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Christophe Coreixas,1,* Gauthier Wissocq,1,† Guillaume Puigt,1,‡ Jean-François Boussuge,1,§ and Pierre Sagaut2,‖
1CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France

2Aix-Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
(Received 21 April 2017; published 11 September 2017)

A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite
tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved
through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced
computational cost of this procedure with respect to the standard one, the recursive step allows to considerably
enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order
nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where
the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106,
and where a thorough analysis of the case at Re = 3 × 104 is conducted. In the latter, results obtained using both
regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order
(D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed
approach. Further comparisons on thermal and fully compressible flows, using the general extension of this
procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They
confirm the stability increase induced by the recursive approach as compared with the standard one.
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I. INTRODUCTION

Over the past two decades, the lattice Boltzmann method
(LBM) has emerged as an interesting candidate for compu-
tational fluid dynamics (CFD) and beyond. Despite a first
restriction to isothermal and weakly compressible flows, its
range of applicability in both physics and engineering has
grown in such a way that it is now possible to simulate very
complex phenomena including turbulence [1,2], combustion
[3–5], multiphase interactions [6–9], hemodynamics [10],
magnetohydrodynamics [11–14], relativistic flows [15,16],
and even quantum systems [17,18].

From the numerical point of view, the LBM requires a
strong coupling between discretizations of the velocity and
the physical spaces. This is usually done using a Cartesian
grid coupled with an octree-based refinement technique [19].
Combining these numerical tools with the particulate nature
and the local dynamics of the LBM, the simulation of com-
plex phenomena around realistic geometries is greatly eased
[20–22]. Moreover, the method is simple to implement,
induces a very low computational cost per degree of freedom,
and presents a compact stencil, all of which contribute to its
intrinsic advantage for parallel computations [23]. All these
key points make the LBM of great interest for both academic
and industry groups.

The LBM derives from the Boltzmann equation (BE), the
milestone of the kinetic theory of gases [24]. The BE describes
the balance between the transport and the collision of packets
of particles through the evolution of the velocity distribution
function (VDF). The latter, usually written f (x,ξ ,t), can be
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seen as the probability density of finding fictive particles at a
given point (x,t) and with a given speed ξ . Hydrodynamic
variables (such as density ρ, momentum ρu, and total
energy ρE) are then recovered through the computation of
the average, over the velocity space, of their mesoscopic
counterparts. The lattice Boltzmann equation (LBE) results
from a velocity discretization of the BE, meaning that the
degrees of freedom allowed to the transport phenomenon are
restricted to a finite set of velocities (directions and norms are
fixed).

In order to recover the proper macroscopic set of equations
from the LBE, the lattice of discrete speeds ξ i and their
associated equilibrium states f

eq

i must be chosen accordingly.
To do so, three main approaches are proposed in the liter-
ature. The first suggestion is based on the expansion of the
equilibrium state f

eq

i into a polynomial, which is performed
through a Taylor expansion, assuming that the Mach number
is small. The polynomial coefficients are defined a posteriori
by requiring that the continuum limit of the LBM recovers
the Navier-Stokes-Fourier set of equations using a predefined
lattice of discrete velocities [25]. This way of building a LBM
does not allow to easily link lattices with their associated
equilibrium states in a systematic way, especially when the
complexity of the macroscopic behavior of interest increases.
The second approach is called the entropic LBM (ELBM)
and relies on ensuring the validity of the H-theorem using
a discretized velocity space. This is done through a careful
evaluation of both the equilibrium state f

eq

i and the relaxation
time τ [26–28], leading to an unconditionally stable LBM.
Despite a broad range of applicability, the ELBM needs to
solve a minimization problem for any grid point and at any
time step, hence highly increasing the computational cost per
degree of freedom. Such a drawback was recently overcome
through the use of an approximated analytic solution of
the minimization problem [29], but there seems to be some
theoretical work remaining to properly define the validity
range of this approximation [30].
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Finally, the last idea originates from Grad’s work [31]
and was reintroduced into the LBM framework more recently
[32–34]. It relies on the projection of the BE onto the Hilbert
space spanned by Hermite polynomials. Such a procedure
allows to build a systematic link between the kinetic theory,
fluid mechanics, and beyond. Indeed, once the macroscopic be-
havior of interest is chosen, the associated Hermite polynomial
basis is then fixed. Typically, a second-order approximation
is mandatory for weakly compressible and isothermal flows,
a third-order one for isothermal flows, a fourth-order one for
thermal and fully compressible flows (Navier-Stokes-Fourier),
and so on. The final step is to build the associated lattice of
speeds by solving a linear system of equations. This system
is constrained in order to keep the orthogonality properties of
the previously chosen Hermite polynomial basis. This way of
proceeding allows to straightforwardly build high-order LBMs
[34].

This work is based on the Hermite basis framework and
focuses on the regularization of the precollision VDFs, which
consists in filtering out nonhydrodynamic contributions of
the streaming step to stabilize the LBM. Originally, this
projection-based regularization (PR) procedure was designed
for the simulation of particulate suspension [35]. In fact, the
stabilization property of the PR was only recently understood.
Latt and Chopard [36,37] emphasized its importance for the
simulation of flows at high Reynolds number, while Chen and
co-workers [38] focused on flows at high Knudsen number. It is
now one of the standard stabilization procedures available for
both academic studies [39–41] and engineering computations
[20–22]. Even more recently, a recursive regularized (RR)
collision operator was introduced by Malaspinas [42] for
isothermal LBMs only. The main improvement provided by
the RR approach concerned its spectral properties and thus
its enhanced stability range, regarding both Reynolds and
Mach numbers, for a relatively low additional computational
cost. Basically, the RR and PR processes differ in the way
off-equilibrium Hermite coefficients (denoted a1 hereafter) are
computed.

This paper studies the impact of nonequilibrium Hermite
coefficients on the stability range of standard and high-order
LBMs. Furthermore, a thorough mathematical derivation of
the RR procedure extension to thermal and fully compressible
flows is provided and numerically validated. The rest of
the paper is organized as follows. In Sec. II, the recovery of the
Navier-Stokes set of equations through the projection of the
BE onto the Hermite polynomial basis and the concept behind
both regularization steps are reminded. Section III is dedicated
to numerics, and starts with the space and time discretization
of the LBE (Sec. III A). In Sec. III B, the discrepancies
between the stability range of the PR and the RR versions
of the regularized collision operator are highlighted for the
simulation of isothermal flows using standard and high-order
lattices. In Sec. III C, the extension of the RR step to thermal
and fully compressible high-order LBMs is presented and
illustrated on two configurations of the Sod shock tube. For the
sake of completeness, appendixes on the mathematical proof
of the Hermite coefficients recursive formulas (Appendixes A
and B), implementation details (Appendix C), and Hermite
tensor basis for standard and high-order lattice structures
(Appendix D) are finally provided.

II. THEORETICAL BACKGROUND

In this paper, all quantities are defined in the D-dimensional
Cartesian space RD and, by definition, for any vector v, v2 =
v · v is the square of the norm of v. Properties concerning
tensor products and Hermite polynomials in RD are based on
the works of Grad and Shan [33,43].

A. Boltzmann equation

In kinetic theory, gases are modeled by the VDF f (x,ξ ,t)
describing the probability density of finding a fictive particle
at position x, time t , and with a mesoscopic velocity ξ . When
no external accelerations are considered, this VDF evolves
through time and space in accordance to the force-free form
of the BE:

∂tf + ξ · ∇f = �f , (1)

where the center dot denotes the scalar product over RD , ∇
is the gradient operator associated to the physical space, and
�f is the collision operator. The macroscopic quantities of
interest (density ρ, momentum ρu, and total energy ρE) are
recovered averaging their mesoscopic counterparts over the
velocity space:

ρ =
∫

f dξ ,

ρu =
∫

f ξ dξ , (2)

2ρE =
∫

f ξ 2 dξ ,

with integrals computed over RD . Hereafter, integration
bounds will be omitted for the sake of clarity.

Regarding the collision model �f , it must satisfy the
conservation of mass, momentum, and total energy:∫

�f �(ξ ) dξ = 0, (3)

with �(ξ ) = (1,ξ ,ξ 2/2). This collision process induces a
relaxation of the VDF to the local thermodynamic equilibrium

f (eq) = ρ

(2πrT )D/2
exp

(
− c2

2rT

)
, (4)

where c = ξ − u, r is the gas constant, and T the thermo-
dynamic temperature. Throughout this paper, only linearized
collision operators, such as the single-relaxation-time collision
term of Bhatnagar-Gross-Krook (BGK) [44],

�BGK
f = − 1

τ
(f − f (eq)), (5)

will be considered.

B. Projection onto the Hermite polynomial basis

In the present context, solutions of Eq. (1) are sought in the
form of Hermite polynomials [32],

f (x,ξ ,t) = ω(ξ )
∞∑

n=0

1

n!(rT0)n
a(n)(x,t) : H(n)(ξ ), (6)
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where : stands for the full contraction of indexes, T0 is a
reference temperature, a(n) is the (tensor of) coefficient(s)
related to the Hermite tensor H(n), both being n-rank tensors,
and ω(ξ ) is the weight function. They are defined as follows:

a(n)(x,t) =
∫

f (x,ξ ,t)H(n)(ξ ) dξ , (7)

where

H(n) = (−rT0)n

ω(ξ )
∇n

ξω(ξ ) (8)

with

ω(ξ ) = 1

(2πrT0)D/2
exp

(
− ξ 2

2rT0

)
, (9)

∇n
ξ being the nth derivative with respect to the velocity space.

Equation (6) can be seen as the decomposition of f onto
an orthogonal polynomial basis since Hermite tensors are
orthogonal with respect to the following scalar product:

〈g|h〉 ≡
∫

ω(ξ )g(ξ )h(ξ )dξ . (10)

Thus, a(n) can simply be obtained as a projection of f onto this
orthogonal basis a(n) = 〈H(n)|f/ω〉. For the sake of clarity, the
list of function variables will be omitted throughout the rest
of the paper, except in Sec III A where the space and time
discretization of the LBE is presented.

