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We compute the free energy of the planar monomer-dimer model. Unlike the classical planar dimer model, an
exact solution is not known in this case. Even the computation of the low-density power series expansion requires
heavy and nontrivial computations. Despite the exponential computational complexity, we compute almost three
times more terms than were previously known. Such an expansion provides both lower and upper bounds for the
free energy and makes it possible to obtain more accurate numerical values than previously possible. We expect
that our methods can be applied to other similar problems.
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I. INTRODUCTION

The exact solution of the close-packed dimer plane model
obtained in [1–3] is a fundamental result in statistical me-
chanics and combinatorics. In particular, it implies that the
number of tilings of an m × n rectangle using dimers grows as
e

G
π

mn, where G ≈ 0.916 is the Catalan constant. Similar results
were later obtained for other shapes (see [4] and references
therein). Applications to physics suggest two natural further
questions: What if the dimension of the lattice is higher (i.e.,
we compute the number of tilings of a hyperrectangle), and
what if we consider tilings using both dimers and monomers
with a fixed proportion. For the first question, we refer the
reader to [5–7] and references therein. The second questions
originates from the study of liquid mixtures on crystal surfaces
in [8]; see also [9] for comparison with experimental data.
Monomer-dimer systems also arise in connection with the
Ising model and the Heisenberg model; see [10, Sec. 5]. For
both these questions, the exact solution is out of reach so far.
However, even finding the answer numerically leads to very
challenging computational problems, because the underlying
combinatorial counting problems are very hard, and even
a small change of the parameters of the problem makes
computations much harder or even unfeasible. For example,
in [11] it is proved that the monomer-dimer tilings counting
problem is #P complete in the sense of theoretical computer
science.

In this paper we will focus on the second question, namely
on the case of planar monomer-dimer tilings with fixed dimer
density. Let us state the problem precisely. We denote by
ap(m,n) the number of tilings of an m × n rectangle by
monomers and dimers with exactly �pmn/2� dimers, where
m,n are positive integers and p ∈ [0,1]. Then p is roughly the
fraction of the area covered by dimers. We are interested in the
limit

f2(p) = lim
n,m→∞

ln ap(mn)

mn
.

In other words, we want to determine the constant λ such that
ap(m,n) ∼ eλmn as a function of p. From the point of view
of statistical mechanics, f2(p) is equal to the negative of the
Helmholtz free energy per lattice site expressed in units of the
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thermal energy kBT . Some lower and upper bounds for f2(p)
were rigorously proved in [12,13]. However, these bounds are
not very tight.

Another approach, taken in a series of papers [14–16] and
independently in [17, IV.A], is to expand this function as a
power series in p (in some of these papers also expansion with
respect to the dimension was discussed). In the former papers,
the authors look for a representation of f2(p) of the form

f2(p) = 1

2
[(2 ln 2 − 1)p − p ln p] − (1 − p) ln(1 − p)

+
∞∑

j=2

ajp
j . (1)

In [17], the representation is of the form (see details in Sec. II)

f2(p) = 1

2
[(2 ln 2 + 1)p − p ln p] +

∞∑
j=2

bjp
j . (2)

Expanding (1 − p) ln(1 − p) into a Taylor series in p, it is
easy to move back and forth between (1) and (2) [see (18)].
An important observation is that aj > 0 and bj < 0 for all
known aj and bj . Under the assumption that this pattern
holds for all j , truncations of (1) and (2) provide lower
and upper bounds for f2(p), respectively. Thus, computing
more terms of these series would result in tighter bounds
for f2(p).

Previously, the record in the number of computed terms in
(1) and (2) was 23 (i.e., from a2 until a24) obtained in [16,
Table II]. This result is highly nontrivial, because the under-
lying combinatorial problem has exponential complexity, so
the cost of every next term is usually higher by some factor.
In this paper, we compute 63 terms (from a2 to a64; see
Table I), i.e., almost three times more than was previously
possible.

