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Filter method without boundary-value condition for simultaneous calculation of eigenfunction
and eigenvalue of a stationary Schrödinger equation on a grid
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The paper presents a method for simultaneous computation of eigenfunction and eigenvalue of the stationary
Schrödinger equation on a grid, without imposing boundary-value condition. The method is based on the filter
operator, which selects the eigenfunction from wave packet at the rate comparable to δ function. The efficacy
and reliability of the method are demonstrated by comparing the simulation results with analytical or numerical
solutions obtained by using other methods for various boundary-value conditions. It is found that the method
is robust, accurate, and reliable. Further prospect of filter method for simulation of the Schrödinger equation in
higher-dimensional space will also be highlighted.
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I. INTRODUCTION

Computations of eigenfunctions and eigenvalues of the
stationary Schrödinger equation have been of great interest
since the birth of quantum mechanics [1]. Solutions of the
Schrödinger equation have many important applications in
atomic and molecular physics, high energy physics, nuclear
physics, and solid state physics; see, e.g., Refs. [2–5]. In
general, the eigenfunction and eigenvalue problems of the
stationary Schrödinger equation can be written in the form

Hφn = Enφn, (1)

where H is the stationary Hamiltonian and En and φn

are eigenvalue and eigenfunction, respectively. Having the
solutions of the eigenvalues and eigenfunctions, one can
further explore the properties of the physical system in which
we are mainly interested. Also, it is possible to predict physical
and chemical properties by purely ab initio calculations [6,7].
This explains the importance of the Schrödinger equation and
its various applications in physics and chemistry.

Though the Schrödinger equation depicted in Eq. (1)
seems simple, the actual computations of real physical or
chemical problems are enormous challenges. Even modern
computers often have trouble handling the excessive storage
and computing times that are required. The reasons for these
difficulties are manifold; apart from very few exceptions, such
as the hydrogen atom, it is in general not possible to obtain
the analytic solutions. For more complicated systems, one is
forced to rely on a couple of compromises and approximations
in order to keep the problem solvable. This leads into a
simplified model of the Schrödinger equation such that it can
be solved numerically.

To the best of our knowledge, the methods that are usually
used to solve the stationary Schrödinger equation might be
categorized into four, i.e., (i) the direct integration of stationary
Schrödinger equation on grid, (ii) the diagonalization method,
(iii) the relaxation method, and (iv) the spectral method.

The direct integration of the stationary Schrödinger equa-
tion utilizes the solutions at the boundary as a starting
point (see, e.g., Refs. [8,9]). To obtain the solutions at the
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intermediate position, one has to propagate the solution at
the boundary outward or inward. If there are two boundary
conditions that have to be satisfied, the propagated solutions
from the inward or outward direction must be matched in order
to satisfy the continuity condition. Typically, an eigenvalue
is estimated initially, and the converged eigenenergy and
eigenfunction are obtained after a certain number of iteration,
depending on the “stiffness” level of the problem of interest.

Methods in the second category rely on diagonalization
of the Hamiltonian matrix which produces a complete set of
desired eigenvalues (see, e.g., Refs. [10,11]). Limitations may
exist if the eigenfunctions are expected to have very specific
behavior due to complexity of the potential. To represent such
a function, the number of basis functions to be used must
be enormously large, and hence the storage and CPU time
will be very demanding. Having obtained the eigenvalues, the
eigenfunctions can be easily reconstructed from all involved
basis functions.

The third category is based on the relaxation of the
wave packet (see, e.g., Refs. [12–14]). This is realized by
propagating the wave packet in imaginary time. As an arbitrary
wave packet can be written as ψ(r,t) = ∑

n anφn(r)e−iEnt ,
replacing t with −iτ can lead into decay of all states, except
the state with lowest negative energy. As a result, the bound
states grow exponentially with the biggest rate being on that
having the deepest energy level, i.e., the ground state. To obtain
higher excited eigenfunctions, the orthogonalization procedure
is invoked which filters out the lower eigenfunction and hence
forces the system to relax to an excited state [13].

