Eq. (1) is accessible through the corresponding
Green’s function in free space, establishing the OA Poisson
integral [2,5,15]

p(�r,t) = 1

4πc
∂t

∫
V

p0(�̂r)

|�r − �̂r|δ(|�r − �̂r| − ct)d �̂r, (2)

wherein V represents the “source volume” beyond which the
initial stress p0(�r) = 0 [19], and δ(·) limiting the integration to
a time-dependent surface centered at �r and radially constraint
by |�r − �̂r| = ct .

B. Diffraction transformation in the paraxial
approximation—The OA Volterra integral

In this article, we consider nonscattering compounds that
consist of plane-parallel layers, stacked along the z direction
of an associated coordinate system within the positive half-
space. The acoustic properties within the bulk are assumed
to be constant, whereas the optical properties are set to be
constant within the layers but may differ from layer to layer,
characterized by a depth-dependent absorption coefficient
μa(�r) ≡ μa(z); see Fig. 1. Then, for an inherently 2D plane-
normal irradiation source profile f (�r⊥), the initial stress field
can be factored according to

p0(�r) = f (�r⊥) g(z), (3)

wherein g(z) summarizes the effect of the absorptive properties
of the layered medium in terms of a 1D axial absorption depth
profile, which follows Beer-Lambert’s law, i.e.,

g(z) = μa(z) exp

{
−

∫ z

0
μa(z′)dz′

}
, (4)

for nonscattering media. Such a factorization of p0(�r) is
well justified. There are many examples in the literature in
which experiments and their complementing simulations are
in accord with the above constraints [18,20,21,23,24].

FIG. 1. Illustration of an OA setup with plane-normal irradiation
source profile f (|�r⊥|) and a source volume consisting of possibly
multiple stacked absorbing layers. The irradiation source exhibits a
1/e-intensity radius of |�r⊥| = a0, and the different layers possess
absorption coefficients μa as indicated in the figure. Here, the
figure shows a single absorbing layer of width �z = 0.1 cm. The
initial stress field ∝p0(�r) causes acoustic pressure waves that can
be monitored as an OA signal at the detection point D, here located
on the beam axis, i.e., at |�r⊥| = 0, with distance zD < 0 from the
absorbing layer.

Further, let f (�r⊥) be an axially symmetric irradiation source
profile with a Gaussian transverse profile, i.e.,

f (�r⊥) = f0 exp
{ − |�r⊥|2/a2

0

}
, (5)

wherein f0 signifies the incident radiant exposure on the beam
axis |�r⊥| = 0, and a0 defines the 1/e threshold of the beam
intensity.

Under the above prerequisites, it can be shown that
the diffraction transformation of laser-excited excess pres-
sure profiles in the paraxial approximation of Eq. (1) at
a detection point �rD along the beam axis, i.e., pD(τ ) ≡
p(�rD,t)|(�r⊥=0,τ=t+zD/c), can properly be described in terms of a
Volterra integral equation of the second kind [4,13],

pD(τ ) = p0(τ ) −
∫ τ

−∞
K(t,τ ) p0(t) dt, (6)

here referred to as the OA Volterra integral. The change
of argument in the description of the initial stress has to
be understood as p0(τ ) = p0(�r)|(�r⊥=0,τ=t+zD/c). The Volterra
operator, i.e., the second term in the equation above, describes
the diffraction transformation experienced by the OA signal.
It governs the propagation of acoustic stress waves in the OA
on-axis setting with a Gaussian irradiation source profile via a
convolution-type Volterra kernelK(t,τ ) = K(τ − t), wherein
[13]

K(τ − t) = ωD exp{−ωD (τ − t)}. (7)

Therein ωD = 2c|zD|/a2
0 denotes a characteristic OA fre-

quency, related to the two “exterior” OA length scales given
by (i) the distance |zD| between detection point and absorbing
layer, and (ii) the transversal characteristic length scale a0

of the irradiation source profile. The dependence of the
diffraction transformation on the frequencies ωD and ωa =
μac, the latter signifying the characteristic frequency of the
OA signal spectrum, is detailed in the literature; see, e.g.,
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Ref. [13]. Note that in response to zD and a0, the frequency
ωD is either decreasing or increasing, defining the acoustic
near-field (NF) and far-field (FF) from the value of the
associated dimensionless diffraction parameter D = ωD/ωa

in the regimes D < 1 and D > 1, respectively.
Note also that the OA Volterra integral Eq. (6) not only

allows us to solve the OA forward problem, i.e., the calculation
of the excess pressure p(zD,τ ) given p0(τ ) and K(τ,t), but it
also makes it possible to solve the inverse OA source problem,
i.e., the reconstruction of p0(τ ) given p(zD,τ ) and K(τ,t), as
will be detailed in the section below.