The contribution of our paper is twofold. First, our approach
allows us to compute significantly more terms for both series
(1) and (2) than were previously known and, combining them,
we obtain very accurate values of f2(p). Moreover, we provide
additional support for the important conjecture that aj > 0
and bj < 0 for all j ≥ 2. Second, we show how methods of
computer algebra (guessing, modular computation, etc.) can
be applied to study models in statistical mechanics. We expect
that our methods can be used in other problems of this type
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TABLE I. Values of ak .

k ak k ak k ak

2 1
16 23 4312434281365

17803292276948992 44 18487601206244410582171859
292772819290992435013642878976

3 1
192 24 5789230773063

25895697857380352 45 74150661042096992710148129
1225560638892526472150132981760

4 7
1536 25 69044819053441

337769972052787200 46 297604910587450946018199331
5125071762641474338082374287360

5 41
10240 26 272097812497681

1463669878895411200 47 1194303993371769853836734501
21411410919479937234655252578304

6 181
61440 27 1068966474984721

6323053876828176384 48 4789513328571295127284133845
89369367316090172805517575979008

7 757
344064 28 601281977474899

3891110078048108544 49 19188774086998950351884051009
372689276467099444040030742380544

8 3291
1835008 29 16672616519735441

117021532717594968064 50 76803645872757902332578961121
1552871985279581016833461426585600

9 14689
9437184 30 66545602395606901

501520854503978434560 51 307176141884436645170078617001
6465018061163969947633186347417600

10 64771
47185920 31 267471214350929957

2144433998568735375360 52 1228026136368811312663436458705
26894475134442114982154055205257216

11 276101
230686720 32 1080431496491179115

9149585060559937601536 53 4909003176336757275553467075425
111796641735328007376797249088520192

12 1132693
1107296256 33 4374403039126240385

38959523483674573012992 54 19627584575160129028816787257753
464386050285208646026696265444622336

13 4490513
5234491392 34 17705045340400677607

165577974805616935305216 55 78505240133588264624896189049521
1927640208731054757091946762222960640

14 17337685
24427626496 35 71484177460946258777

702452014326859725537280 56 314123632091141305526902518303973
7996137162143634547936964346998947840

15 65867621
112742891520 36 287529593953850293471

2975090884207876484628480 57 1257288843192384664389299749835521
33147623144886339580538688565741092864

16 249437227
515396075520 37 1151710503160001680385

12580384310364734849286144 58 1677695623930304081656255827713551
45775289104843040373124855638404366336

17 955110593
2336462209024 38 4596336312298962012663

53117178199317769363652608 59 20147683002193594117896886735926057
568577275196997764634603470034917392384

18 3740591431
10514079940608 39 18298456303802689186745

223953508083610054614319104 60 26879884904186172110556704720248631
784244517513100365013246165565403299840

19 15039656569
47004122087424 40 72784234597284215364691

942962139299410756270817280 61 322682332818808295011085893297500673
9729948929145584189655867681252122296320

20 61727254227
208907209277440 41 289698911730110389042529

3965276688335983693036257280 62 1290942327848947576849492154270349133
40217122240468414650577586415842105491456

21 255640084561
923589767331840 42 1155125274097244765650075

16654162091011131510752280576 63 5163832046366445947035366917883833877
166142865649148204785992652078560829243392

22 50273131919
193514046488576 43 4616317010648384103125561

69866240967168649264619323392 64 983546099095446058993477411998292607
32667107224410092492483962313449748299776

(monomer-polymer mixtures, other types of lattices, etc.) in
order to push computational limits further.

The rest of the paper is organized as follows. In Sec. II
we collect some known results and approaches that connect
power series expansion of f2(p) to the combinatorial data.
Section III contains Theorem 1, a main combinatorial ingredi-
ent of our computation. Section IV contains the description of
our algorithm together with all computer algebra machinery
used to speed it up. Finally, in Sec. V we describe our
implementation, provide numerical results, and compare them
to those of previous work.

II. REDUCTION TO GRAND-CANONICAL
PARTITION FUNCTION

For every fixed m and n, consider the grand-canonical
partition function

�m,n(z) =
�mn/2�∑

s=0

a2s/mn(m,n)zs. (3)

We consider a thermodynamic limit of �m,n(z) (its existence
is proved in [10, VIII]),

�(z) = lim
m,n→∞[�m,n(z)]

1
mn , and ln �(z)

= lim
m,n→∞

ln �m,n(z)

mn
. (4)

Since �′
m,n(0) = 2mn − m − n, ln �(z) = 2z + O(z2). Theo-

rems [10, 8.8A, 8.8B] rewritten in our notation [i.e., replacing
μ with ln z, g(μ) with ln �(z), ρ with p

2 , and h(ρ) with f2(p)]
state that

f2(p) = inf
z∈R+

{
− p

2
ln z + ln �(z)

}
. (5)

We compute z, where the expression −p

2 ln z + ln �(z) is
minimal,

d

dz

[
− p

2
ln z + ln �(z)

]
= − p

2z
+ [ln �(z)]′ = 0;

hence,

p(z) = 2z[ln �(z)]′. (6)