The fourth category is the spectral method that utilizes the
spectral properties of time evolution of the Schrödinger equa-
tion (see, e.g., Ref. [15]). The method requires the propagation
of an initial wave packet to very long time, and computation
of the correlation function PI (t) = 〈ψ(r,0)|ψ(r,t)〉 in each
time step. By Fourier transforming the correlation function,
one can obtain all eigenvalues that can be determined from the
positions of sharp local maxima of |PI (E)|2. The positions of
the peaks show the position of desired eigenvalues En.

In this paper, we propose the filter method for simultaneous
computation of eigenfunction and eigenvalue of the stationary
Schrödinger equation on a grid. The idea behind the method
is that any function or wave packet within a defined space
can be expressed as a superposition of all eigenfunctions
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such that, by applying an appropriate operator, one can
basically select the specific eigenfunction from the wave
packet. To pickup the eigenfunction, we implement the filter
operator, which is defined as F = 1/(H − En). It is expected
that only the selected eigenfunction with E = En survives,
while other eigenfunctions whose energies are not matched,
E �= Em, decease. Since the operator F acts globally on the
space, the solution of the eigenfunction is independent of
the boundary-value condition and hence determined by the
Hamiltonian and the eigenenergy only. The present method
thus not only provides a robustness in solving the eigenfunction
and eigenvalue problem, but also a way to tackle the boundary-
value problems.

Note that the filter method developed here is different
from the filter method usually employed in image or signal
processing. In signal processing, for example, filters can be
devices, methods, processes, or mathematical operations that
remove some unwanted frequency or signal components, while
passing and optionally also modifying the others, e.g., high-,
low-, or band pass components (see, e.g., Refs. [16,17]). The
filters thus do not exclusively act in the frequency domain. In
our method, on the contrary, the filter acts globally in a defined
domain but only selects one component.

Our paper is organized as follows. In Sec. II we briefly
review the underlying theory that is used to develop the
method. In Sec. III we discuss the computational procedures
for the 1D problem in a more detailed manner. To demonstrate
the reliability of the method, in Sec. IV we present and discuss
the simulation results of a 1D harmonic oscillator, the radial
Coulomb wave function, and a 1D soft Coulomb potential,
which represent various boundary-value problems in physics.
In the next section, we briefly outline the strategy to implement
the filter method in solving the coupled Schrödinger equation
that usually appears in the many body problem. Finally, in
Sec. VI the conclusions of our work are highlighted.

II. THEORY

The Schrödinger equation in general can be written as
(unless otherwise specified, Hartree atomic units e = m =
h̄ = 1, c = 137 are used thoroughly)

i
∂

∂t
φn(r) = Hφn(r) = Enφn(r), (2)

which provides the solution of φn(r,t) = φn(r)e−iEnt . The
index n refers to either discrete or continuum. The stationary
Hamiltonian H is given by

H = (− 1
2∇2 + V (r)

)
. (3)

Now, any wave packet can be expanded in a set of the respective
eigenfunctions of Hamiltonian H ,

ψ(r) =
∑

n

anφn(r)

=
∑

b

abφb(r) +
∫ ∞

0
dEcacφc(r). (4)

Here the index b stands for bound states, while c stands for
continuum states.

We introduce a filter operator F , which has an explicit form
of

F = 1

H − En

. (5)

Applying the operator F on the wave packet ψ(r), one can
immediately obtain

Fψ(r) = 1

H − En

∑
m

amφm(r)

=
∑
m

amφm(r)δ(Em − En)

= φ̃n(r). (6)

Thus, among all wave packet components, only the eigenfunc-
tion where its eigenenergy is matched with En will survive,
while other components decay. Here, φ̃n(r) refers to a filtered
wave packet whose probability is peaked at φn(r), but is not yet
normalized. Since the survivals of eigenfunctions are related
to the δ function, the decaying rate of unwanted eigenfunctions
would be comparable to the side lobes of the δ function.
Equation (6) thus provides a rapid and robust computation
method of eigenfunction and eigenvalue.