III. NUMERICAL IMPLEMENTATION OF THE OA
FORWARD AND INVERSE SOLVERS

We will now elaborate on the numerical approaches we used
in order to solve the OA forward and inverse problems; see
Secs. III A and III B, respectively. Thereby, we also emphasize
some important implications that the special case of a Gaussian
transverse irradiation source profile has on our numerical
implementation.

A. Forward solution

Regarding the solution process of the direct OA problem,
i.e., the calculation of pD(τ ) for a given distribution of initial
acoustic stress p0(τ ), we follow two distinct approaches. In
Sec. III A 1, we first introduce a forward solver based on a
numeric solution of the OA Poisson integral Eq. (2), followed
by a more model-tailored solver based on a forward solution of
the OA Volterra integral Eq. (6). For completeness, while the
OA Volterra equation can be used for both the calculation
of pD(τ ) as well as for the reconstruction of p0(τ ), we
will subsequently need the Poisson integral based solver for
benchmarking and generation of synthetic OA signals that
serve as input for the inversion procedure. This is necessary in
order to formally decouple the forward solution and inversion
processes.

1. Forward solver based on the OA Poisson integral

Here, we opt for an implementation of Eq. (2) for lay-
ered media in cylindrical polar coordinates. The respective
implementation is available as SONOS [25] and, although it
is restricted to a solely z-dependent absorption coefficient, it
allows for the efficient calculation of OA signals resulting from
general irradiation source profiles with an axial symmetry at
arbitrary detection points �rD = (ρD,zD). Therein, zD signifies
the axial coordinate of the detection point in the reference
frame in which the nearest absorbing layer has z = 0 (see
Fig. 1), and ρD denotes the deviation of the detection point
from the symmetry axis of the beam profile. Here, since we
are only interested in the calculation of OA signals along the
beam axis (ρD = 0), we can further simplify the numerical
procedure detailed in Ref. [24] to some extent. That is,
since the on-axis view of the irradiation source profile in
the detection-point based reference frame is independent of
the azimuthal angle, fD(ρ) = f0 exp{−ρ2/a2

0}, the respective
integration in a cylindrical polar representation of Eq. (2) can

be carried out explicitly, resulting in the simplified expression

pD(t) = �

2c
∂t

∫
ρ

∫
z

ρ
fD(ρ)gD(z)√

ρ2 + z2
δ(

√
ρ2 + z2 − ct) dρ dz.

(8)

Note that in the above equation, the distance z is to be measured
with respect to the detection point D, with the nearest absorbing
layer located at z = |zD|. Further, the δ distribution might be
interpreted as an indicator function that bins the values of the
integrand according to the propagation time of the respective
stress waves. This already yields a quite efficient numerical
scheme to compute the OA signal pD(t) at the detection point,
since the pending integrations can, in a discretized setting
where ρi = i�ρ , i = 0, . . . ,Nρ , and �ρ = ρmax/Nρ as well as
zi = |zD| + i�z, i = 0, . . . ,Nz, and �z = (zmax − |zD|)/Nz,
be carried out with time complexity of order O(NρNz). During
our numerical experiments, since we are only interested in
the general shape of the OA signal, we set the value of the
constants in Eq. (8) to �/c ≡ 2/f0. Finally, so as to mimic the
finite thickness �w of the transducer foil in an experimental
setup [24], we grant the option to average pD(t) at the detection
point over a time interval �t = �w/c.