By construction, a(n) can be linked to the familiar hydrody-
namic moments [33,45]:

a(0) = ρ,

a(1) = ρu,

a(2) = � + ρ(u2 − δ), (11)

a(3) = Q + ua(2) + (1 − D)ρu3,

a(4) = R − Pδ + δ2,

where δ is the identity matrix, δ2 is the fourth-order identity
tensor, and

� =
∫

f c2 dξ , Q =
∫

f c3 dξ , R =
∫

f c4 dξ . (12)

In order to create a systematic link between the BE and
its macroscopic counterpart, Eq. (1) is projected onto the
Hermite tensor basis using the projection operator 〈. . . | . . .〉
defined in Eq. (10):

∂t (a(n)) + ∇ · (a(n+1)) + rT0∇a(n−1) = �BGK. (13)

Here, the BGK approximation (5) is adopted for the
computation of the collision term, i.e., �BGK = −(a(n) −
a(n)

eq )/τ , where a(n)
eq = 〈H(n)|f (eq)/ω〉. The computation of

these coefficients is straightforward since the expression of
f (eq) is known. Up to the fourth order, one obtains

a(0)
eq = ρ,

a(1)
eq = ρu,

a(2)
eq = ρ[u2 + rT0(θ − 1)δ], (14)

a(3)
eq = ρ[u3 + rT0(θ − 1)uδ],

a(4)
eq = ρ[u4 + rT0(θ − 1)u2δ + (rT0)2(θ − 1)2δ2],

with θ = T/T0, T0 being a reference temperature.

C. Chapman-Enskog expansion

After expressing the BE in the Hermite tensor basis and
defining the related coefficients a(n), the macroscopic behavior
linked to Eq. (13) is recovered by applying a separation of
scales through the Chapman-Enskog expansion [46]. For this
purpose, the time derivative is expanded in powers of the
Knudsen number ε as in Ref. [46]:

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1. (15)

First, let us assume that f and a(n) are at equilibrium.
Injecting Eq. (15) into (13), this separation of scales leads
to the following:

ε0:

a(n)
0 = a(n)

eq , (16)

ε1:

∂t1 a(n)
0 + ∇1 · (a(n+1)

0

)+ rT0∇1a(n−1)
0 = 0, (17)

ε2:

∂t2 a(n)
0 = 0. (18)

Adding all contributions, the macroscopic equations corre-
sponding to the conservation of mass, momentum, and total
energy are finally recovered, using Eq. (14) for n = 0, 1, and
2, respectively:

∂t (ρ) + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu2 + pδ) = 0, (19)

∂t (ρE) + ∇ · [(ρE + p)u] = 0,

where p = ρrT is the thermodynamic pressure. Hence,
assuming f and a(n) are at equilibrium leads to Euler’s set
of equations.

In a second step, the contributions of order O(ε) are taken
into account in the definition of f and a(n):

f = f (0) + f (1), f (0) � f (1) ∼ O(ε),

a(n) = a(n)
0 + a(n)

1 , a(n)
0 � a(n)

1 ∼ O(ε), (20)

assuming the continuum limit ε 	 1. Applying the same
multiscale analysis leads to the following

ε1:

∂t1 a(n)
0 + ∇1 · (a(n+1)

0

)+ rT0∇1a(n−1)
0 = − a(n)

1

τ
, (21)

ε2:

∂t2 a(n)
0 + ∂t1 a(n)

1 +] ∇1 · (a(n+1)
1

)+ rT0∇1a(n−1)
1 = 0. (22)

Therefore, the set of macroscopic equations (19) becomes

∂t (ρ) + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu2 + pδ) = −∇ · a(2)
1 , (23)

∂t (ρE) + ∇ · [(ρE + p)u] = − 1
2 Tr
(∇ · a(3)

1

)
since the collision model must satisfy Eq. (3) or, equivalently,

a(0)
1 = a(1)

1 = Tr
(
a(2)

1

) = 0. (24)
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Now, only a
(2)
1,αβ and a

(3)
1,αββ remain to be computed. They can

either be computed thanks to Eq. (13) or noticing that

�(1) =
∫

f (1)c2dξ =
∫

f (1)ξ 2dξ + 0 ≡ a(2)
1 ,

Q(1) =
∫

f (1)c3dξ =
∫

f (1)ξ 3dξ + 0 ≡ a(3)
1 , (25)

where �(1) and q(1) = Tr(Q(1))/2 are the standard second- and
third-order off-equilibrium moments at the Navier-Stokes level
[45],

�(1) = −τp

[
S −

(
2

D
∇ · u

)
δ

]
,

q(1) = −τpcp∇T + u · �(1), (26)

with S = ∇u + (∇u)T , with the superscript T standing for
the transpose operator. cp = (1 + D/2)r is the heat capacity
at constant pressure.

Finally, injecting Eq. (26) in Eq. (23) allows to link
the Hermite formulation of the BE (13) to the following
macroscopic set of equations, namely, Navier-Stokes-Fourier
equations:

∂t (ρ) + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu2) = ∇ · (σ ), (27)

∂t (ρE) + ∇ · [ρEu] = ∇ · (λ′∇T ) + ∇ · (σ · u),

where σ = � − pδ is the stress tensor, � =
μ[S − ( 2

D
∇ · u)δ] is the traceless viscous stress tensor,

μ = τp and λ′ = τpcp being the dynamic viscosity and the
thermal conductivity coefficients.

Before proceeding any further, several remarks can be
pointed out. First, only coefficients a(n)

0 (a(n)
1 ) up to the fourth

order (third order) are needed to recover the Navier-Stokes
set of equations. And, more generally, the Chapman-Enskog
expansion of the BE at order k needs coefficients of the Hermite
expansion to include terms at order n + k. This is mandatory
to properly recover the hydrodynamic behavior of the BE [33].
Second, a strong assumption is made by using the BGK col-
lision operator, which allows only one parameter to represent
the physical behavior of the fluid: the single relaxation time τ .
This choice induces a coupling between the momentum and
the energy relaxation processes since the Prandtl number is
fixed at Pr = μcp/λ′ = 1. To overcome this deficiency, a more
sophisticated collision operator may be employed, such as the
general multirelaxation time (MRT) collision term expressed
in the Hermite tensor basis [47]. The latter reads as

�MRT = −
∞∑

n=0

1

τn

1

n!(rT0)n
a(n) : H(n). (28)

Here, choosing τ2 = μ/p and τ3 = λ/pcp allows to tune
the Prandtl number which now equals Pr = τ2/τ3. A double
distribution function LBM could also be used to overcome
this difficulty (see, for example, [48]). Third, as depicted
in Eq. (27), the computed viscous stress tensor is traceless,
which means that only fluids without bulk viscosity can
be simulated. This is another consequence of the BGK
approximation, and again this can be avoided by using a more
sophisticated collision operator belonging to the Hermite

polynomial expansion framework [49]. Last, the specific heat
ratio has a fixed value γ = (D + 2)/D. To overcome this
issue, one can employ a second distribution function to take
into account the energy evolution linked to internal degrees of
freedom (rotational and vibrational) of molecules [28,50,51].

In the rest of the paper, only single-VDF-based LBMs
coupled with the single-relaxation-time approximation are
considered.

D. Truncation of the VDF

As briefly discussed in Sec. II C, a finite expansion of the
VDF in Hermite tensors, up to the fourth order, is sufficient to
recover the macroscopic behavior of Navier-Stokes’ equations
from the BE. Here, particular attention is paid to error terms
arising, at the macroscopic level, from a wrong truncation of
the VDF. From now on, let f N denote the truncation of f , to
the order N , of the Hermite polynomial development

f N = ω

N∑
n=0

1

n!(rT0)n
a(n) : H(n). (29)

The key element is to ensure that this truncation still allows the
proper conservation of the macroscopic moment of the VDF.
Introducing a(M) as the Mth-order moment of f ,

a(M) =
∫

H(M)f dξ , (30)

orthogonality properties of the Hermite polynomials lead to
[33] ∫

H(M)f dξ =
∫

H(M)f N dξ , if N � M. (31)

This means that f and f N share the same moments up to
the order M , if the truncation order N is at least equal to the
highest moment M that we need to conserve.

As mentioned in Sec. II C, moments of f (0) up to the
fourth order are sufficient to recover the proper macroscopic
behavior of the BE. Consequently, truncation errors appear at
the macroscopic level when the equilibrium VDF is truncated
to an order lower than N = 4. These error terms can be
evaluated quite easily using Eq. (13). For N = 3, the only
term that cannot be used for the computation of a(3)

1 is ∇ · a(4)
0 .

Hence, the error term introduced by a third-order truncation
modifies the heat flux q = Tr(Q)/2:

q ′ = q(1) − τ

2
Tr
[∇ · a(4)

0

]
= q(1) − τ

2
∇ · {ρu2u2 + ρ(θ − 1)[(4 + D)u2 + u2δ]

+ ρ(θ − 1)2(2 + D)δ}
= q + O(Ma4,Ma2θ,θ2). (32)

For N = 2, too many error terms are introduced in the
energy equation and the concept of temperature should not
be used. This is why this truncation is restricted to isothermal
or, more precisely, athermal LBMs (θ = 1). Furthermore, the
computation of a(2)

1 is also affected by the truncation. As for
the heat flux when N = 3, the deviation also comes from
the divergence term ∇ · (a(3)

0 ) which cannot be used anymore
for the computation of a(2)

1 . The viscous stress tensor is thus
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modified:
�′ = �(1) − τ∇ · (a(3)

0

)
= �(1) − τ∇ · (ρu3)

≈ �(1) + O(Ma3). (33)

The famous O(Ma3) error term is then recovered from the
above procedure, explaining why second-order truncation of
the VDF is restricted to the simulation of weakly compressible
flows [25].

In the most general case, the truncation criterium (31)
becomes [33]

∀ k ∈ N,

∫
H(M)f (k) dξ =

∫
H(M)f (k),N dξ (34)

if N + k � M . Here, we recover the fact that the Navier-Stokes
macroscopic behavior is achieved if N = 4 at equilibrium
(k = 0), while N = 3 is sufficient for the nonequilibrium VDF
f (1),N . From the macroscopic point of view, there is no reason
why f (0),N and f (1),N should be truncated at the same order
N . But, it will be shown hereafter (Sec. II E) that keeping the
same order N for both f (0),N and f (1),N is possible thanks to
a recursive computation of these coefficients.