Since �(z) = 1 + 2z + O(z2), then 2z[ln �(z)]′ = 4z +
O(z2). Hence, there exists a unique compositional inverse z(p)
of p(z) and z(p) is a formal power series (see [18, Theorem
1.8]). Moreover, z(p) = p

4 + O(p2).
Due to [10, Eq. 8.24], ln �(z) is a convex function in ln z for

all z ∈ R+. Then Eq. (5) can be seen as a fact that −f2(p) as a
function of p

2 is a Legendre transform of ln �(z) as a function
of ln z (for introduction to Legendre transform, see [19] and
[20, Sec. 14]). Involutivity of Legendre transform (see [20,
Sec. 14.C]) implies that

ln �(z) = sup
p∈R

{
p

2
ln z + f2(p)

}
, (7)
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and the supremum on the right-hand side is reached at
p = p(z). On the other hand, we can find this p also by
differentiation:

d

dp

[
p

2
ln z + f2(p)

]
= ln z

2
+ f ′

2(p) = 0.

Hence, f ′
2[p(z)] = − ln z

2 . Substituting z(p) into z, we obtain
f ′

2(p) = − 1
2 ln z(p). Integrating with respect to p, and using

the initial condition f2(0) = 0, we conclude that

f2(p) = 1

2

∫ p

0
z(p)dp, where p(z) = 2z[ln �(z)]′. (8)

The same formula is obtained in [17, IV.A] using another
argument.

Finally, we deduce expansion (2) from (8). Using z(p) =
p

4 + O(p2), we conclude that

f2(p) = 1

2

∫ p

0
ln

[p

4
+ O(p2)

]
dp

= 1

2

∫ p

0
[ln p − 2 ln 2 + O(p)]dp

= 1

2
ln p − 1

2
p − p ln 2 +

∞∑
k=2

akp
k.

The latter expression is exactly of the same form as the right-
hand side in (2).

III. COMPUTATION OF �(z) USING �m,n(z)

The goal of the present section is to prove the following the-
orem, which provides a way to compute the thermodynamical
limit ln �(z).

Theorem 1. For every integer N ≥ 4,

ln �(z) − (SN − 3SN−1 + 3SN−2 − SN−3) = O(zN−1), (9)

where SM = ∑
m+n=M ln �m,n(z).

In what follows, we will use some properties of the Mayer
expansion following [21, Sec. 2.2].

Let R∞,∞ be the first quadrant of the plane. We denote the
m × n rectangle whose lower-left corner is the origin by Rm,n.
By definition, Rm,n ⊂ R∞,∞ for all m and n. We denote the
set of all dimers in Rm,n by Dm,n. By definition, the cardinality
of Dm,n is 2mn − m − n, and Dm,n ⊂ D∞,∞ for every m,n ∈
Z>0. For d1,d2 ∈ D∞,∞, we introduce W (d1,d2) by

W (d1,d2) =
{

1,if d1 and d2 do not overlap,
0,if d1 and d2 overlap.

Using this notation, the grand-canonical partition function
introduced in (3) can be written as (see formula (1.1a) in [21])

�m,n(z) =
∞∑

s=0

zs

s!

∑
(d1,...,ds )∈Ds

m,n

⎡⎣ ∏
1≤i<j≤s

W (di,dj )

⎤⎦, (10)

where Ds
m,n stands for the set of all ordered s-tuples of

elements of Dm,n. Unlike (3), formula (10) includes an infinite
sum. However, since among all �mn/2� + 1 dimers there
exists at least one pair of overlapping dimers, all terms with

s > �mn/2� vanish. We introduce F (d1,d2) = W (d1,d2) − 1
for every d1,d2 ∈ D∞,∞. Then (10) can be rewritten as (see
formula (2.7) in [21])

�m,n(z) =
∞∑

s=0

zs

s!

∑
d=(d1,...,ds )∈Ds

m,n

∑
G∈Gs

F (d,G), where F (d,G)

=
∏

(ij )∈E(G)

F (di,dj ), (11)

and Gs denotes the set of all graphs on {1, . . . ,s}, and E(G)
is the set of edges of a graph G. Changing the order of
summation, we obtain �m,n(z) = ∑∞

s=0
zs

s!

∑
G∈Gs

Wm,n(G),
where

Wm,n(G) =
∑

d∈Dm,n

F (d,G). (12)

In [21, p. 1161] it is shown that [see formula (2.11a)]

ln �m,n(z) =
∞∑

s=0

zs

s!