2. Forward solver based on the OA Volterra integral

While there exist standard procedures for the numerical
(forward) solution of Volterra integral equations of the second
kind, e.g., based on an approximation of the diffraction term in
Eq. (6) in terms of a trapezoidal rule [26] (or other quadrature
rules [27], for that matter), we can simplify the approach for a
general kernel K(τ,t) by capitalizing on the special form of the
OA stress wave propagator. Since the latter is of convolution
type, Eq. (6) can be solved for pD(τ ) via memoization [28].
As it turns out, in a discretized setting where ti = i�t ,
i = 0, . . . ,N , �t = tmax/N , and thus τi = ti + zD/c, abbre-
viating K(τi − τj ) and p0(τi) as Ki,j and p0,i , respectively,
we haveKi,i = ωD andKi+2,i = Ki+1,i exp{−ωD�t }, yielding
a recurrence relation that approximates the diffraction term
according to

Ii =
∫ τi

τ0

K(τi − t ′)p0(t ′) dt ′

=
⎡
⎣Ki,0p0,0 + 2

i−1∑
j=1

Ki,jp0,j + Ki,ip0,i

⎤
⎦ �t

2

= Ii−1e
−ωD�t + ωD�t

2
[p0,i−1e

−ωD�t + p0,i]. (9)

In the above expression, the trapezoidal approximation be-
comes exact in the limit N → ∞. Consequently, the OA signal
pD,i ≡ pD(τi) can be obtained by simply marching in time,
i.e., pD,i = p0,i − Ii (i = 1, . . . ,N) starting off at pD,0 = p0,0,
I0 = 0, and updating Ii via Eq. (9).

Note that adopting a standard discretized scheme for the
calculation of pD(τ ), set up for a general kernel K(τ,t) [26],
would yield an algorithm that terminates in time O(N2) since
the full integral has to be recomputed at each time step due to
the “wandering” upper bound. This would not mean much of
an improvement over the full wave equation solver discussed
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in Sec. III A 1 as one has N ≈ Nz. However, since the OA
stress wave propagator is actually of convolution type and can
be decomposed into a product of exponential factors at each
time step, we yield here a highly efficient custom forward
solver with time complexity O(N ).

B. Inverse solution

In terms of the recurrence relation approach that yields the
diffraction term in Eq. (6) at time step i via memoization [see
Eq. (9)], the actual inversion step is only slightly more involved
than the forward solution. That is, the inverse solution in terms
of the OA Volterra integral equation can be accomplished
by updating the values of pD,i and Ii in a leap-frog manner
according to

p0,i = α

[
pD,i +

(
Ii−1 + ωD�t

2
p0,i−1

)
e−ωD�t

]
,

Ii = Ii−1e
−ωD�t + ωD�t

2
[p0,i−1e

−ωD�t + p0,i], (10)

starting off at p0,0 = pD,0, I0 = 0, and α = [1 − (ωD�t )/2]−1.
Thus, the numerical expense of the Volterra integral based
inverse solver amounts to only O(N ).

Considering a far-field (FF) setup wherein the distance
between the detection point D and the absorbing layers is large,
i.e., zD → ∞, and the width of the irradiation source profile is
narrow enough to ensure a diffraction parameter D � 1 (also
referred to as the Fraunhofer zone [29], a parameter region
important for various approximate OA imaging methods
[11,31]), the OA signal pD,FF(τ ) is related to the initial OA
stress profile p0(τ ) via [13,18]

pD,FF(τ ) = 1

ωD

d

dτ
p0(τ ). (11)

Thus, in the FF approximation the initial stress profile p0,FF(τ )
might be obtained by numerical quadrature using the above
equation.

For completeness and so as to establish a broad computa-
tional foundation for the effectively 1D approach to inverse
optoacoustics, note that the linear Volterra integral Eq. (6)
might also be solved in terms of a Picard-Lindelöf iteration
scheme [32], wherein a properly guessed approximate solution
is improved successively until certain convergence criteria are
met.