E. Regularized collision operator

Both truncations f (0),N and f (1),N will now be considered.
The reason lies in the definition of the regularization step
[36–38]. This collision operator is based on the regularization
of the nonequilibrium part of the precollision distribution
functions, and aims at filtering out nonhydrodynamic sources.
To do so, f N is reconstructed before the collision step
discarding O(εk) contributions (k � 2):

f reg,N ≡ f (0),N + f (1),N , (35)

with

f (1),N = ω

N∑
n=2

1

n!(rT0)n
a(n)

1 : H(n), (36)

and where the sum begins at n = 2 due to mass and momentum
conservation (24). Post-collision VDFs are then defined as

follows:

f coll,N = f (0),N +
(

1 − 1

τ

)
f (1),N

= ω

N∑
n=0

1

n!(rT0)n

[
a(n)

0 +
(

1− 1

τ

)
a(n)

1

]
: H(n). (37)

Here, coefficients a(n)
1 are the only missing information

required to reconstruct f (1),N . Originally in Refs. [36,37],
this stabilization technique was used for the simulation of
isothermal and weakly compressible flows for which only
second-order terms were kept. Off-equilibrium coefficients
a(2)

1 were then computed projecting the VDFs onto the second-
order Hermite polynomials

a(2)
1 ≈

∫
H(2)(f N − f (0),N )dξ , (38)

assuming that f N − f (0),N ≈ f (1),N . But doing so, only
contributions belonging to the Hilbert space that were not
taken into account are filtered, while some nonhydrodynamic

contributions are still hidden in a(2)
1 . In the rest of the

paper, this method will be referred as to the projection-based
regularization (PR) process.

Later, Malaspinas [42] proposed a complete regularization
procedure based on recursive properties of the off-equilibrium
coefficients, allowing an enhancement of accuracy and stabil-
ity compared to BGK and standard MRT models. Regarding
the recursive property of this stabilization procedure, it
comes from the fact that nonequilibrium coefficients a(n)

1
are computed using a recursive formula flowing from the
Chapman-Enskog expansion. This step provides a proper way
to filter out nonhydrodynamic sources.

It must be understood that this recursive regularization (RR)
approach was introduced in the context of isothermal and
weakly compressible flows for standard LBMs, while in this
paper the recursive formula is extended to the thermal and
fully compressible case (see Appendix A for its derivation)
and applied to high-order LBMs. The latter reads as

∀ n � 4, a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

+ rT0(θ − 1)
n−1∑
l=1

δαlαn
a

(n−2)
1,βl

+ 1

ρ

n−1∑
l=1

a
(n−2)
0,βl

a
(2)
1,αlαn

+ 1

ρ

n−1∑
l=1

n−1∑
m>l

a
(n−3)
0,βlm

(
a

(3)
1,αlαmαn

− uαl
a

(2)
1,αmαn

− uαm
a

(2)
1,αlαn

− uαn
a

(2)
1,αlαm

)
, (39)

where a(2)
1 and a(3)

1 can either be computed thanks to the
projection of f (1) onto the Hermite polynomial basis or using
finite differences. In the isothermal case (θ = 1), Malaspinas’
recursive relation [42] is recovered for n � 3:

a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

+ 1

ρ

n−1∑
l=1

a
(n−2)
0,βl

a
(2)
1,αlαn

. (40)

Again, a(2)
1 coefficients can be computed by projection or using

finite differences.

Furthermore, a correct evaluation of a(2)
1 requires a proper

evaluation of a(3)
0 since

a(2)
1 = −τ

[
∂t a

(2)
0 + ∇ · a(3)

0

]
. (41)

Thus, in the isothermal case, the equilibrium VDF should
theoretically be developed up to the third order. Similarly,
in the thermal case, correct calculations of a(2)

1 and a(3)
1 require

a development of f (0) up to the fourth order, which is no more
binding than the condition to recover the thermal and fully
compressible Navier-Stokes-Fourier equations.
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F. Discretization of the velocity space

In order to numerically solve the BE, a discretization of
the velocity space is necessary. It consists in keeping only
a discrete set of V velocities ξ i , i ∈ [[1,V ]], ensuring the
preservation of fi’s moments, from the continuum velocity
space to the discrete one. To do so, a Gauss-Hermite quadrature
is applied [33,52]:

∫
H(M)f (0),Ndξ =

V∑
i=1

H(M)
i f

(0),N
i if M + N � Q. (42)

Here, H(M)
i = H(M)(ξ i), f

(0),N
i = ωi

ω(ξ i )
f (0),N (ξ i), ωi’s are the

Gaussian weights of the quadrature, and Q is the order of
accuracy of the quadrature. The resolution of this quadrature
problem aims at finding lattices, i.e., discrete weights ωi’s
associated with discrete velocities ξi ’s, allowing the conser-
vation of Hermite polynomials orthogonality properties up to
a requested order M . Then, the Mth-order moment can be
exactly recovered if the equilibrium function is truncated to
the order N � M , and if the quadrature order is greater than
2N − 1. Some common two- and three-dimensional lattices,
satisfying Eq. (42) for several N , are detailed in Appendix D.

In the rest of the paper, the regularization procedure will
be assessed on three lattices: the common D2Q9 lattice
and the high-order D2V17 and D2V37 lattices. The D2V37
lattice, for which Q = 9, allows the conservation of moments
up to M = 4. Therefore, this lattice is able to reproduce
the macroscopic behavior of the fully compressible set of
Navier-Stokes-Fourier equations. On the contrary, the D2V17
lattice flows from a seventh-order quadrature, which means
that the equilibrium VDF can be truncated up to the third
order only, leading to truncation error terms in the energy
equation (32). This lattice should then be restricted to
isothermal flows, even though the simulation of flows with
weak temperature fluctuations could also be valid. Eventually,
the case of the D2Q9 lattice, with a quadrature order of Q = 5,
allows developments up to the second order only, which
leads to the famous compressibility error in the momentum
equation (33).

G. Regularization step: Projection vs Recursivity

In the general case of a lattice including V discrete speeds,
the dimension of the associated Hilbert space is also V .
Assuming the quadrature order of this lattice structure is Q,
then Hermite polynomials up to the order N = (Q − 1)/2 will
be orthogonal to each other [52] and may form part of a basis
B = BH ∪ BH, where

BH =
(
H(0)

i , . . . ,H(N)
i

)
(43)

is a subset of B entirely composed of Hermite polynomials,
while elements of BH are linearly independent of each
others and may not be Hermite polynomials. Using this
decomposition, the polynomial coefficients of f (1) can also
be recast into two subsets:{

a(0)
1 , . . . ,a(N)

1

}BH

and
{

b(n)
1

}BH

n>N
, (44)

where coefficients b(n)
1 (n > N) are supposedly related to

nonhydrodynamic behaviors.
The purpose of the PR approach is to keep only Hermite

polynomial coefficients since the mathematical expression of
b(n)

1 (n > N) is usually unknown. After the PR procedure,
remaining polynomial coefficients of f

(1),N
i,PR are{

a(0)
1,PR, . . . ,a(N)

1,PR

}BH

, (45)

where contributions from BH have been completely filtered
out. Nevertheless, spurious sources coming from the ap-
proximation f

(1)
i ≈ (fi − f

(0)
i ) may still be hidden in a(n)

1,PR.
Hence, this approach reduces the order of the polynomial
development, and filters out spurious contributions originating
from presumably non-Hermite polynomials. In the particular
case of BH being empty, this regularization step reduces to
the standard BGK collision model if f

(1)
i is projected onto

the complete basis B. We will see later that BD2Q9 and BD3Q27

belong to this particular case.
Regarding now the RR approach, it further filters out

high-order contributions, left by the PR approach, recomputing
most coefficients a(n)

1 (n � N ) by a Chapman-Enskog expan-
sion, and without assuming f

(1)
i ≈ (fi − f

(0)
i ). For f

(1),N
i,RR the

remaining coefficients are then{
a(0)

1,RR, . . . ,a(N)
1,RR

}BH

, (46)

where a(n)
1,RR = a(n)

1,PR for n � 2 (n � 3) in the isothermal (ther-
mal) case, whereas high-order coefficients are recomputed
using Eqs. (40) and (39). Eventually, while working on a
complete basis, this approach is the only one leading to the
expected filtering behavior.

For the velocity sets of interest, the following observations
can be made. The D2V37 (D2V17) is built ensuring that
Hermite polynomials orthogonality properties are preserved,
up to N = 4 (N = 3), during the velocity space discretization
[34]. Thus, it is known for sure that

BH
D2V37 =

(
H(0),H(1)

x ,H(1)
y ,H(2)

xx ,H(2)
yy ,H(2)

xy ,

H(3)
xxx,H(3)

yyy,H(3)
xxy,H(3)

xyy,H(4)
xxxx,

H(4)
yyyy,H(4)

xxxy,H(4)
xyyy,H(4)

xxyy

)
(47)

and

BH
D2V17 =

(
H(0),H(1)

x ,H(1)
y ,H(2)

xx ,H(2)
yy ,H(2)

xy ,

H(3)
xxx,H(3)

yyy,H(3)
xxy,H(3)

xyy

)
, (48)

whereas the true forms of BH
D2V37 and BH

D2V17 are unknown.
Hence, both PR and RR approaches first discard coefficients
related toBH

D2V37 andBH
D2V17. Then, a(n)

1 (n � N ) are computed
either by the PR or by the RR approach. In the particular case
of the D2Q9 lattice, Hermite polynomials up to N = 2 were
first considered for the polynomial expansion [25], leading to

BH
D2Q9 =

(
H(0)

i ,H(1)
i,x,H

(1)
i,y,H

(2)
i,xx,H

(2)
i,xy,H

(2)
i,yy

)
. (49)
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Nevertheless, the development of the VDF can be extended
including some third- and fourth-order terms, which also
satisfy the orthogonality property conservation (42):

BH,Complete
D2Q9 = BH

D2Q9 ∪
(
H(3)

i,xxy,H
(3)
i,xyy,H

(4)
i,xxyy

)
(50)

and BH,Complete
D2Q9 = ∅. In other words, the complete basis BD2Q9

can be derived thanks to the tensor properties of the D2Q9
lattice, which allows the orthogonality conservation of every
second-order Hermite polynomial per direction. The same
applies to the D3Q27 lattice.