∑
G∈Cs

Wm,n(G), (13)

where Cs is the set of all connected graphs on {1, . . . ,s}. The
above calculations work in quite general context and do not
exploit the structure of Dm,n. Now we will perform a more
careful analysis of (12) and (13) in our setting.

For a tuple d = (d1, . . . ,ds) ∈ (Dm,n)s , we construct a graph
with vertices labeled 1, . . . ,s such that there is an edge between
i and j if and only if di and dj overlap. We call a tuple d
connected if the corresponding graph is connected. The set of
connected tuples in Dm,n of length s is denoted by (Dm,n)sc.
For d ∈ (Dm,n)sc, we define the height [the width] of d to be
the number of rows [columns] having nontrivial intersection
with at least one of the dimers in d. We denote it by h(d)
[w(d)]. Two tuples d1 = (d1

1 , . . . ,d1
s ) and d2 = (d2

1 , . . . ,d2
s )

are said to be translation equivalent if there exists a translation
π of the plane by some vector such that π (d1

i ) = d2
i for every

1 ≤ i ≤ s. This is an equivalence relation, and we write it as
d1 ∼ d2.

The following facts follow straightforwardly from the
definitions.

Lemma 1.
(i) For every tuple (d1, . . . ,ds) ∈ (Dm,n)s \ (Dm,n)sc, the

corresponding summand in (12) vanishes.
(ii) If d1 = (d1

1 , . . . ,d1
s ) and d2 = (d2

1 , . . . ,d2
s ) are trans-

lation equivalent, then F (d1,G) = F (d2,G) for every graph
G ∈ Gs .

(iii) For every connected tuple d ∈ (D∞,∞)sc, the number
of tuples d′ ∈ (Dm,n)sc such that d ∼ d′ is exactly

[m − h(d) + 1]+[n − w(d) + 1]+,

where (x)+ := max(x,0).
We denote by Ts a set of tuples in (D∞,∞)sc that contains

exactly one representative of every equivalence class of
translation-equivalent connected tuples. Due to Lemma 1, we
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can rewrite (12) as

Wm,n(G) =
∑

d∈Dm,n

F (d,G)
(i)=

∑
d∈(Dm,n)s

c

F (d,G)

(ii)=
∑
d∈Ts

⎡⎣ ∑
d′∈Ds

m,n,d′∼d

F (d′,G)

⎤⎦
(iii)=

∑
d∈Ts

[m − h(T ) + 1]+[n − w(T ) + 1]+F (d,G).

(14)

For d ∈ (Dm,n)sc, we define W(d) = ∑
G∈Cs

F (d,G). Using
this notation and (14), we can rewrite (13) as

ln �m,n(z) =
∞∑

s=0

zs

s!

∑
G∈Cs

Wm,n(G)

=
∞∑

s=0

zs

s!

∑
G∈Cs

{ ∑
d∈Ts

[m − h(d) + 1]+

× [n − w(d) + 1]+F (d,G)

}

=
∞∑

s=0

zs

s!

∑
d∈Ts

[m − h(d) + 1]+

× [n − w(d) + 1]+W(d).

Hence,

ln �m,n(z) =
∞∑

s=0

zs

s!

∑
d∈Ts

[m − h(d) + 1]+[n − w(d) + 1]+

·W(d). (15)

Now we want to obtain a similar expression for ln �(z)
defined in (4):

ln �(z) = lim
m,n→∞

ln �m,n(z)

mn
=

∞∑
s=0

zs

s!

∑
d∈Ts

lim
m,n→∞

×
{

[m − h(d) + 1]+[n − w(d) + 1]+
mn

}
W(d).

Since lim
m,n→∞

[m−h(d)+1]+[n−w(d)+1]+
mn

= 1, we obtain

ln �(z) =
∞∑

s=0

zs

s!

∑
d∈Ts

W(d). (16)

We are now ready to deduce Theorem 1 from (15) and (16).
Lemma 2. For every N ∈ Z>0,

SN =
∞∑

s=0

zs

s!

∑
d∈Ts

(
[N − w(d) − h(d) + 3]+

3

)
W(d).

Proof. By Lemma 1, the coefficient of zs

s!W(d) is equal to∑
m+n=N

[m − h(d) + 1]+[n − w(d) + 1]+.

If N < p := w(d) + h(d), the above expression is equal to
0 = ([N−w(d)−h(d)+3]+

3

)
. Otherwise, it is equal to

N−p+1∑
k=1

k(N − p + 2 − k)

= (N − p + 2)

(
N−p+1∑

k=1

k

)
−

(
N−p+1∑

k=1

k2

)
.