IV. NUMERICAL EXPERIMENTS

The simulation parameters used for the subsequent nu-
merical experiments are geared toward actual “laboratory”
parameters for existing polyvinyl alcohol hydrogel (PVA-H)
-based tissue phantoms used in the combined experimental
and numerical study reported in Ref. [24]. These consist of
melanin-doped absorbing layers in between two layers of
clear PVA-H, quite similar to the setup illustrated in Fig. 1.
Here, we assume that the PVA-H layers are nonabsorbing and
that the melanin-doped layer exhibits an absorption coefficient
of μa = 24 cm−1. Although the irradiation source profile in
such an experimental setting is usually assumed to be of
“top-hat” type [18,21,24] (e.g., Ref. [24] report an overall
1/e radius of approximately 1.2 cm), we assume here an
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p with D = 8.33

(
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]

b

FIG. 2. Forward calculation of OA signals p(τ ) in the framework
of the Volterra integral equation. In this figure, p0 (black solid
lines) indicates the on-axis profile of the initial stress according to
Eq. (4). The figure illustrates the change in shape of the OA signals
as perceived at detection points with increasing detector-to-layer
distance zD = −0.02 cm (magenta dotted line), −0.1 cm (blue
dash-dotted line), and −1 cm (red dashed line), characterized by
the diffraction parameters D = 0.17, 1.0, and, 8.33, respectively.

effective Gaussian beam profile with 1/e radius a0 = 0.1 cm
to suit the effectively 1D theoretical approach described in
Sec. II B. This stimulating light beam meets the absorbing
layer at z = 0 and leaves it at z = �z. The resultant acoustic
signal is computed for a field point located along the beam
axis at position z = zD < 0.

A. Forward and inverse solution within the
OA Volterra framework

In the first series of numerical experiments, we deliberately
stayed within the framework of the paraxial approximation
[33], i.e., we accomplished the forward and inverse calcula-
tions by means of the solvers derived from the OA Volterra
equation. Such an approach might be considered as committing
an inverse crime [34], i.e., performing a (putative) trivial
inversion of synthetic data obtained by first solving the forward
problem in terms of the same exact model. However, here
we use this approach as a proof of principle and consider
an independent forward solver (with no connection to the
Volterra-based solver) in subsequent sections. Although there
is a wealth of literature discussing OA signals and their change
in shape upon advancing from a measurement point located in
the acoustic NF to a point in the FF (see, e.g., Refs. [4,13,29]),
we first aimed at briefly illustrating the respective diffraction
triggered signal changes for our particular single-layer setup
by considering different values of zD.

In this regard, Fig. 2 illustrates the forward calculation of
OA signals in a discretized setting, where zi = zmin + i�z,
i = 1, . . . ,N , and �z = (zmax − zmin)/N , starting from an
absorption profile obtained using Eqs. (3) and (4), i.e.,
following Beer-Lambert’s law for pure absorbers. Here, we
used zmin = 0.0 cm, zmax = 0.1 cm, N = 300, as well as
c = 1, thus τi = zi . The general shape of the OA NF signal,
characterized by the diffraction parameter D = 0.17, is still
strongly reminiscent of the shape of the absorption profile.
However, the initial compression phase has already notice-
ably transformed by diffraction, giving rise to an extended
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FIG. 3. Forward calculation of OA signals in a far-field approx-
imation considering Eq. (11). In this figure, p0 (black solid lines)
indicates the on-axis profile of the initial acoustic stress. The figure
illustrates the difference in the approximate FF formula, resulting in
the signal pFH (red dashed curve), relative to the exact solution p (red
dash-dotted curve) at zD = −1 cm, i.e., D = 8.33.

rarefaction phase above a retarded signal depth of ≈0.08 cm,
extending well beyond the signal depth that characterized the
end of the absorbing layer. In contrast to this, the borderline
NF (D = 1.0) and FF (D = 8.33) signals allow for a proper
OA depth profiling: both feature a pronounced compression
peak that signals an increase of the absorption coefficient
μa at z = 0 cm, followed by an extended rarefaction phase
until a sharp rarefaction dip signals a sudden decrease of the
absorption coefficient at z = 0.1 cm continued by a further
rarefaction phase rapidly decaying in amplitude. Since in the
acoustic FF p(τ ) is related to p0(τ ) via differentiation [see
Eq. (11)], the peak value of the initial compression phase shifts
toward the inclination point of the leading edge of p0(τ ) as D

increases. As is evident from Fig. 3, the simplified calculation
of the OA signal in the FF approximation according to Eq. (11)
is already quite precise at D = 8.33, improving further in
quality as |zD| → ∞ (not shown). However, there is still a
slight difference between the FF signal estimator pFF(τ ) and
the exact signal shape p(τ ) for the genuine distribution of
initial stress.