Let’s say E0
n is the initial guess of the eigenvalue that is

assumed to be close to the correct eigenvalue En and φ0
n(r) =

ψ(r) is an initial continuous function; the steps of searching
the eigenfunction and eigenvalue then read

φ̃1
n(r) = ψ(x)

H − E0
n

,

φ1
n(r) = φ̃1

n(r)√∫
d3r|φ̃1

n(r)|2
,

E1
n =

∫
d3r φ1

n(r)Hφ1
n(r),

φ̃2
n(r) = φ1

n(r)

H − E1
n

,

φ2
n(r) = · · · ,

E2
n = · · · . (7)

The process continues until the converged eigenfunction and
eigenvalue are obtained.

III. NUMERICAL IMPLEMENTATION TO 1D PROBLEM

In this section, we discuss the computation procedures for
the 1D problem in more detail. For a single particle moving
in 1D space, the stationary Hamiltonian of the system can be
written as

H (x) = −1

2

∂2

∂x2
+ V (x). (8)

Following Eq. (7), the implementation of the filter operator to
the wave packet ψ(x) then reads(

H (x) − Ek
n

)
φ̃k+1

n (x) = φk
n(x), φ0

n(x) = ψ(x), (9)
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where the superscript k stands for the kth iteration step. The initial function ψ(x) can be be chosen to have the form

ψ(x) =
{

sin(x) + cos(x), for −∞ < x < ∞,

const �= 0, for 0 < x < ∞.
(10)

Approximating the second order differential equation on φ̃n(x) with a three-points finite different scheme, Eq. (9) leads into a
tridiagonal system of equations with unknown φ̃k+1

n (x):

⎡
⎢⎢⎢⎢⎣

β1 γ1 0
α2 β2 γ2

. . .
. . .

. . .
αM−1 βM−1 γM−1

0 αM βM

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̃k+1
n (x1)

φ̃k+1
n (x2)

...
φ̃k+1

n (xM−1)

φ̃k+1
n (xM )

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

φk
n(x1)

φk
n(x2)

...
φk

n(xM−1)

φk
n(xM )

⎤
⎥⎥⎥⎥⎥⎥⎦

, (11)

where the matrix elements for each iteration step are given by

αi = γi = −1

2

1


x2
,

βi = 1


x2
+ V (xi) − Ek

n. (12)

Equation (11) can be easily solved by using a tridiagonal matrix
solver which can be found elsewhere, e.g., Ref. [10]. Following
Eq. (7) the new function φ̃k+1

n (x) has to be normalized before
computing Ek+1

n . The values of Ek+1
n and φk+1

n (x) are then
used as inputs for the next iteration step. The process should
continue until a convergent result is obtained.

IV. RESULTS AND DISCUSSIONS

In this section, we present simulation results of three
different cases, i.e., 1D harmonic oscillator, radial Coulomb
wave function, and 1D soft Coulomb potential. The 1D
harmonic oscillator might represent a case where the solutions
are strongly bounded around the origin, while the radial
Coulomb wave function stands for the case where the boundary
condition at the origin is close and the other side is free. The
last one represents the boundary condition problem where both
edges are free.

A. Harmonic oscillator

The Hamiltonian of a 1D harmonic oscillator is given by

H = −1

2

∂2

∂x2
+ 1

2
Kx2,

which provides the solution for energy En = (n + 1
2 )ω, with

ω = √
K .

As V (x) = 1
2Kx2 becomes infinite at x = ±∞, the eigen-

function is strongly confined around the origin. The analytic
solution of the eigenfunction has the form

φn(x) =
(

κ√
πn!2n

)1/2

Hn(κx)e−1/2(κ2x2),

with κ = √
ω = K1/4 and Hn(x) is the Hermite polynomial.