Malaspinas has recently shown that developing f
(0),N
i onto

these complete basis helps reducing the O(Ma3) error term
in the Navier-Stokes’ equations by removing all nondiagonal
terms [42]. The same development was also done for f

(1),N
i

during the regularization process. And, even if it was not
explicitly specified in Ref. [42], one should notice that doing
a full projection of the nonequilibrium VDF onto BD2Q9, in
order to compute the nine off-equilibrium coefficients, has no
impact at all on the off-equilibrium VDF. As an analogy, it
would be pointless to project a two-dimensional (2D) vector
onto the orthonormal basis of the 2D physical space using
the Euclidean scalar product. Hence, a complete PR approach
would be absolutely useless since it would not filter out any
physical information.

The rest of the paper will aim at showing some interesting
properties of the RR procedure:

(1) It enhances numerical stability compared to the PR
procedure for both standard and high-order LBMs.

(2) It is the only way to filter out nonhydrodynamic
spurious sources without discarding any Hermite coefficients.

(3) The extension of the RR collision model (39) helps
improving numerical stability for the simulation of thermal
and fully compressible flows.

III. NUMERICS AND VALIDATION

In this section, the principle of the space and time
discretization of the LBE is first recalled. Then, improvements
regarding numerical stability and accuracy, induced by the use
of the RR collision model, are confirmed for both standard
and high-order LBMs. For the sake of clarity, the truncation
notation (superscript N ) is dropped.

A. Key points on the space and time discretization

Let us start from the force-free lattice Boltzmann equation
with a general collision operator

∂tfi + ξ i · ∇fi = �i. (51)

This equation is a first-order partial differential equation.
The left-hand side term is linear and corresponds to the
convection of the discrete VDFs fi’s at constant speed ξi ,
while the right-hand side term is nonlinear and translates the
rate of change of fi’s induced by collisions. Since these two
contributions behave differently from the mathematical point
of view, two different time integrations are used: (a) the method
of characteristics allows to exactly integrate the convection
term between t and t + �t , whereas (b) the trapezoidal rule
ensures a second-order accuracy in time for the collision term

integration. These techniques lead to

fi(x + ξ i�t,t + �t) − fi(x,t)

= �i(t + �t) + �i(t)

2
�t + O(�t2,�x2), (52)

where the space discretization error O(�x2) comes from
(a): �x = ξi�t . This space and time discretization results
in an implicit formulation since �i(t + �t) depends on
f (x + ξ i�t,t + �t). Nevertheless, a change of variables
compliant with the conservation of mass, momentum, and total
energy allows to get around it [53]:

fi(x,t) = fi(x,t) − �t

2
�i(t), (53)

and leads to an explicit numerical scheme

fi(x + ξ i�t,t + �t) − fi(x,t) = �t �i(t). (54)

To be fully consistent with the new set of VDFs fi’s, the
collision operator needs to be slightly modified. For the BGK
collision model,

�t �i(t) = −�t

τ

[
fi(x,t) − f

(0)
i (x,t)

]
= −�t

τ

[
fi(x,t) + �t

2
�i(t) − f

(0)
i (x,t)

]

= − 1

τ

[
fi(x,t) − f

(0)
i (x,t)

]
(55)

with τ = τ/�t + 1/2. Dropping the overline notation, and
adopting the shorthand notation �x = �t = 1, we end up
with the famous second-order accurate and explicit numerical
scheme

fi(x + 1,t + 1) − fi(x,t) = −
[
fi(x,t) − f

(0)
i (x,t)

]
τ

. (56)

All results presented hereafter will be based on the coupling
between this numerical scheme and several discretizations of
the velocity space, namely, the D2Q9, the D2V17, and the
D2V37 velocity sets. These lattice structures were built using
an on-grid condition [34]

ξ i −→ 1

cs

ξ i , ‖ξ i‖ ∈ N, (57)

allowing to achieve the full potential of the method of
characteristics. The renormalization constant (or lattice con-
stant) cs can further be identified as the isothermal lattice
speed of sound, i.e., cs = √

rT0�t/�x [54]. Its value is
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recalled for each lattice structure in Appendix D. In the rest
of the paper, all necessary quantities used to define each
numerical case will be expressed in lattice and dimensionless
units.

B. Isothermal LBM (θ = 1)

The case of isothermal flows is considered here. Lattice
structures with increasing complexity (D2Q9, D2V17, and
D2V37) are successively used to point out the capability of
the RR procedure to deal with both standard and high-order
LBMs in a straightforward way. All velocity set definitions are
recalled in Appendix D.

The double shear layer is a well-known test case which
allows to quantify the stability of numerical schemes as a
first step [55]. This flow is composed of two longitudinal
shear layers, located at y = L/4 and 3L/4, in a 2D doubly
periodic domain with (x,y) ∈ [0,L]2. Furthermore, a trans-
verse perturbation is superimposed to the flow. This leads
to the rollup of the shear layers, and the generation of two
counter-rotating vortices by the Kelvin-Helmholtz instability
mechanism. In addition, any numerically induced disturbances
may lead to the formation of further spurious vortices, or
in the worst case, make the simulation reach its stability
threshold. This is why this test case is an excellent candidate to
evaluate the stability of numerical schemes. The initial state is
defined by

ux =
{
u0 tanh[k(y∗ − 1/4)], y∗ � 1/2

u0 tanh[k(3/4 − y∗)], y∗ > 1/2
(58)

and

uy = u0δ sin[2π (x∗ + 1/4)], (59)

where (x∗,y∗) = (x/L,y/L), and u0 is the characteristic
speed. k is related to the width of the shear layers while δ

controls the amplitude of the transverse perturbation. Here,
the case of thin shear layers, where (k,δ) = (80,0.05), is
considered. The Reynolds number, which is the ratio between
convective and diffusive phenomena, is first fixed to a moderate
value of Re = u0L/ν = 3 × 104 (cf. Fig. 1). This is sufficient
to reach the stability limit of the BGK collision model for
standard LBMs when an under-resolved mesh (L = 128) is
considered [56]. The stability range of the proposed model
is then evaluated varying the Reynolds number from 104 to
106. Simulations using the D2Q9, the D2V17, and the D2V37
lattices are performed with a free-stream Mach number M0 =
u0/cs = 0.2, 0.35, and 0.57, respectively. These values are
chosen in order to (i) properly distinguish the impact of each
collision operator on the numerical stability of each LBM, and
(ii) reduce the impact of the O(Ma3) error encountered
when the D2Q9 lattice is employed. The initialization step is
achieved using the approximation fi ≈ f

(0)
i + f

(1)
i , with f

(1)
i

computed using analytic formulas for the velocity gradients.
This allows to reduce spurious oscillations at the beginning of
the simulation as demonstrated in Ref. [30]. Finally, it should
be noted that for all simulations below, f

(0)
i is expanded to

the maximal authorized order, i.e., N = 3 for the D2V17,
and N = 4 for both the D2Q9 and the D2V37, using their
associated Hermite tensor basis (see Appendixes C and D for
more details on this last point).

-1 -0.5 0 0.5 1

FIG. 1. Rollup of the double shear layer at M0 = 0.2 and Re =
3 × 104. Visualization of the dimensionless vorticity field at tc =
L/u0 = 1, using L = 512 grid points in each directions, with the
D2Q9 and the BGK collision model.

Extensive results concerning the case at Re = 3 × 104 are
compiled in Figs. 2–4 for the D2Q9, the D2V17, and the
D2V37 lattices, respectively. All models are compared to a
reference solution obtained using the BGK collision model
with L = 2048. Several partial conclusions can be drawn from
these results.

First, correct kinetic-energy-related evolutions are recov-
ered for all computations, even using a relatively coarse mesh
(L = 128). Regarding mean and standard deviation of the
enstrophy, a convergence study has been conducted, leading
to the choice of a centered and fourth-order-accurate finite-
difference scheme for the gradient evaluation. Nevertheless,
small errors are still observed, when the Mach number is
increased, even for L = 256. Thus, recovering the proper
evolution of the mean and the standard deviation of the
enstrophy is more difficult than obtaining the correct evolution
of the same quantities in the case of the kinetic energy. The
study of the enstrophy evolution should then be preferred for
the accuracy evaluation of LBMs.

Second, the new RR approach is more stable than the PR
one, at least for the present lattices. As explained in Sec. II G,
this originates from a better computation of nonequilibrium
Hermite coefficients a(n)

1 from the kinetic theory point of view.
This point is further highlighted in Fig. 5, where the maximal
achievable Mach number MMax

0 allowing a stable simulation,
up to t/tc = 2, is plotted for Reynolds numbers ranging from
104 to 106, in the under-resolved configuration L = 128.

The stability criterion that has been chosen is based on
the mean kinetic energy 〈u2〉: a computation is considered
to remain stable if 〈u2(t � 2tc)〉 < 〈u2(t = 0)〉. For a proper
comparison, the standard PR and the most stable RR
versions associated to each lattice structure are compared.
Results obtained in the particular case of Re = 3 × 104 seem
to be extendable to a wide range of Reynolds number.
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FIG. 2. Double shear layer at M0 = 0.2 and Re = 3 × 104 for the D2Q9. From top to bottom: dimensionless mean kinetic energy, standard
deviation of the kinetic energy, mean enstrophy, and standard deviation of the enstrophy. All quantities are spatially averaged over all the simul-
ation domain. The projection-based (PR) and the recursive (RR) regularizations, at order N = 2, 3, and 4, are compared against the standard
collision model (BGK). The first two columns are the results obtained using a L × L mesh with L = 128 and 256, respectively. The last column
illustrates the mesh convergence of the fourth-order recursive regularization (RR 4), where the reference solution was obtained using the BGK
collision operator with L = 2048. The characteristic time tc is defined as tc = L/u0, while the characteristic speed is u0 = M0cs .
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FIG. 3. Double shear layer at M0 = 0.35 and Re = 3 × 104 for the D2V17. From top to bottom: dimensionless mean kinetic energy,
standard deviation of the kinetic energy, mean enstrophy, and standard deviation of the enstrophy. All quantities are spatially averaged over
all the simulation domain. The projection-based (PR) and the recursive (RR) regularizations, at order N = 2 and 3, are compared against the
standard collision model (BGK). The first two columns are the results obtained using a L × L mesh with L = 128 and 256, respectively. The
last column illustrates the mesh convergence of the third-order recursive regularization (RR 3), where the reference solution was obtained using
the BGK collision operator with L = 2048. The characteristic time tc is defined as tc = L/u0, while the characteristic speed is u0 = M0cs .
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FIG. 4. Double shear layer at M0 = 0.57 and Re = 3 × 104 for the D2V37. From top to bottom: dimensionless mean kinetic energy,
standard deviation of the kinetic energy, mean enstrophy, and standard deviation of the enstrophy. All quantities are spatially averaged over all
the simulation domain. The projection-based (PR) and the recursive (RR) regularizations, at order N = 2, 3, and 4, are compared against the
standard collision model (BGK). The first two columns are the results obtained using a L × L mesh with L = 128 and 256, respectively. The
last column illustrates the mesh convergence of the fourth-order recursive regularization (RR 4), where the reference solution was obtained
using the BGK collision operator with L = 2048. The characteristic time tc is defined as tc = L/u0, while the characteristic speed is u0 = M0cs .
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FIG. 5. Stability range of the double shear layer simulation using
L = 128, for t � 2tc, and with the characteristic time tc = L/M0cs .
The standard PR (filled symbols) and the most stable RR (open
symbols) procedures are compared for every LBM. The RR approach
always shows a higher stability range regarding MMax

0 , where the level
of accuracy of MMax

0 is �M0 = 0.01.