In a second set of numerical experiments, we aimed at
solving the inverse OA problem, where the aim is to reconstruct
the initial distribution of acoustic stress p0 from the measured
signal p upon knowledge of the OA stress propagator K. As
is evident from Fig. 4, the inverse solver based on the OA
Volterra integral outlined in Sec. III B accomplishes this task
in an efficient fashion: irrespective of whether the inversion
is performed in the acoustic NF or FF (see Fig. 4), the
reconstructed stress profiles p̃0 perfectly match the exact initial
stress profiles p0.

B. Poisson-based forward and Volterra inverse solution

While the above computation and inversion of OA signals
were performed using solvers, both derived within the frame-
work of the OA Volterra integral equation, we subsequently
consider the independent forward solver SONOS [25], detailed
in Sec. III A 1, to yield synthetic input data for the source
reconstruction process. Since the paraxial approximation on
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pFF
p̃0,FF
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]

FIG. 4. Reconstruction of the initial acoustic stress p̃0 from
computed OA signals p upon knowledge of the diffraction propagator
K in the acoustic NF (p̃0,NF) at zD = −0.02 cm, i.e., D = 0.17, and
the acoustic FF (p̃0,FF) at zD = −1.0 cm, i.e., D = 8.33. The OA
source reconstruction is accomplished with the leap-frog algorithm
introduced in Sec. III B. In either case, the reconstructed stress profiles
perfectly match the true initial stress profiles p0.

which the OA Volterra integral equation is based describes the
underlying wave equation best at sufficiently large distances
|zD|, we focus here on the inversion of signals in the acoustic
FF only. This is shown in Fig. 5, where an OA signal,
computed using the wave equation based forward solver, is
inverted by means of the Volterra integral based inverse solver
at zD = −1.0 cm (i.e., at D = 8.33). Note that while the
initial distribution of acoustic stress features sharp edges at
the boundary of the absorbing layer, the inverse estimate of the
initial stress is more gently inclined. This is due to the temporal
average over a time interval �t = 0.005 cm/c, which is used
to mimic the finite extension of a detector in an experimental
setting (see the discussion in Sec. III A 1 and Ref. [24]).

To assess the improvement as well as the limits of the
paraxial approximation upon increasing |zD|, we simulated

0 0.1 0.15
−0.25

0

0.5

1

1.2

cτ [cm]

p(
τ

ar
b
.u

n
it

s

p0
p
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FIG. 5. Solution of the source reconstruction problem using the
Volterra integral equation based inverse solver. The figure illustrates
the reconstruction of the initial acoustic stress profile p̃0 (dashed
red line) from a FF signal p (dash-dotted blue line), calculated at
zD = −1 cm. The true initial stress profile is given by p0 (solid black
line). Reconstruction starting from a genuine OA signal p that was
superimposed by Gaussian white noise with a signal-to-noise ratio
of 5.
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FIG. 6. Root-mean-square error (RMSE) between the true initial
stress profile p0 and the inverse estimate p̃0 for increasingly narrow
intervals �z ≡ [cτ− : cτ+] along the z and τ axes, respectively. Note
that in a preprocessing step, p0 was normalized and p̃0 amplitude-
adjusted, as detailed in the text.

OA signals at various points in the range zD = −0.05, . . . ,

−2.0 cm. As pointed out in Sec. III A 1, the Poisson integral
based forward solver yields an OA signal up to an amplitude
factor. Hence, in order to be able to quantitatively compare
the Volterra-based reconstruction p̃0 to the true underlying
p0, we need to adjust the respective signal amplitudes.
Therefore, in a preprocessing step we first normalized the
initial stress profile so that

∫
p0(τ )dτ ≡ 1, and subsequently

we adjusted the amplitude of p̃0(τ ) so that the residual
sum of squares RRS(�τ ) = ∑M(�τ )

i [p0(τi) − p̃0(τi)]2 is min-
imized within the tuning interval �τ = [τ− : τ+] containing
M(�τ ) sampling points. The resulting root-mean-square
error RMSE(�τ ) = √