The 1D harmonic oscillator thus represents a problem where
the solutions are strongly bounded at both side edges.

For simulations, K = κ4 = 1 was chosen. The x coordinate
was spanned from −50 a.u to 50 a.u., and discretized into


x = 0.01 a.u. Following Eq. (10), an initial function ψ(x) =
sin(x) + cos(x) was chosen. This choice was taken in order to
accommodate all eigenfunctions having odd and even parity.

Figure 1 (left) shows the simulation results for n = 1, 50,
and 100, whereas the right panel displays the corresponding an-
alytical results. It can be seen that the numerical eigenfunctions
agree very well with the analytical ones. This indicates that
the filter method is working well, even for cases where n � 1
and the respective eigenfunctions exhibit very fast oscillation.

The accuracy of the computed eigenenergies depends on the
parameters of the spatial grid and n. Eigenfunctions with fast
oscillation require finer grid and longer spatial range. Denoting
ε = |
E|/E as the relative error of the calculated eigenenergy
with respect to the correct one, we found for n = 100, ε ≈
10−7, while for n = 1, we got ε = |
E|/E ≈ 10−10.

B. Radial Coulomb wave function

The stationary Schrödinger equation for atomic hydrogen
can be written in spherical coordinate as{

−1

2

[
1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
sin θ

+ 1

sin2 θ

∂2

∂ϑ2

)]
− 1

r

}
ψ(r) = Eψ(r). (13)

By expanding ψ(r) in a spherical harmonic basis function

ψ(r) =
∑
lm

GE,l(r)Ylm(θ,ϑ),

one can immediately obtain a set of decoupled radial
Schrödinger equations which is 1D with r running from 0
to ∞,(

−1

2

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

2

l(l + 1)

r2
−1

r

)
GE,l(r) = EGE,l(r),

(14)

with l being the orbital quantum number. By substituting
G(r) = F (r)/r , the radial part of Eq. (14) becomes(

−1

2

∂2

∂r2
+ 1

2

l(l + 1)

r2
− 1

r

)
RE,l(r) = ERE,l(r). (15)

As the potential is singular at r = 0, R(r) must be bounded at
the origin. The radial Coulomb wave function thus represents
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FIG. 1. Comparison of computed eigenfunctions (left panel) with the corresponding analytical results (right panel) of 1D harmonic oscillator
for various energy levels.

the 1D problem where the boundary value is well defined at
the origin while at the other side edge is free.

The G(r) and R(r) normalize according to

∫ ∞

0
G(r)G(r)r2dr =

∫ ∞

0
R(r)R(r)dr,

=
{
δnn′ for bound states,
δ(E − E′) for continuum states.

(16)

In the following, the numerical results of eigenenergies E and
eigenfunctions φE(r) for |E| → 0 are compared, both for dis-
crete and continuum states. The calculation of eigenfunction
for small E is of particular interest, since, to our experience,
either the power series expansion or recurrence relation method
[18] often fail when radial distance r becomes very large.

1. Bound states

The bound state solution for radial Coulomb wave function
is given by [19]

Rnl(r) = Nnle
(−r/n)

(
2

n
r

)l+1

F

(
−n + l + 1,2l + 1,

2r

n

)
,

(17)

with Nnl being the normalization constant,

Nnl = 1

n

1

(2l + 1)!

[
(n − l − 1)!

(n + l)!

]1/2

,

and F (a,b,x) being the confluent hypergeometric function.
For the sake of comparison, the principle quantum number

n = 25 was chosen, providing E = −0.0008 a.u. Two angular
momentum numbers were used, namely l = 0 and l = 24. The
radial coordinate is stretched from r = 0 to rmax = 1800 a.u.
and discretized into 
r = 0.1 a.u. The results are shown in
Fig. 2. Following Eq. (10), the initial wave function ψ(r) = 1
was chosen for all r .