Third, the PR 4 and the BGK collision models give exactly
the same results in the particular case of the D2Q9. This
confirms what was anticipated in Sec. II G, i.e., when the VDF
is expanded over the complete Hermite basis then the PR 4 and
the BGK reduce to the same collision operator. Therefore, the
only way to reach the full potential of the D2Q9 lattice is to
use the RR procedure.

Lastly, the computational overhead for our nonoptimized
implementation is 1.5 � tRR/tBGK � 2, the lower limit is for
the D2Q9 and the upper for the D2V37. This is far from being
excessive considering the tremendous improvements obtained
in terms of numerical stability. Regarding the regularization
step itself, the RR approach is always faster (about 20%) than
the standard PR one.

C. Fully compressible LBM

To further validate the general RR process, the simulation
of thermal and fully compressible flows is now considered.
This is done through the numerical computation of the famous
Sod shock tube [57], using the most compact lattice structure
allowing to ensure the preservation of the orthogonality
of all fourth-order Hermite tensors: the D2V37 velocity
set [34,58]. For this purpose, Hermite coefficients a(n)

0 and
a(n)

1 are computed thanks to our proposed extensions (B1)
and (39).

This one-dimensional (1D) Riemann problem consists in a
closed tube divided into two regions by a thin membrane.
Each region is filled with the same gas but has different
thermodynamic properties (density ρ, temperature T , pressure
P , and velocity u). At the initialization, the breakdown of the
membrane induces a strong acceleration of the flow, from the
high-pressure side to the low-pressure one, whose purpose
is to equalize the pressure inside the tube. This leads to the
generation and the propagation of three characteristic waves:

(1) the compression of the gas creates a shock wave which
propagates towards the low-pressure side, (2) the expansion of
the gas towards the high-pressure side induces the propagation
of the expansion or rarefaction wave, and (3) the separation
between the two waves, namely, the contact discontinuity.
The latter can be seen as a fictitious diaphragm traveling at a
constant speed towards the low-pressure side.

In this paper, two different configurations are studied. They
share the same pressure ratio but differ when it comes to their
temperature or density ones:

(PL,ρL,uL) = (10,8,0), (PR,ρR,uR) = (1,1,0), (60)

(PL,ρL,uL) = (10,2,0), (PR,ρR,uR) = (1,1,0), (61)

where subscripts L and R stand for the left and the right
states, respectively. To avoid the contribution of the boundary
conditions, the computation takes place in a periodic domain
of length 2Lx centered around the location x = Lx/2
where the discontinuity between the two states belongs.
The simulation domain is then spatially discretized using
Lx = 400 grid points. Such a coarse mesh will allow to
further highlight the numerical stability issues encountered
computing discontinuities.

Results obtained using the PR and the RR processes, at
order N = 4, are plotted along [0,Lx] in Fig. 6. Even though
both models are able to properly reproduce the generation
and the propagation of all the characteristic waves of this 1D
Riemann problem, the PR procedure introduces a coupling
between high-order and Navier-Stokes physics in the form of
standing waves, whereas the RR procedure completely filters
them out even if small overshoots or undershoots still remain.
The latter can be attenuated using either a finer grid or a
shock-capturing technique, such as a shock sensor [59].

It must be noted that without regularization steps, the
standard LBM encountered severe numerical stability issues
for the present configurations, and could not be stabilized even
using extremely fine meshes (more than 10 000 points in the
longitudinal direction). This further points out that the RR
collision operator allows to get more stable solutions without
degrading the accuracy of the numerical scheme.

IV. CONCLUSION

Despite a wide range of validity of the standard lattice
Boltzmann method (LBM), the simulation of certain flows
remains a tedious task: (1) weakly compressible flows at high
Reynolds numbers, and (2) fully compressible flows including
discontinuities such as shock waves. In this context, this work
focuses on the extension of the recursive regularization step
to high-order LBMs. New LBMs, with increased stability
range, are then obtained filtering out the nonhydrodynamic
contributions induced by the streaming step. This technique
relies on two points: (a) the computation of nonequilibrium
coefficients a1 through the Chapman-Enskog expansion, eased
thanks to (b) the recursive properties of Hermite polynomial
basis. This procedure was originally derived in the particular
case of isothermal and weakly compressible flow simulations,
with standard lattice structures such as the D2Q9 and the
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FIG. 6. 1D Riemann problem: [PL/PR,ρL/ρR] = [10,8] (left) and [10,2] (right) with Lx = 400 grid points, and a relaxation time of
τ = 0.595 and 0.760, respectively. From top to bottom: dimensionless pressure, density, temperature, and velocity profiles. Results obtained
using the fourth-order PR and RR steps are compared to the reference solution (dashed line) for a specific heat ratio γ = 2. They are plotted at
time t/tc = 0.2 (left) and t/tc = 0.1 (right), with the characteristic time tc = Lx/

√
γ TR .
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D3Q27. Here, we further validate it using high-order LBMs
(the D2V17 and the D2V37) for the simulation of both
isothermal flows and thermal fully compressible flows. The
latter was possible thanks to our derivation of general recursive
formulas for the computation of Hermite coefficients a0 and
a1. Strong improvements in terms of numerical stability are
confirmed for both kinds of simulations, and at a relatively low
computational overhead.

Flows including external accelerations, boundary condi-
tions, and LBMs with two sets of populations are currently
under investigation. Theoretical derivations and numerical
validations, concerning the extension of the RR procedure
to deal with these topics, will be presented in the near
future.

Note added in proof. As a perspective, it would be interesting
to compare the present approach with the very recent work
based on regularization steps applied in a co-moving reference
frame [60].
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APPENDIX A: PROOF OF THE RECURSIVE FORMULA

The aim of this Appendix is to prove the following recursive relation:

∀ n � 4, a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

+ c2
s (θ − 1)

n−1∑
i=1

δαiαn
a

(n−2)
1,βi

+ 1

ρ

n−1∑
i=1

a
(n−2)
0,βi

a
(2)
1,αiαn

+ 1

ρ

n−1∑
i=1

n−1∑
j>i

a
(n−3)
0,βij

× (a(3)
1,αiαj αn

− uαi
a

(2)
1,αj αn

− uαj
a

(2)
1,αiαn

− uαn
a

(2)
1,αiαj

)
, (A1)

where some mathematical notations are used for the sake of clarity: (1) βi is used when the index αi is omitted, e.g., a
(n)
0,βi

≡
a

(n)
0,α1...αi−1αi+1...αn

, and (2) if αi and αj are omitted then βij is used.
The following relations are needed to prove (39):

(i) The Hermite coefficient based LBE [33]:

∀ n � 1, a
(n)
1,α1...αn

= −τ

[
∂ta

(n)
0,α1...αn

+ ∂γ a
(n+1)
0,α1...αnγ

+ c2
s

n∑
i=1

∂αi
a

(n−1)
0,βi

]
, (A2)

where Einstein summation notation is used on subscript γ .
(ii) The recursive formula for Hermite coefficients at equilibrium (Appendix B):

∀ n � 2, a
(n)
0,α1...αn

= uαn
a

(n−1)
0,α1...αn−1

+ (θ − 1)c2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

. (A3)

(iii) Euler’s equations:

∂tρ + ∂γ (ρuγ ) = 0, (A4)

ρ∂t (uα) + ρuγ ∂γ (uα) + ∂αp = 0, (A5)

∂tθ + uγ ∂γ θ + 2

D
θ∂γ uγ = 0. (A6)

Let us now move on to the proof itself.

Step 1: Boltzmann equation associated to Hermite coefficients (A2) at order (n − 1):

∀ n � 2, uαn
a

(n−1)
1,α1...αn−1

= −τ

[
uαn

∂ta
(n−1)
0,α1...αn−1

+ uαn
∂γ a

(n)
0,α1...αn−1γ

+ c2
s

n−1∑
i=1

uαn
∂αi

a
(n−2)
0,βi

]

= −τ

[
∂t

(
uαn

a
(n−1)
0,α1...αn−1

)− a
(n−1)
0,α1...αn−1

∂tuαn
+ ∂γ

(
uαn

a
(n)
0,α1...αn−1γ

)

− a
(n)
0,α1...αn−1γ

∂γ uαn
+ c2

s

n−1∑
i=1

∂αi

(
uαn

a
(n−2)
0,βi

)− c2
s

n−1∑
i=1

a
(n−2)
0,βi

∂αi
uαn

]
,

where the derivation by parts rule is used.
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Step 2: Remove all time derivatives ∂t :
First, we use Eq. (A3):

uαn
a

(n−1)
1,α1...αn−1

= −τ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ta
(n)
0,α1...αn

+ ∂γ a
(n+1)
0,α1...αnγ

+ c2
s

n∑
i=1

∂αi
a

(n−1)
0,βi︸ ︷︷ ︸

(i)

−a
(n−1)
0,α1...αn−1

∂tuαn
− a

(n)
0,α1...αn−1γ

∂γ uαn︸ ︷︷ ︸
(ii)

− c2
s ∂αn

a
(n−1)
0,α1...αn−1

− c2
s

n−1∑
i=1

a
(n−2)
0,βi

∂αi
uαn︸ ︷︷ ︸

(iii)

− c2
s

n−1∑
i=1

δαiαn
∂t

[
(θ − 1)a(n−2)

0,βi

]− c2
s

n+1∑
i=1,i �=n

δαiαn
∂γ

[
(θ − 1)a(n−1)

0,βiγ

]
︸ ︷︷ ︸

(iv)

− c4
s

n−1∑
i=1

n−1∑
j=1,j �=i

δαj αn
∂αi

[
(θ − 1)a(n−3)

0,βij

]
︸ ︷︷ ︸

(v)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for n � 3. Then, thanks to (A2) one can replace ∂ta
(n)
0,α1...αn

by

(i) = − 1

τ
a

(n)
1,α1...αn

and

(ii) = −a
(n−1)
0,α1...αn−1

(
∂tuαn

+ uγ ∂γ uαn

)− c2
s (θ − 1)∂γ uαn

n−1∑
i=1

δαiγ a
(n−2)
0,βi

.