It can be verified by direct computation using the formula
for the sum of squares that the latter expression is equal to(
N−w(d)−h(d)+3

3

)
. This proves the lemma. �

Fix some s ≤ N − 2 and d ∈ Ts . We will prove that all
summands of the form zs

s!W(d) on the left-hand side of (9)
cancel. Since d is connected, it contains at least w(d) − 1
horizontal dimers and at least h(d) − 1 vertical dimers. Hence,
w(d) + h(d) − 2 ≤ s ≤ N − 2; so p := w(d) + h(d) ≤ N .
This inequality together with Lemma 2 and (16) implies that
the coefficient of zs

s!W(d) on the left-hand side of (9) is equal to

1 −
[(

N − p + 3

3

)
− 3

(
N − p + 2

3

)
+3

(
N − p + 1

3

)
−

(
N − p

3

)]
.

Expanding the brackets, we verify that this expression is zero
for every N − p ≥ 0. This concludes the proof of Theorem 1 .

IV. DESCRIPTION OF THE ALGORITHM

A. General algorithm

Combining (8) and Theorem 1, we obtain Algorithm 1, the
first version of an algorithm for computing the first n terms of
f2(p). Note that

(i) line 1 is correct due to Theorem 1;
(ii) line 1 is correct due to (8);
(iii) procedure ComputeTheta is described in Sec. IV B;
(iv) procedure InversePowerSeries[a(z)] computes a

power series z(p) given a power series p(z) (see [18, Theorem
1.8]).

Algorithm 1: Nonoptimized version of the algorithm
Input: Nonnegative integer n.
Output: f2(p) modulo O(pn).

1 for i from 1 to n+1
2 do

2 [Θi,1(z), . . . ,Θi,n0+1−i(z)] := ComputeTheta(i, n0 + 1 − i);
3 for j from 1 to n0 + 1 − i do
4 Θj,i(z) := Θi,j(z);

5 for k from 0 to 3 do
6 Sn+1−k :=

i+j=n+1−k

ln Θi,j(z);

7 ln Θ(z) := Sn+1 − 3Sn + 3Sn−1 − Sn−2;
8 z(p) := InversePowerSeries 2z (ln Θ(z)) ;
9 f2(p) := − 1

2 ln z(p) dp;
10 return f2(p);

Several improvements can be made:
(i) Computation of ComputeTheta(i,j ) deals with a very

long vector of possibly very large numbers (see Sec. IV B).
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1
2
3
4

FIG. 1. F
(6)
5 .

In order to fit into the memory, we perform computa-
tion modulo several primes and use Chinese remaindering
and rational reconstruction to obtain the final result (see
Sec. IV D).

(ii) The output of Algorithm 1 with input n [let us call it
g̃n(p)] coincides with f2(p) only modulo O(zn). Nevertheless,
the first few nonzero coefficients of f2(p) − g̃n(p) turn out to
satisfy linear recurrence relations with respect to n, so they can
be computed easily. This allows us to “correct” these terms
and obtain a more precise result. See Sec. IV C for further
details.

(iii) Since we need only the first n terms of �(z), it is
sufficient to compute only the first n terms for every computed
�i,j (z). Therefore, all intermediate polynomials can also be
truncated.

With these improvements, we obtain the final version of
our algorithm. For more details, see the source code (see
Sec. V A).

B. Computation of �m,n(z)

We will compute �m,n(z) using an optimization of the
transfer-matrix method (see [22, Sec. 4.7]). Fix a positive
integer m. Let n be a nonnegative integer, and 0 ≤ N < 2m.
Viewing N as a vector of m bits, we denote the ith bit of N

by N [i]. We denote by F
(m,n)
N the polygon obtained from the

m × n rectangle by adding one additional cell (we will call it
an external cell) to the end of every row such that N [i] = 1,
where i is the index of the row. For example, F

(4,6)
5 is shown

in Fig. 1. In particular, F
(m,n+1)
0 is the same as F

(m,n)
2m−1 .

We introduce polynomial P
(m,n)
N (z) to be a generating

function for the number of tilings of F
(m,n)
N such that every

external cell is covered by a horizontal dimer, i.e., P (m,n)
N (z) =∑m(n+1)

j=0 a
(m,n)
N,j zj , where a

(m,n)
N,j is the number of monomer-

dimer tilings of F
(m,n)
N with exactly j dimers such that every

external cell is covered by a horizontal dimer. We will call such
tilings rigid. In particular, �m,n(z) = P

(m,n)
0 (z). We denote by

P (m,n) the vector [P (m,n)
0 (z), . . . ,P (m,n)

2m−1 (z)].
Remark 1. It can be shown (using techniques from [23,

Sec. V.6.]) that there exists a matrix M with entries in
Z[z] such that P (m,n+1) = MP (m,n). Hence, �m,n(z) can be
computed as the first coordinate of MnP (m,0). However, in our
computations m can be any natural number up to 30, so M can
have 230 × 230 = 260 ≈ 1018 entries. Luckily, the matrix M is
highly structured (see [24]), so there exists a faster algorithm
for computing P (m,n+1) from P (m,n).