It can be seen that the results obtained by using the filter
operator (left panels) are identical to those analytical solutions
(right panel). This is an indication that the method is working
well even for simulating eigenfunction with extreme small
energy. The accuracy of the computed eigenenergies with
respect to the theoretical ones for high n is also excellent. With
spatial parameters described above, for l = 0 we found E25 =
−7.999 962 7×10−4 a.u., yielding the relative error |
E|/E ≈
10−6. For n = 25, l = 24 the calculated eigenenergy is even
closer to the theoretical value, due to less oscillation of REl(r).

It is worth noting that, in performing the simulation, r must
be set large enough in order to ensure that the wave function
vanishes asymptotically. It is therefore important to make an
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FIG. 2. Comparison of simulated bound state Coulomb wave functions of n = 25 and l = 0 (upper panel) and n = 25 and l = 24 (lower
panel). Results in the left panels are obtained by using the filter method, while those at the right panels are computed using analytical formulas
Eq. (17).

estimation for rmax prior to the simulation. We have learned
that a rough estimation

rmax ≈ α2.5n2 + β10n (18)

may be used. This relation is obtained by fitting rmax as a
function of n. Here, α = β = 1 are just constants in order
that the left- and right-hand sides of Eq. (18) are of the same
dimension. A better estimation might be derived by analyzing
the asymptotic behavior of the Laguerre polynomial; see, e.g.,
Ref. [20].

2. Continuum states

The proposed filter operator is not only capable of simu-
lating the bound state wave functions, but also works well for
computation of continuum wave functions (E > 0). Unlike
the bound states which are normalized to unity, the continuum
states are normalized to a δ function. This requirement can lead
into difficulty when simulating the continuum wave functions.
It is therefore worth tackling the normalization problem that
appears in the simulation of the continuum eigenfunction.

To overcome the problem, it is important to analyze the
asymptotic behavior of radial differential equation (15). At
r → ∞ the terms which are proportional to 1/r and 1/r2

can be omitted. Consequently, the solution of REL at larger r

must be of a sin- or cos-like function with amplitude equal to
unity, which is in accordance with the analytical work (see,
e.g., Ref. [21]). We adopted these properties to normalize the
amplitude of REl(r) at large distance to unity.

For the sake of comparison, we chose the value of E =
0.0005 a.u., which is small enough to represent a case of
E → 0. Two angular quantum numbers were chosen, namely

l = 0 and l = 20. The radial distance was discretized into

r = 0.1 a.u, with rmax set to 10 000 a.u. As an initial function
we took ψ(r) = 1 for all r . The results are shown in Fig. 3;
left panel stands for l = 0 and the right panel for l = 20. In
both panels, the magenta (online color) curves represent results
from simulations, while the red black curves from analytical
ones. The analytic solutions were calculated using the Gautchi
algorithm [18]. For a better view, we plotted only the results
up to rmax = 180 a.u. for l = 0 and rmax = 600 a.u. for l = 20.

We can see that the results basically agree well with each
other. A small discrepancy appears in the amplitude of the wave
function, where in general the simulation results show slightly
larger amplitude than that of analytical ones. We found that
the discrepancies were originated from rmax, which was not
large enough. By varying rmax to larger values, we found that
converged results could be obtained after rmax > 38 000 a.u.

On the contrary, the simulations of the wave function with
larger E are relatively light and need a smaller value of rmax.
For example, for E = 0.5 a.u. and l = 20, the value of rmax =
400 a.u. is large enough to provide convergent results.

Based on the numerical experiments, we found that the
value of rmax might be estimated for arbitrary E as

rmax ≈ αλ2 + βl2,

where λ = 2π/
√

2E. Again, α = β = 1 are just constants
having the same meaning as Eq. (18). Thus, for large E, one
just needs a small range of rmax, whereas for extremely small E,
larger radial distance is necessary to guarantee the convergence
of the calculated wave functions.
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FIG. 3. Comparison of simulated eigenfunction of continuum Coulomb wave functions for E = 0.0005 a.u. and l = 0 (left panel) and
l = 20 (right panel). The magenta (color online) curves stand for simulation results obtained by setting rmax = 10.000 a.u., whereas the black
curves are from analytic solutions.