In the same spirit as for Chapman-Enskog expansion, Euler’s equation of momentum [Eq. (A5)] is used to replace the time
derivative ∂tuαn

. In addition to that, removing the implicit summation on γ leads to

(ii) = a
(n−1)
0,α1...αn−1

1

ρ
∂αn

p − c2
s (θ − 1)

n−1∑
i=1

a
(n−2)
0,βi

∂αi
uαn

,

so that

(ii) + (iii) = a
(n−1)
0,α1...αn−1

1

ρ
∂αn

p − c2
s θ

n−1∑
i=1

a
(n−2)
0,βi

∂αi
uαn

− c2
s ∂αn

a
(n−1)
0,α1...αn−1

.

Let us now focus on (iv) and (v):

(iv) = −c2
s

n−1∑
i=1

δαiαn

[
a

(n−2)
0,βi

∂t θ + a
(n−1)
0,βiγ

∂γ θ
]

︸ ︷︷ ︸
(iv.i)

−c2
s (θ − 1)

n−1∑
i=1

δαiαn

[
∂ta

(n−2)
0,βi

+ ∂γ a
(n−1)
0,βiγ

]
︸ ︷︷ ︸

(iv.ii)

− c2
s (θ−1)∂αn

a
(n−1)
0,α1...αn−1

−c2
s a

(n−1)
0,α1...αn−1

∂αn
θ︸ ︷︷ ︸

(iv.iii)

,

(v) = −c4
s (θ − 1)

n−1∑
i=1

n−1∑
j=1,j �=i

δαj αn
∂αi

a
(n−3)
0,βij︸ ︷︷ ︸

(v.i)

−c4
s

n−1∑
i=1

n−1∑
j=1,j �=i

δαj αn
a

(n−3)
0,βij

∂αi
θ

︸ ︷︷ ︸
(v.ii)

.

Once again, one can replace ∂ta
(n−2)
0,βi

using (A2):

(iv.ii) + (v.i) = 1

τ
c2
s (θ − 1)

n−1∑
i=1

δαiαn
a

(n−2)
1,βi

.

Moreover, since ∂αn
p = ρc2

s ∂αn
θ + c2

s θ∂αn
ρ we can rearrange several terms as follows:

(ii) + (iii) + (iv.iii) = a
(n−1)
0,α1...αn−1

c2
s θ

ρ
∂αn

ρ − c2
s θ

n−1∑
i=1

a
(n−2)
0,βi

∂αi
uαn

− c2
s θ∂αn

a
(n−1)
0,α1...αn−1

.
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By using (A3), one gets

(iv.i) = −c2
s

n−1∑
i=1

δαiαn

⎧⎨
⎩a

(n−2)
0,βi

∂t θ +
⎡
⎣uγ a

(n−2)
0,βi

+ c2
s (θ − 1)

n−1∑
j=1,j �=i

δαj γ a
(n−3)
0,βij

⎤
⎦∂γ θ

⎫⎬
⎭

= −c2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

(∂tθ + uγ ∂γ θ ) − c4
s (θ − 1)∂γ θ

n−1∑
i=1

n−1∑
j=1,j �=i

δαiαn
δαj γ a

(n−3)
0,βij

.

The last time derivative ∂tθ is removed thanks to (A6). Further simplifications, using the implicit summation on γ in the second
term, lead to

(iv.i) + (v.ii) = 2c2
s θ

D
∂γ uγ

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

− c4
s θ

n−1∑
i=1

n−1∑
j=1,j �=i

δαiαn
a

(n−3)
0,βij

∂αj
θ.

Eventually, regrouping all terms leads to

∀ n � 3, uαn
a

(n−1)
1,α1...αn−1

= a
(n)
1,α1...αn

− c2
s (θ − 1)

n−1∑
i=1

δαiαn
a

(n−2)
1,βi

+ τc2
s θ

n−1∑
i=1

a
(n−2)
0,βi

(
∂αi

uαn
− 2

D
δαiαn

∂γ uγ

)

+ τc4
s θ

n−1∑
i=1

n−1∑
j=1,j �=i

δαiαn
a

(n−3)
0,βij

∂αj
θ − τc2

s

θ

ρ
a

(n−1)
0,α1...αn−1

∂αn
ρ + τc2

s θ∂αn
a

(n−1)
0,α1...αn−1

. (A7)

Step 3: Dispose of ∂αn
a

(n−1)
0,α1...αn−1

via the definition of the Maxwell-Boltzmann equilibrium state f (0):

By the chain rule,

∀ n � 3, ∂αn
a

(n−1)
0,α1...αn−1

=
∫

∂αn
f (0)(ξ )H(n−1)

α1...αn−1
dξ

=
∫ (

∂ρf
(0)∂αn

ρ + ∂uγ
f (0)∂αn

uγ + ∂θf
(0)∂αn

θ
)
H(n−1)

α1...αn−1
dξ ,

and since f (0) = ρ

(2πc2
s θ)D/2 exp[− (ξ−u)2

2c2
s θ

], the following derivatives can be obtained:

∂ρf
(0) = 1

ρ
f (0),

∂uγ
f (0) = ξγ − uγ

c2
s θ

f (0), (A8)

∂θf
(0) =

[
− D

2θ
+ 1

2c2
s θ

2
(ξγ − uγ )2

]
f (0).

Hence,

∂αn
a

(n−1)
0,α1...αn−1

= 1

ρ
a

(n−1)
0,α1...αn−1

∂αn
ρ + 1

c2
s θ

∂αn
uγ

∫
(ξγ − uγ )H(n−1)

α1...αn−1
f (0)(ξ )dξ

− D

2θ
a

(n−1)
0,α1...αn−1

∂αn
θ + 1

2c2
s θ

2
∂αn

θ

∫
(ξγ − uγ )2H(n−1)

α1...αn−1
f (0)(ξ )dξ ,

and by integration by parts, one can show that∫
(ξγ − uγ )H(n−1)

α1...αn−1
f (0)(ξ )dξ = θc2

s

n−1∑
i=1

δαiγ a
(n−2)
0,βi

,

∫
(ξγ − uγ )2H(n−1)

α1...αn−1
f (0)(ξ )dξ = Dc2

s θa
(n−1)
0,α1...αn−1

+ θ2c4
s

n−1∑
i=1

n−1∑
j=1,j �=i

δαiαj
a

(n−3)
0,βij

. (A9)

Then, removing the implicit summation on γ leads to

∀ n � 3, ∂αn
a

(n−1)
0,α1...αn−1

= 1

ρ
a

(n−1)
0,α1...αn−1

∂αn
ρ +

n−1∑
i=1

a
(n−2)
0,βi

∂αn
uαi

+ c2
s

2

n−1∑
i=1

n−1∑
j=1

δαiαj
a

(n−3)
0,βij

∂αn
θ.
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Injecting this expression in Eq. (A7) gives

∀ n � 3, a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

+ c2
s (θ − 1)

n−1∑
i=1

δαiαn
a

(n−2)
1,βi

− τc2
s θ

n−1∑
i=1

a
(n−2)
0,βi

(
∂αi

uαn
+ ∂αn

uαi
− 2

D
δαiαn

∂γ uγ

)

− τc4
s θ

n−1∑
i=1

n−1∑
j>i

(
δαiαn

∂αj
θ + δαj αn

∂αi
θ + δαiαj

∂αn
θ
)
a

(n−3)
0,βij

. (A10)

Finally, knowing that

a
(2)
1,αβ = −τρc2

s θ

(
∂αuβ + ∂βuα − 2

D
δαβ∂γ uγ

)
≡ �

(1)
αβ ≈

∑
i

ξαξβ

(
fi − f

(0)
i

)
,

a
(3)
1,αβγ = uαa

(2)
1,βγ + uβa

(2)
1,αγ + uγ a

(2)
1,αβ − τρθc4

s (δαβ∂γ θ + δαγ ∂βθ + δβγ ∂αθ ) ≡ Q
(1)
αβγ ≈

∑
i

ξαξβξγ

(
fi − f

(0)
i

)
leads to (A1), which is valid for n � 4. �

Particularity of the isothermal case. The same kind of recursive relation can be obtained in the isothermal case, after noticing
that this assumption has two important consequences in the previous derivation:

(a) the temperature is constant (θ = 1),
(b) the term − 2

D
δαiαn

∂γ uγ disappears in Eq. (A10), leading to a nonzero bulk viscosity μb = 2
D

μ [53].
Thus, Eq. (A10) becomes

∀ n � 3, a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

− τc2
s

n−1∑
i=1

a
(n−2)
0,βi

(
∂αi

uαn
+ ∂αn

uαi

)
, (A11)

and knowing that

a
(2)
1,αβ = −τρc2

s (∂αuβ + ∂βuα),

Malaspinas’ recursive formula [42] can be recovered:

a
(n)
1,α1...αn

= uαn
a

(n−1)
1,α1...αn−1

+ 1

ρ

n−1∑
i=1

a
(n−2)
0,βi

a
(2)
1,αiαn

. (A12)

APPENDIX B: RECURSIVE FORMULA OVER EQUILIBRIUM COEFFICIENTS

The aim of this Appendix is to prove the following relation:

∀ n � 2, a
(n)
0,α1...αn

= uαn
a

(n−1)
0,α1...αn−1

+ (θ − 1)c2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

, (B1)

which simplifies in

∀ n � 2, a
(n)
0,α1...αn

= uαn
a

(n−1)
0,α1...αn−1

for the isothermal case (θ = 1). To this end, the Rodrigues relation over Hermite polynomials will be used:

∀ n � 2, ξαn
H(n−1)