We present an algorithm (Algorithm 2) that computes
P (m,n+1) from P (m,n) in place [i.e., with O(1) additional space]

using O(m2m) arithmetic operations. We denote the number
of ones in the binary representation of N by BinDig(N ).

Algorithm 2: Computing P (m,n+1) from P (m,n).

Input: Vector P = (P (m,n)
0 (z), . . . , P (m,n)

2m−1 (z)).
Output: Vector P = (P (m,n+1)

0 (z), . . . , P (m,n+1)
2m−1 (z)).

1 for N from 0 to 2m−1 − 1 do
2 Swap values P [N ] and P [2m − 1 − N ];

3 for j from 1 to m do
4 for N from 0 to 2m − 1 do
5 if N [j] = 0 then
6 P [N ] += P [N + 2m−j];

7 if N [j] = 0 and j > 1 and N [j − 1] = 0 then
8 P [N ] += z · P [N + 2m−j + 2m−j+1];

9 for N from 0 to 2m − 1 do
10 d := BinDig(N);
11 P [N ] := zd · P [N ];

12 return P ;

Proposition 1. Algorithm 2 is correct.
Proof. We will prove by induction on j that after the

j th iteration of the loop in line 2 (for j = 0 it means the
moment just before the first iteration) P̃N := zBinDig(N)P [N ] is
the generating polynomial for the number of monomer-dimer
tilings of F

(m,n)
N satisfying the following Aj property.

Aj property. The tiling is rigid, and the rightmost cell in
rows with the number greater than j is covered by a horizontal
dimer.

First we prove the base case, where j = 0. Due to the loop
in line 2, P [N ] = P

(m,n)
2m−1−N (z). Since the binary representation

of 2m − 1 − N can be obtained from the binary representation
of N by inverting all m bits, adding a horizontal dimer to
the end of every row without an external cell provides us a
bijection between the set of rigid tilings of F

(m,n)
2m−1−N and the

set of tilings of F
(m,n+1)
N with A0 property (see Fig. 2). This map

adds BinDig(N ) new dimers, so the corresponding generating
polynomials differ by the factor zBinDig(N).

Assume now that j > 0. For N such that N [j ] = 1,
properties Aj−1 and Aj are the same, so the corresponding
component of vector P should not be changed. Assume that
N [j ] = 0. We denote the last cell of the j th row in F

(m,n+1)
N

by c. Consider an arbitrary monomer-dimer tiling of F
(m,n+1)
N

with property Aj . There are three options for c.
(1) Cell c is covered by a horizontal dimer. Then this

tiling has also property Aj−1 and is already counted in
zBinDig(N)P [N ].

(2) Cell c is covered by a monomer. Replacing this
monomer with a horizontal dimer, we establish a bijection

1
2
3
4

1
2
3
4

FIG. 2. Tilings of F
(6)
5 to tilings of F

(7)
10 with property A0.
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1
2
3
4

c

1
2
3
4

FIG. 3. Tilings of F
(7)
8 with property A3 to tilings of F

(7)
10 with

property A2.

between such tilings of F
(m,n)
N and tilings of F

(m,n+1)
N+2m−j with

property Aj−1 (see Fig. 3). Due to the induction hypothesis,
the generating polynomial for the latter is P̃N+2m−j . Hence,
in order to take into account tilings where c is covered by a
monomer, we should add 1

z
P̃N+2m−j to P̃N . This is equivalent

to P [N ] += P [N + 2m−j ] in line 2.
(3) Cell c is covered by a vertical dimer. This dimer cannot

cover also the cell below c due to Aj property. Hence, it covers
c and the cell above, say d, so N [j − 1] = 0. Replacing this
dimer with two horizontal dimers, we establish a bijection
between such tilings of F

(m,n)
N and tilings of F

(m,n+1)
N+2m−j +2m−j+1

with property Aj−1 (see Fig. 4). These cases are counted in
line 2.