C. Soft-Coulomb potential

The soft-Coulomb potential is a typical 1D problem where
potential at both asymptotic edges vanishes. This potential has
been used in a wide variety of applications requiring a 1D
potential model, e.g., interaction of atom with intense laser
field [22–24]. It has many attractive features including the
removal of the singularity at zero while retaining a series of
Rydberg states [25]. The 1D soft Coulomb potential is usually
given in the form

V (a,x) = − V0√
a + x2

, −∞ < x < ∞, (19)

where V0 is the potential strength, chosen to be V0 = 1, and a

is the soft core parameter to remove the singularity at x = 0.
To the best of our knowledge, there is no existing analytical

solution. It is therefore necessary to compare the results
obtained by the present method with simulation results by
using another method. We chose the relaxation method
[12,13,26], since this method guarantees that the first result
of the eigenenergy is the ground-state energy.

For that purpose, we performed a series of simulations with
various parameter a. The spatial coordinate x was set from
xmin = −200 a.u. to xmax = 200 a.u. and discretized into 
x =
0.01 a.u. ψ(x) = sin(x) + cos(x) was chosen for the initial
wave function. The ground energy for each a was scanned by
inputting the initial guess E0 ranging from −4 a.u. to 0 a.u.
with an increment of 
E = 0.005 a.u. The lowest negative
energy was then considered as the ground-state energy.

The simulation was repeated for every new parameter a,
until all ground-state energies for a = 0 → 2.5 a.u. were
obtained. The increment of 
a was chosen as 0.01 a.u. Note
that, for a = 0, the potential transforms itself from the soft
Coulomb to the hard core Coulomb potential. The avoid the
singularity at x = 0, we added a very small positive number
ε = 10−15, such that at x = 0, V (a = 0,x = 0) = −1/

√
ε.

For the simulation using the relaxation method we em-
ployed Crank Nicholson to advance the solution from t to
t + 
t [10]. By replacing the real time t with −iτ we get

ψ(x,τ + 
τ ) = 1 − H
τ/2

1 + H
τ/2
ψ(x,τ ). (20)

Note that the scheme (20) is not unitary and hence the solution
for ψ(x,τ ) must be normalized after every time step. All spatial
parameters were chosen to be the same with that used in the
filter method, while the propagation time τ was evolved with

τ = 0.05 a.u., that is small enough to guarantee the correct
solution. The maximum propagation times τmax were varying
for each E0. In this simulation, an initial function ψ(x,τ =
0) = 1 was used for all x.

In Fig. 4, the simulation results of ground-state energy
obtained by filter operator method (left panel) are displayed
together with those obtained by using relaxation method (right
panel). We can see that both curves agree very well with each
other. The cusps also exist in both curves.

To analyze the origin of the cusp, in Fig. 5, we show
the calculated ground-state eigenfunctions φ0(x) for three
different values of a, i.e., black curve for a = 0 a.u., red (color
online) curve for a = 0.01 a.u., and orange (color online)
curve for a = 2 a.u. We can see that, for a = 0 a.u., the wave
component at the left side φ0(x < 0) is totally decoupled from
the wave component at the right side φ0(x > 0). This is because
the potential V (0,x) which is singular at x = 0 behaves like
an infinite wall such that it avoids the wave components
from a different side axis to interact. Consequently, the wave
component along the left axis is exactly the same as that at the
right axis. As a increases, the potential V (a,x) transforms from
purely Coloumbic to a potential valley with a depth −1/

√
a

and of full width at half maximum (FWHM) equal to 2
√

3a.
As a result, the particle is confined around the origin (red
curve). However, as a increases, the potential becomes more
flattened and widened, such that the wave function becomes
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FIG. 4. Ground-state energy of soft Coulomb potential for various soft core parameters a obtained by using (a) filter method and (b)
relaxation method.

less confined, as can be seen in the blue curve. This explains
why the curve of the eigenenergy displays a cusp.