α1...αn−1
= H(n)

α1...αn
+ c2

s

n−1∑
i=1

δαiαn
H(n−2)

βi
. (B2)

Using this relation, one gets, for n � 2,

a
(n)
0,α1...αn

=
∫

H(n)
α1...αn

(ξ )f (eq)(ξ )dξ =
∫

ξαn
H(n−1)

α1...αn−1
f (eq)(ξ )dξ − c2

s

n−1∑
i=1

δαiαn

∫
H(n−2)

βi
f (eq)(ξ )dξ

=
∫

cαn
H(n−1)

α1...αn−1
f (eq)(ξ )dξ︸ ︷︷ ︸

I

+uαn
a

(n−1)
0,α1...αn−1

− c2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

,

where c = ξ − u. By integration by parts, the first term gives

I = θc2
s

∫
∂ξαn

H(n−1)
α1...αn−1

f (eq)(ξ )dξ .
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Finally, using the fact that

∂ξαn
H(n−1)

α1...αn−1
=

n−1∑
i=1

δαiαn
H(n−2)

βi
,

one gets

I = θc2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

,

so that

∀ n � 2, a
(n)
0,α1...αn

= uαn
a

(n−1)
0,α1...αn−1

+ (θ − 1)c2
s

n−1∑
i=1

δαiαn
a

(n−2)
0,βi

.
�

APPENDIX C: IMPLEMENTATION DETAILS

This Appendix summarizes all the necessary material to properly implement the recursive regularization procedure, in both
2D and 3D, for some common and high-order lattice structures. As a reminder, the purpose of this step is to rebuilt the discrete
VDF fi knowing the macroscopic properties of the flow (density ρ, velocity u, and temperature θ ) and their gradients:

f
reg
i = f

(0),reg
i + f

(1),reg
i =

∑
n

1

n!c2n
s

H(n)
i,α

(
a

(n)
0,α + a

(n)
1,α

)
. (C1)

Hermite tensors. The definition of Hermite tensors up to the fourth order (sufficient for the recovery of Navier-Stokes’
equations) is

H(0)
i = 1, H(1)

i,α = ξi,α, H(2)
i,αβ = ξi,αβ − c2

s δαβ, H(3)
i,αβγ = ξi,αβγ − c2

s (ξi,αδβγ + ξi,βδαγ + ξi,γ δαβ),

H(4)
i,αβγ δ = ξi,αβγ δ − c2

s (ξi,αβδγ δ + ξi,αγ δβδ + ξi,αδδβγ + ξi,βγ δαδ + ξi,βδδαγ + ξi,γ δδαβ) + c4
s (δαβδγ δ + δαγ δβδ + δαδδβγ ), (C2)

where the following mathematical notations ξi,αβ ≡ ξi,αξi,β , ξi,αβγ ≡ ξi,αξi,βξi,γ , ξi,αβγ δ ≡ ξi,αξi,βξi,γ ξi,δ are used for the sake of
compacity.

In 2D, (α,β,γ,δ) ∈ {x,y}4 and thus only two different values can be chosen for each index. This simplifies the definition of
Hermite polynomials into

H(0)
i = 1, H(1)

i,x = ξi,x, H(2)
i,xx = ξ 2

i,x − c2
s , H(2)

i,xy = ξi,xξi,y, H(3)
i,xxx = (

ξ 2
i,x − 3c2

s

)
ξi,x, H(3)

i,xxy = (
ξ 2
i,x − c2

s

)
ξi,y,

H(4)
i,xxxx = ξ 4

i,x − 6c2
s ξ

2
i,x + 3c4

s , H(4)
i,xxxy = (

ξ 2
i,x − 3c2

s

)
ξi,xξi,y, H(4)

i,xxyy = (
ξ 2
i,x − c2

s

)(
ξ 2
i,y − c2

s

)
. (C3)

In 3D, (α,β,γ,δ) ∈ {x,y,z}4 and therefore one more value can be chosen for each index. This adds the following Hermite
polynomials:

H(3)
i,xyz = ξi,xξi,yξi,z, H(4)

i,xxyz = ξ 2
i,xξi,yξi,z − c2

s ξi,yξi,z + c4
s . (C4)

Due to symmetry properties of Hermite tensors (H(1)
i,y , H(1)

i,z , H(2)
i,yy , H(2)

i,zz,H
(2)
i,xz,H

(2)
i,yz, H

(3)
i,yyy , H(3)

i,zzz, H
(3)
i,xxz, H

(3)
i,yyx , H(3)

i,yyz, H
(4)
i,yyyy ,

H(4)
i,zzzz, H

(4)
i,xxxz, H(4)

i,yyyx , H(4)
i,yyyz, H

(4)
i,xxzz, H(4)

i,yyzz, H
(4)
i,yyxz, H

(4)
i,zzxy) can be obtained changing x by y or z in the above formulas.

By definition, the very same property is also available for a
(n)
0,α and a

(n)
1,α .

Hermite coefficients at equilibrium. The recursive definition of Hermite coefficients at equilibrium is first recalled in Eq. (B1).
Up to the fourth order, they read as

a
(0)
0 = ρ, a

(1)
0,α = uαa

(0)
0 , a

(2)
0,αβ = uβa

(1)
0,α + (θ − 1)c2

s δαβa
(0)
0 ,

a
(3)
0,αβγ = uγ a

(2)
0,αβ + (θ − 1)c2

s

(
δαγ a

(1)
0,β + δβγ a

(1)
0,α

)
, (C5)

a
(4)
0,αβγ δ = uδa

(3)
0,αβγ + (θ − 1)c2

s

(
δαδa

(2)
0,βγ + δβδa

(2)
0,αγ + δγ δa

(2)
0,αβ

)
.

This becomes in 2D

a
(0)
0 = ρ, a

(1)
0,x = uxa

(0)
0 , a

(2)
0,xx = uxa

(1)
0,x + (θ − 1)c2

s a
(0)
0 , a

(2)
0,xy = uya

(1)
0,x ,

a
(3)
0,xxx = uxa

(2)
0,xx + 2(θ − 1)c2

s a
(1)
0,x , a

(3)
0,xxy = uya

(2)
0,xx, a

(4)
0,xxxx = uxa

(3)
0,xxx + 3(θ − 1)c2

s a
(2)
0,xx, (C6)

a
(4)
0,xxxy = uya

(3)
0,xxx, a

(4)
0,xxyy = uya

(3)
0,xxy + (θ − 1)c2

s a
(2)
0,xx .
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And the 3D extension adds the following coefficients:

a
(3)
0,xyz = uza

(2)
0,xy, a

(4)
0,xxyz = uza

(3)
0,xxy . (C7)

First-order off-equilbrium Hermite coefficients. The recursive definition of first-order (with respect to the Knudsen number)
off-equilibrium Hermite coefficients [Eq. (39)], up to the fourth order (with respect to the VDF moments), reads as

a
(0)
1 = 0, a

(1)
1,α = 0, a

(2)
1,αβ = �

(1)
αβ = −μc2

s θ

[
Sαβ −

(
2

D
∂γ uγ

)
δαβ

]
,

a
(3)
1,αβγ = Q

(1)
αβγ = (

uαa
(2)
1,βγ + uβa

(2)
1,αγ + uγ a

(2)
1,αβ

)− μc2
s

(
δαβ∂γ θ + δαγ ∂βθ + δβγ ∂αθ

)
,

a
(4)
1,αβγ δ = (

uαa
(3)
1,βγ δ + uβa

(3)
1,αγ δ + uγ a

(3)
1,αβδ + uδa

(3)
1,αβγ

)+ [
c2
s (θ − 1)δαβ − uαuβ

]
a

(2)
1,γ δ

+ [c2
s (θ − 1)δαγ − uαuγ

]
a

(2)
1,βδ + [

c2
s (θ − 1)δαδ − uαuδ

]
a

(2)
1,βγ + [

c2
s (θ − 1)δβγ − uβuγ

]
a

(2)
1,αδ

+ [c2
s (θ − 1)δβδ − uβuδ

]
a

(2)
1,αγ + [

c2
s (θ − 1)δγ δ − uγ uδ

]
a

(2)
1,αβ, (C8)

with Sαβ = ∂αuβ + ∂βuα , and μ = ρc2
s θτ is the dynamic viscosity.

For the 2D case, this simplifies into

a
(0)
1 = 0, a

(1)
1,x = 0, a

(2)
1,xx = �(1)

xx = −μc2
s θ

[
Sxx − 2

D
∂γ uγ

]
, a

(2)
1,xy = �(1)

xy = −τρc2
s θSxy,

a
(3)
1,xxx = Q(1)

xxx = 3
(
uxa

(2)
1,xx − μc2

s ∂xθ
)
, a

(3)
1,xxy = Q(1)

xxy = (
2uxa

(2)
1,xy + uya

(2)
1,xx

)− μc2
s ∂yθ,

a
(4)
1,xxxx = 4uxa

(3)
1,xxx + 6

[
c2
s (θ − 1) − u2

x

]
a

(2)
1,xx, a

(4)
1,xxxy = (

3uxa
(3)
1,xxy + uya

(3)
1,xxx

)+ 3
[
c2
s (θ − 1) − u2

x

]
a

(2)
1,xy − 3uxuya

(2)
1,xx,

a
(4)
1,xxyy = 2

(
uxa

(3)
1,yyx + uya

(3)
1,xxy

)+ [
c2
s (θ − 1) − u2

x

]
a

(2)
1,yy + [

c2
s (θ − 1) − u2

y

]
a

(2)
1,xx − 4uxuya

(2)
1,xy . (C9)

And for the 3D extension, more coefficients need to be taken into account:

a
(3)
1,xyz = Q(1)

xyz = uxa
(2)
1,yz + uya

(2)
1,xz + uza

(2)
1,xy,

a
(4)
1,xxyz = (

2uxa
(3)
1,xyz + uya

(3)
1,xxz + uza

(3)
1,xxy

)+ [
c2
s (θ − 1) − u2

x

]
a

(2)
1,yz − 2ux

(
uya

(2)
1,xz + uza

(2)
1,xy

)− uyuza
(2)
1,xx . (C10)

Here, attention must be paid to the way a
(2)
1,αβ and a

(3)
1,αβγ are computed. One can use finite differences to evaluate the velocity

and temperature gradients, but it will degrade the accuracy of the algorithm. Instead, we propose the following idea for LBM
allowing the preservation of moments of the VDF up to the fourth order (D2V37 and D3Q103):