Since the An property is just rigidness, after multiplication
by an appropriate degree of z in line 2 we obtain the vector
P (m,n+1). �

Remark 2. Algorithm 2 can be parallelized. Consider an
iteration of the loop in line 2 with j > 0. Then, during the
iteration, coordinates of P [N ] with different N [0] do not
interact, so the whole vector can be divided into two halves
(depending on N [0]), and these halves can be processed by
separate threads. Taking into account N [1], we can divide the
work between four threads, and so on. In our computation,
we used 32 threads (so we divided the work based on
N [0], . . . ,N[4]).

Finally, using Algorithm 2, we can write a pseudocode for
procedure ComputeTheta(m,n); see Algorithm 3.

Algorithm 3: Compute Theta
Input: Natural numbers m and n.
Output: Vector of polynomials [Θm,1(z), . . . ,Θm,n(z)].

1 result := [];
2 P := zero vector of polynomials in z of length 2m;
3 P [0] := 1;
4 for i from 1 to n do
5 Apply Algorithm 2 to P ;
6 Append P [0] to result;

7 return result;

1
2
3
4

c
d

1
2
3
4

FIG. 4. Tilings of F
(7)
8 with property A3 to tilings of F

(7)
14 with

property A2.

GLEB POGUDIN

a

b

FIG. 5. “Large” and “thin” polyomino for N = 15.

C. Correction terms

We can compute more terms of �(z) and, consequently, of
f2(p) if we examine carefully the right-hand side of (9). Below
we write the first nonzero term of the right-hand side of (9) for
N = 4,5, . . .:

11z3,−38z4,115z5,−309z6,759z7,−1748z8,3847z9,

−8203z10,17115z11, . . . .

Denote the sequence of coefficients by {an}∞n=1. Using the
GUESS package ([25], for introduction to guessing, see [26,
Sec. 4]), we find that this sequence (we computed first 50
terms) satisfies the following recurrence relation:

an+5 = −6an+4 − 14an+3 − 16an+2 − 9an+1 − 2an. (17)

Using (17), we can compute an easily, so we get one more
correct term of �(z). Instead of giving a rigorous proof of
(17), which is long and involved, we would like to explain
informally why it is natural to expect such a relation.

Formula (16) shows that the coefficient of zs in �(z) is a
sum of weights of all connected polyominos constructed from
s overlapping dimers. On the other hand, the argument after
Lemma 2 shows that the coefficient of zs in

SN − 3SN−1 + 3SN−2 − SN−3

is a sum of weights over all connected polyominos constructed
from s overlapping dimers with the sum of height and width at
most N − 2. Hence, the coefficient of zN−1 in their difference
is a sum of weights of all connected polyominos constructed
from N overlapping dimers with the sum of the height and
the width exactly N − 1 (the sum cannot be larger for a
connected polyomino). These requirements on a polyomino
are quite restrictive, by a combinatorial argument one can
see that all such polyominos are “of a similar shape” as
those in Fig. 5. More precisely, there exist two cells (a and
b in the figure), maybe coinciding, such that each of them
is connected to two sides of an m × n (m + n = N − 1)
rectangle by straight lines, and a and b are connected by a
path such that at each step the path becomes closer to b (all
such paths have the same length). Counting such polyominos is
a standard combinatorial problem (similar counting problems
for polyominos are discussed in [22, Sec. 4.7.5]) that is very
likely to result in a formula satisfying a linear recurrence.

Moreover, the same argument shows that there also should
be a combinatorial description and a similar recurrence for the
second nonzero term in the left-hand side of (9), the third, the
fourth, and so on. Our data were enough to discover and verify
five formulas of this type [from the first until the fifth nonzero
term in (9)]. This is the recurrence for the second nonzero
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FIG. 6. Plots of L64(p) and U64(p): (a) on [0,1]; (b) on [0.9,1].

coefficient,

bn+7 = −9bn+6 − 34bn+5 − 70bn+4 − 85bn+3

− 61bn+2 − 24bn+1 − 4bn.

We omit the others because they are too large. However, in
our program we do not use recurrences themselves, but the
closed-form expression for their solutions. This allows us to
compute five more terms of �(z) and, consequently, of f2(p).