RSS(�τ )/M(�τ ) as a function of the
detector-to-layer distance |zD| is shown in Fig. 6. As is
evident from the figure, if the tuning interval encloses the
region around the signal edges where the reconstructed stress
profile is gently inclined (see the curve corresponding to
�z ≡ c�τ = [−0.02 : 0.12] in Fig. 6), the RMSE above
−zD ≈ 0.2 cm saturates at a finite value characterizing the
signal mismatch around the edges. In contrast, if the tuning
interval is chosen to be more narrow and to exclude those edge
mismatches, e.g., in the range �z = [0.02 : 0.08], the RMSE
decreases as ∝ |zD|−3/2 until a limiting point at zD ≈ −1.5 cm
is reached. This limiting point is solely due to the mesh width
used to discretize the z axis. Here, we considered a mesh width
of dz = 2.5 μm. Note that a smaller width dz would in turn
allow to shift the limiting point to larger values of |zD| and to
obtain highly precise reconstructed stress profiles also in the
deep FF.

C. Effect of a finite detector size

Above, the forward calculation and inversion of OA
signals were carried out for pointlike detectors. While this
is acceptable in order to illustrate the principal algorithmic
procedure, real “laboratory” experiments imply measurements
via detectors of finite spatial extent. To assess the effect a
finite-size detector has on both the obtained OA signals and
the reconstructed initial stress profiles, we now consider a
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FIG. 7. Effect of a finite detector size on the OA signals and
the reconstructed initial stress profiles. For the simulations, we
considered detectors with a circular surface and different radii in
the range RD = 0.1−4 mm (for further details, see Sec. IV C).
(a) OA signals obtained by solving the Poisson-like integral Eq. (2)
and integration over the detector surface. (b) Reconstructed initial
stress profiles obtained by inversion via Eq. (10). Note the exact initial
stress profile indicated by the black dashed line. (c) Reconstructed
absorption coefficient profile μrec(z). The exact absorption coefficient
profile used to obtain the curves in (a) is indicated by the black dashed
line. In either subfigure, the blue solid line emphasizes the curves for
a detector radius RD = 0.5 mm.

hypothetical setup involving a detector with a circular shape.
In detail, the source volume was set up to contain an absorbing
layer (in the xy plane) with μa = 2 mm−1 extending from
z = 0 to 1 mm. The irradiation source assumed a Gaussian
beam profile with 1/e radius a0 = 0.5 mm and plane-normal
incidence. The circular detector with radius R0 and a center
along the beam axis was located at zD = −2.0 cm in backward
mode. The results of our numerical simulations for several
detector radii in the range R0 = 0.1−4 mm are summarized in
Fig. 7. Therein, the particular value RD = 0.5 mm, specifying
the diameter of the transducer used in Ref. [24], is highlighted
using a solid blue line. Technically, we realized the finite
detector size by numerical integration of the excess pressure
signal obtained by solving the Poisson-like integral Eq. (2)
over the area of the detector using NR = 20 radial samples. As
is evident from Fig. 7(a), considering the above parameters a0

and zD, the local averaging enforced by a finite radius RD has
a discernible impact on the signal shape. While the curves for
RD � 1 mm still resemble the signal expected for a pointlike
detector, the signal features for RD > 1 mm are distinctly
warped. A reconstruction of the initial stress profiles using
the inversion formula Eq. (10) yields the curves prec shown
in Fig. 7(b). Therein, the reconstructed initial stress profiles
agree with the exact initial stress profile p0 in the approximate
range z ∈ [RD,1 mm]. In particular, for a realistic detector with
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RD = 0.5 mm, the reconstructed profile still agrees quite well
with the exact initial profile.

D. Reconstruction of the optical absorption coefficient profile

As pointed out earlier, one particular use of the inversion
procedure is that it allows us to reconstruct an approximate
initial stress profile prec ≈ p0 that might in turn be used to
estimate the optical absorption coefficient depth profile μrec(z)
from the measured data p. That is, once prec is obtained, μrec(z)
can be calculated via [22,23]

μrec(z) = prec(z)[
f0 − ∫ z

0 prec(z′)dz′] ; (12)

see Fig. 7(c). Again, note that for RD < 1 mm, the agreement
of μrec(z) and μa(z) is still impressive. Further, assuming
μa = const and performing simple fits to the form f (z) ∝
exp(−μaz) in the range z ∈ [RD,1 mm] improves the re-
sults to μa = 2.055(3) mm−1 at RD = 0.5 mm and μa =
2.02(1) mm−1 at RD = 4 mm.