(1) Compute a
(2)
1,αβ using the definition of the second-order moment of the VDF:

a
(2)
1,αβ ≈

∑
i

H(2)
αβ

(
fi − f

(0)
i

)
. (C11)

This is justified by the fact that the error introduced by the approximation fi = ∑
n f

(n)
i ≈ f

(0)
i + f

(1)
i , with f

(n)
i ∼ O(εn),

should be small enough when the LBM allows to conserve moments of the VDF up to the fourth order.
(2) Compute a

(3)
1,αβγ using the definition of the third-order moment of the VDF:

a
(3)
1,αβγ ≈

∑
i

H(3)
αβγ

(
fi − f

(0)
i

)
. (C12)

(3) Average the contributions of all a
(3)
1,αβγ to the temperature gradients:

μc2
s ∂xθ

2D= 1
2

[(
uxa

(2)
1,xx − a

(3)
1,xxx/3

)+ (
2uya

(2)
1,xy + uxa

(2)
1,yy − a

(3)
1,yyx

)]
(C13)

3D= 1
3

[(
uxa

(2)
1,xx − a

(3)
1,xxx/3

)+ (
2uya

(2)
1,xy + uxa

(2)
1,yy − a

(3)
1,yyx

)+ (
2uza

(2)
1,xz + uxa

(2)
1,zz − a

(3)
1,zzx

)]
. (C14)

(4) Reconstruct a
(3)
1,αβγ using Eq. (C9) thanks to Eqs. (C11) and (C14).

Regularized collision operator. The regularization procedure of precollision VDFs can be interpreted as a particular collision
step where

f coll
i = f

(0),reg
i +

(
1 − 1

τ

)
f

(1),reg
i = ωi

∑
n

A
(n)
α

n!c2n
s

H(n)
i,α

[
a

(n)
0,α +

(
1 − 1

τn,α

)
a

(n)
1,α

]
, (C15)

with A
(n)
α being the number of times each Hermite tensors appears in the expansion. As an example, H(3)

i,xxy appears three times

in the above development since H(3)
i,xxy = H(3)

i,xyx = H(3)
i,yxx . This property is taken into account imposing A(3)

xxy = 3. And, more
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generally,

A(n)
α

2D=
(

n

nx

)
= n!

nx!(n − nx)!
= (nx + ny)!

nx!ny!
, (C16)

3D=
(

n

nx

)(
(n − nx)

ny

)
= (nx + ny + nz)!

nx!ny!nz!
. (C17)

It flows from Pascal’s triangle and pyramid rules (also called binomial and trinomial expansions) using nx , ny , and nz the number
of occurrences of x, y, and z in α = (α1, . . . ,αn), respectively. It should be noted that Eq. (C15) is the most general form of
the regularized collision step, which allows to decouple the relaxation process specific to each Hermite coefficients. A similar
formula was previously given by Shan and Chen [47] where all Hermite coefficients belonging to the same expansion order n

were related by the same relaxation time, i.e., τn,α −→ τn. The latter formulation allows to preserve isotropy properties of the
LBM and is thus preferred.

APPENDIX D: LATTICE STRUCTURES AND RELATED HERMITE TENSORS

Here, the link between lattice structures and Hermite tensors is emphasized. To properly choose which Hermite polynomials
should be taken into account in the expansion of fi’s, the preservation of the orthogonality property of these polynomials, with
respect to the weighted scalar product, is considered [34]. As a reminder, this condition is as follows:

1

(2πrT0)D/2

∫
RD

H(n)
α H(m)

β e−(ξ 2/2rT0) dξ =
∑

i

ωiH(n)
i,αH

(m)
i,β (D1)

with c2
s = rT0. Results concerning some standard and high-order lattice structures are reported in Tables I and II for the 2D and

3D cases, respectively. The convention from [33] was used to describe the properties of each lattice structure: EV
D,Q where D is

the number of physical dimensions, Q is the degree of precision of the quadrature, and V is the number of discrete velocities.
Furthermore, all velocities obtained by cyclic permutations and/or reflections with respect to each axis are omitted for the sake
of clarity.

TABLE I. Description of some common standard and high-order two-dimensional lattice structures (top), and their associated Hermite
tensor basis (bottom). For each lattice structure, the convention EV

D,Q is adopted to summarize all the characteristics of interest, namely, the
number of discrete velocities V , the quadrature order Q, and the number of dimensions D [58]. Furthermore, p stands for the number of
discrete speeds of each velocity group, while their associated weights ωi compose the right part of the table. The last row consists of the value
of the normalization constant (the inverse of the lattice constant cs) needed for the on-grid property of the lattice structure [(ξi,x ,ξi,y) ∈ Z2].
Regarding the Hermite tensors, they are classified into two categories: those belonging to the basis ( ) and those which do not ( ). Lattice
structures data are compiled from [34,61].

Group ξ i p E9
2,5 E17

2,7 E37
2,9

1 (0,0) 1 4/9 (575 + 193
√

193)/8100 0.23315066913235250228650
2 (1,0) 4 1/9 (3355 − 91

√
193)/18000 0.10730609154221900241246

3 (1,1) 4 1/9 (655 + 17
√

193)/27000 0.05766785988879488203006
4 (2,0) 4 1/36 0.01420821615845075026469
5 (2,1) 8 0.00535304900051377523273
6 (2,2) 4 (685 − 49

√
193)/54000 0.00101193759267357547541

7 (3,0) 4 (1445 − 101
√

193)/162000 0.00024530102775771734547
8 (3,1) 8 0.00028341425299419821740

1/cs

√
3

√
5(25 + √

193)/72 1.19697977039307435897239

Lattice H(0) H(1)
x H(2)

xx H(2)
xy H(3)

xxx H(3)
xxy H(4)

xxxx H(4)
xxxy H(4)

xxyy

E9
2,5

E17
2,7

E37
2,9
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TABLE II. Description of some common standard and high-order three-dimensional lattice structures (top), and their associated Hermite
tensor basis (bottom). For each lattice structure, the convention EV

D,Q is adopted to summarize all the characteristics of interest, namely, the
number of discrete velocities V , the quadrature order Q, and the number of dimensions D [58]. Furthermore, p stands for the number of
discrete speeds of each velocity group, while their associated weights ωi compose the right part of the table. The last row consists of the value
of the normalization constant (the inverse of the lattice constant cs) needed for the on-grid property of the lattice structure [(ξi,x ,ξi,y ,ξi,z) ∈ Z3].
Regarding the Hermite tensors, they are classified into two categories: those belonging to the basis ( ) and those which do not ( ). Lattice
structures data are compiled from [58,61].

Group ξ i p E19
3,5 E27

3,5 E39
3,7 E103

3,9

1 (0,0,0) 1 1/3 8/27 1/12 0.032633351764471159466
2 (1,0,0) 6 1/18 2/27 1/12 0.097656833590334574221
3 (1,1,0) 12 1/36 1/54
4 (1,1,1) 8 1/216 1/27 0.028097750290257335627
5 (2,0,0) 6 2/135 0.001045259560430061466
6 (2,1,0) 24 0.005705329016894815990
7 (2,2,0) 12 1/432 0.000611939269829747839
8 (2,2,2) 8 0.000155964159374283722
9 (3,0,0) 6 1/1620 0.000284443251800055207

10 (3,1,1) 24 0.000130698375985191585
11 (3,3,3) 8 0.000001223194501323058

1/cs

√
3

√
3

√
3/2 1.19697977039307435897239

Lattice H(0) H(1)
x H(2)

xx H(2)
xy H(3)

xxx H(3)
xxy H(3)

xyz H(4)
xxxx H(4)

xxxy H(4)
xxyy H(4)

xxyz H(5)
xxyyz H(6)

xxyyzz

E19
3,5

E27
3,5

E39
3,7

E103
3,9

To conclude this Appendix, expressions of the VDFs for the most complex lattice structures described herein (E37
2,9 and E103

3,9 )
are given by

f
(0),2D
i = ωi

[
H(0)

i a
(0)
0 + 1

c2
s

(
H(1)

i,xa
(1)
0,x + H(1)

i,ya
(1)
0,y

)+ 1

2c4
s

(
H(2)

i,xxa
(2)
0,xx + 2H(2)

i,xya
(2)
0,xy + H(2)

i,yya
(2)
0,yy

)
+ 1

6c6
s

(
H(3)

i,xxxa
(3)
0,xxx + 3H(3)

i,xxya
(3)
0,xxy + 3H(3)

i,yyxa
(3)
0,yyx + H(3)

i,yyya
(3)
0,yyy

)
+ 1

24c8
s

(
H(4)

i,xxxxa
(4)
0,xxxx + 4H(4)

i,xxxya
(4)
0,xxxy + 6H(4)

i,xxyya
(4)
0,xxyy + 4H(4)

i,yyyxa
(4)
0,yyyx + H(4)

i,yyyya
(4)
0,yyyy

)]
,

and for the 3D extension,

f
(0),3D
i = f

(0),2D
i + ωi

[
1

c2
s

H(1)
i,za

(1)
0,z + 1

2c4
s

(
H(2)

i,zza
(2)
0,zz + 2H(2)

i,xza
(2)
0,xz + 2H(2)

i,yza
(2)
0,yz

)
+ 1

6c6
s

(
H(3)

i,zzza
(3)
0,zzz + 3H(3)

i,zzxa
(3)
0,zzx + 3H(3)

i,zzya
(3)
0,zzy + 3H(3)

i,xxza
(3)
0,xxz + 3H(3)

i,yyza
(3)
0,yyz + 6H(3)

i,xyza
(3)
0,xyz

)
+ 1

24c8
s

(
H(4)

i,zzzza
(4)
0,zzzz + 4H(4)

i,zzzxa
(4)
0,zzzx + 4H(4)

i,zzzya
(4)
0,zzzy + 6H(4)

i,xxzza
(4)
0,xxzz + 6H(4)

i,yyzza
(4)
0,yyzz

+ 12H(4)
i,xxyza

(4)
0,xxyz + 12H(4)

i,yyxza
(4)
0,yyxz + 12H(4)

i,zzxya
(4)
0,zzxy

)]
.

In the case of f
(1)
i the very same terms, as for the equilibrium part f

(0)
i have to be taken into account.
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