D. Modular computation

The largest n we used as an input of the algorithm in our
computation was 65. Taking into account correction terms, this
means that ComputeTheta is invoked with parameters 30 and
31. Hence, the vector P in Algorithm 2 will have 230 ≈ 109

entries. Every entry is a polynomial (in our computations it is
a truncated polynomial with only 70 terms); hence, in total we
have 7.5 × 1010 integers at every moment. Since these integers
represent the number of tilings of a rectangle, they grow fast, so
storing them all exactly would require at least several terabytes
of memory. However, the final result is a list of coefficients
of a power series for f2(p), that is just 65 rational numbers.
A standard way to deal with such a situation (see [26, Sec.
4.2]) is to use computations modulo prime p for intermediate
steps. If p ≤ 231 − 1, then all numbers will fit into 32 bits,
and the whole vector P will occupy just 270 GB. Repeating
this computation for different primes, we can reconstruct the
coefficients of f2(p) using the Chinese remaindering (see [27,
Sec. 5.4]) and the rational reconstruction procedure (see [27,
Sec. 5.10]).

The question is how many primes we should take. We start
with 231 − 1 and add new prime numbers until the result
of the reconstruction stabilizes. It turned out that 15 prime
numbers (from 231 − 1 = 2147483647 down to 2147483269)
are enough; however, we computed several more in order to
make sure that the result is correct. The correctness of the
result is further justified by the comparison in Sec. V.

V. NUMERICAL RESULTS AND IMPLEMENTATION

A. Implementation

We implemented most of our algorithm in SAGE except the
function ComputeTheta, which was implemented in C [28].
Computation modulo one prime with n = 5 took about two
days using 32 cores and 270 GB of memory. Since we need
15 primes, the whole computation took about one month.

B. Numerical results

Table I contains ak’s [defied in (1)] obtained by our
computation. Expanding (1 − p) ln(1 − p) into Taylor series
at p = 0, we obtain the following formula expressing bk

defined in (2) via ak:

bk = ak − 1

k(k − 1)
. (18)

We introduce following truncated versions of (1) and (2):

Un(p) = 1

2
[(2 ln 2 + 1)p − p ln p] +

n∑
j=2

bjp
j ,

Ln(p) = 1

2
[(2 ln 2 − 1)p − p ln p] − (1 − p) ln(1 − p)

+
n∑

j=2

ajp
j .

All computed 63 values ak are positive; all computed 63
values bk are negative. Assuming that this pattern persists, we
can write

Ln(p) ≤ f2(p) ≤ Un(p).

This provides us with lower and upper bound for f2(p). We
plot both L64(p) and U64(p) together for p ∈ [0,1] on Fig. 6(a).
The dashed curve on this plot is −p ln p − (1 − p) ln(1 − p),
which is the negative value of the free energy for monomer-
monomer problem with two different types of monomers. We
also plot both L64(p) and U64(p) for p ∈ [0.9,1] in Fig. 6(b);
the dashed line is y = f2(1) = G

π
.

Plots of L64(p) and U64(p) in Fig. 6(a) are indistinguish-
able; the difference between them in Fig. 6(b) is visible
only very close to p = 1. On Fig. 6(b) we also see that the
lower bound is much more accurate at p = 1. The difference
U64(p) − L64(p) does not exceed 2.3 × 10−16 for p ∈ [0,0.5]
and 2.1 × 10−6 for p ∈ [0,0.9]. Note that for U24(p) − L24(p)
(these two bounds could be computed using results of [16])
these numbers are 9.3 × 10−11 and 7.5 × 10−4, respectively,
so our bound reduces the error by several orders of magnitude.

C. Comparison with [29]

We already compared our result to the previously known
best bound used power series expansion from [16]. However,
another method of computing lower and upper bounds for
f2(p) based on the empirically observed inequality [29, Eq. 16]
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TABLE II. Comparison with [29]. Digits in square brackets mean the corresponding digit in lower and upper bounds.

p [29] Our estimate

10/20 0.633195588930[4 − 5] 0.6331955889305251415416[5 − 6]
11/20 0.650499726669[5 − 8] 0.6504997266695759205[7 − 8]
12/20 0.66044120984[2 − 5] 0.66044120984322136[2 − 4]
13/20 0.6625636470[2 − 4] 0.66256364703101[3 − 4]
14/20 0.65620036[0 − 1] 0.656200361027[4 − 5]
15/20 0.64039026[3 − 5] 0.6403902642[8 − 9]
16/20 0.6137181[3 − 4] 0.613718137[2 − 7]
17/20 0.573983[2 − 3] 0.573983[2 − 3]
18/20 0.51739[1 − 2] 0.51739[1 − 3]
19/20 0.435[8 − 9] 0.435[8 − 9]

for strips was proposed in [29]. In this paper bounds for p =
1

20 , . . . , 20
20 were computed (see [29, Table II]). We compare

our results with this computation in Table II. The table shows
that for p close to 1 Kong’s results may be more accurate.
On the other hand, our bound is much more precise for
p ≤ 17

20 .
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