V. DISCUSSION

In addition to being an interesting inverse problem on its
own, the optoacoustic source reconstruction problem allows
us to tackle a further, solely optical inversion problem, namely
the reconstruction of the optical absorption coefficient profile
from the observed data. This is most useful when OA signals
are recorded in the acoustic far-field and when the underlying
optical absorption problem features unscattered absorption
only. Note that such a scenario is considered in many ex-
perimental optoacoustic studies; see, e.g., Refs. [18,21,23,24].
Then, a protocol to retrieve the optical absorption coefficient
profile from the measured OA signal reads as follows: given
an OA signal recorded in the acoustic far-field, (i) solve the
source reconstruction problem using the method proposed in
Sec. III B, and (ii) recover the optical absorption profile from
the initial acoustic stress, e.g., as illustrated in Sec. IV D.
Note that the source reconstruction step is quite fast. The
inversion of p to prec only needs about 0.3 s for the problem
setup considered in Sec. IV C [profiled on a 2011 MacBook
Air featuring a 1.7 GHz Intel Core i5 processor and 4 GB
DDR3 running OS X Yosemite (Version: 10.10.3)]. Also, if
the OA signals are recorded in the (diffraction-free) acoustic
near-field, the source-reconstruction step is unnecessary and
the optical parameters might be recovered directly [23].

Note that the description of the diffraction transformation
of optoacoustic signals in terms of a linear integral equation
in Sec. II B is not unique. A quite similar one-dimensional
theoretical approach, built upon the assumption of plane
acoustic wave propagation, yields the convolution integral
[29,30]

pr (τ ) = ωa

∫ ∞

−∞
K(τ − τ ′) p0(τ ′) dτ ′, (13)

by means of which the diffraction warped excess pressure
profile pr (τ ) for a rigid (i.e., motionless) boundary can
be related to the unperturbed stress profile p0(τ ). In the
above equation, ωa signifies a characteristic frequency of
the OA signal spectrum. To facilitate a comparison with the
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FIG. 8. Comparison of two inversion procedures derived from
two different linear integral equations describing the diffraction
transformation of OA signals. The (fast) numerical procedure based
on the inverse solution of a Volterra integral equation of the second
kind is indicated by the blue dashed line (labeled V-inversion),
and the procedure based on the solution of an inhomogeneous
Fredholm equation of the first kind (here accomplished using
Wiener deconvolution) is indicated by the red dotted line (labeled
F-inversion); for further details see Sec. V.

proposed method, the excess pressure profile p(τ ) for a free
(i.e., pressure-release) boundary can be obtained from pr (τ )
by differentiation, p(τ ) = ω−1

a
d
dτ

pr (τ ). Therein, the integral
kernel K is equivalent to Eq. (7), and p can be obtained
from p0 even without knowing ωa. The reconstruction of
the initial stress profile from the above equation requires
the inverse solution of an inhomogeneous Fredholm integral
equation of the first kind, and it can be accomplished by
deconvolution of the rigid-boundary excess pressure profile
with the known integral kernel. To facilitate a comparison of
both approaches, we consider the same simulation setup as
in Sec. IV C (only for a pointlike detector) and perform the
inversion using both methods. As is evident from Fig. 8, both
reconstructed initial stress profiles are in good agreement with
the exact profile. In either case, the integrated squared error∫

[p0(τ ) − prec(τ )]2dτ ≈ 0.0003. Technically, we realized the
inverse solution of Eq. (13) via Wiener deconvolution using a
signal-to-noise ratio of infinity (since the synthetic data used
for comparison were free of noise). Since the deconvolution
is performed in the Fourier domain, back and forth transfor-
mation of the signal requires O[N log(N )] operations (as in
Sec. III A 2, N refers to the number of samples comprising
the signal). Hence, a conventional deconvolution approach
requires a larger number of elementary operations, although it
yields results with similar accuracy.

Regarding the applicability of the proposed algorithmic
procedure, note that for the inversion of data obtained from
the forward solution of the full 3D wave equation, the use
of the paraxial approximation implies a set of restrictions
that limit the inherent complexity of feasible problem setups.
Since the set of feasible problem setups is only a subset
of all possible problem setups, a pending question reads
as follows: Under which circumstances can the proposed
method be used to reconstruct the optical properties of realistic
absorbing structures? To summarize, feasible problem setups
need to comply with the following restrictions: (R1) the
irradiation source profile is assumed to exhibit a Gaussian
transverse profile, (R2) the optical properties of the sample
are assumed to be invariant with respect to translation in the
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plane perpendicular to the beam axis, and (R3) the field point
at which the pressure transient is recorded is assumed to be
located in the acoustic far-field. One might as well interpret
these restrictions as a set of requirements. If one attempts the
inversion of data (obtained from a realistic problem setup) with
the proposed method, it needs to be clarified at first whether
the problem at hand satisfies the above three requirements. In
this regard, note that the proposed method implies adjustable
parameters. That is, independent of the sample, the radius of
the beam profile [related to (R1)] and the distance and spatial
extension of the detector [related to (R3)] are variable within
limits set by the optoacoustic measurement device.

Consider, e.g., the case of depth profiling for melanoma
in a clinical application. If the sample is illuminated using
a laser beam with a given diameter, the deposited (optical)
energy might be viewed as taking an effective average value
over the cross section of the beam. The smaller the beam
diameter, the more local the beam-induced averaging of the
samples optical properties. Now, if the detector is placed
in the acoustic far-field (using buffer materials and proper
impedance matching layers) and possesses a sufficient spatial
and temporal resolution (which both affect the shape of
the detected acoustic transient), the obtained data might
be consistent with the restrictions imposed by the paraxial
approximation. Further numerical studies that elaborate on the
technicalities of the above issue are currently underway.

VI. SUMMARY AND CONCLUSIONS

In the presented article, we discussed OA signal generation
in the paraxial approximation to the full 3D wave equation.
This approach yields an effectively 1D linear integral equation
that accounts for the diffraction transformation of propagating
stress waves. We detailed numerical schemes to simulate OA
signals in the forward direction, where we considered a 3D
Poisson integral based solver as well as a highly efficient
numerical scheme for the simplified 1D integral equation,
derived on the basis of a standard quadrature rule and relying
on the particular form of the OA integral operator. Therein,
the algorithm for the full 3D wave equation terminates in time

O(NρNz), where Nρ and Nz refer to the number of mesh
points in the ρ and z directions, respectively. The algorithm
facilitating a forward solution in the paraxial approximation
terminates in time O(N ), wherein N ≈ Nz (see the discussion
in Sec. III A). Thus, in a parameter range where the paraxial
approximation is a valid approximation to the full 3D wave
equation, the latter algorithm is much faster and a viable
alternative to solving the full 3D Poisson integral. Further,
regarding the inverse problem, we considered an efficient
solver based on the 1D Volterra integral equation, allowing us
to reconstruct initial stress profiles from “measured” signals.
Therein, the inverse solver exhibits the same time complexity
as the corresponding forward solver.

By means of numerical experiments, geared toward actual
laboratory experiments for existing polyvinyl alcohol hydrogel
(PVA-H) -based tissue phantoms reported in Ref. [24], we
characterized OA signals in the acoustic near- and far-field.
As supported by our simulations, considering the direct OA
problem in the far-field, the 1D approach approximates the
full 3D approach best. Regarding the inverse OA problem, we
assessed the quantitative agreement between the reconstructed
and true initial stress profiles as one proceeds toward the far-
field.

Finally, from a point of view of computational theoretical
physics, we explored an efficient numerical approach to the
solution of the OA source reconstruction problem in terms
of an effectively 1D linear integral equation. Although there
exist several general numerical schemes for the forward and
inverse solution of the underlying formulas, this particular
inverse problem derived in the paraxial approximation of the
OA wave equation has not yet received much attention in the
literature [35].
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