Rydberg energy levels of soft Coulomb potential

It is believed that the soft Coulomb potential provides
rich Rydberg energy levels. A question may arise as to how
different the Rydberg energy levels of the soft Coulomb
potential are with respect to Rydberg energy levels in the
hydrogen atom.

For that purpose, we performed a series of simulations for
each parameter a with input energy varied from −4.0 a.u to
0 a.u, and with increment 
E = 0.005 a.u. The calculated
eigenenergies were then sorted from the lowest value to the
highest one. The simulations were repeated with another value
of parameter a. The smallest a was 0.01 a.u. and increased to
a = 2.5 a.u. with an increment 
a = 0.01 a.u. As an initial
wave function, we chose ψ(x) = sin(x) + cos(x).

In Fig. 6 we plot the series of eigenenergies of the first 10
excited states as a function of a. By carefully elaborating the
wave functions, we found that eigenenergies labeled with odd
numbers own odd parity eigenfunction (antisymmetry wave
function), while those with even number are of eigenfunctions

-8 -6 -4 -2 0 2 4 6 8
x [a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

φ 0(x
)

FIG. 5. Comparison of the simulated ground-state eigenfunctions
of soft Coulomb potential for three different values of a, i.e., a =
0 a.u. displayed as black curve, a = 0.01 a.u. as red (online) curve,
and a = 2 a.u. as orange (online) curve.

with even parity. In particular, for a = 2 a.u, even the ground-
state energy is exactly the same with the ground-state energy
of the hydrogen atom, but the excited state energies are largely
different. To be more specific, the values of E1 = −0.233 a.u.,
E2 = −0.134 a.u., E3 = −0.0845 a.u. . . ., are deeper than
the corresponding excited energy of atomic hydrogen E1 =
−0.125 a.u., E2 = −0.055 a.u., E3 = −0.03125 a.u. . . ., by
about a factor more than 2.

The reason that the soft Coulomb potential yields higher
excited energy can be tracked from the range of potential
domain; in the case of −∞ < x < ∞, the potential forms
a symmetric valley. The electron thus experiences wider ef-
fective potential than that in pure Coulomb potential (0 < r <

∞). In a separate simulation using soft Coulomb potential with
a = 2, while the range of x is set from (0 < x < ∞), we found
E0 = −0.234 a.u, E1 = −0.085 a.u., E2 = −0.0429 a.u., etc.,
which are now much smaller than the corresponding energy
level of the hydrogen atom.

V. APPLICATION OF FILTER METHOD FOR COUPLED
PARTIAL SCHRÖDINGER EQUATION

To this end, we have discussed problems in purely 1D or in
terms of decoupled radial Schrödinger equations. A question
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FIG. 6. Plot of the first 10 Rydberg energy levels of soft Coulomb
potential as a function of soft core parameter a.

033302-7



M. NURHUDA AND A. ROUF PHYSICAL REVIEW E 96, 033302 (2017)

arises whether the method is applicable to the problem where
the radial differential equations are coupled with each other.
For example, in the two electron atom system, the wave
function is a function of electron coordinates r1 and r2. If
for every ri there are a pair of {xi,yi,zi}, then there are six
independent variables.

The computational strategy to solve such problems can
be briefly outlined as follows. First, the wave function is
presented in the hyperspherical coordinate system (see, e.g.,
Refs. [27,28]),

ψ(r1,r2, . . .) =
∑

μ

Rμ(ρ)Yμ(α1, . . . ,�1,�2, . . .), (21)

where ρ is the hyperradial coordinate and α is a pseudoangle coordinate that is used to decompose the hyperradial coordinate ρ

into individual radial coordinates. The index μ is a collection of individual indices μ ≡ {ν, . . . ,l1,l2, . . . ,m1,m2 . . .}, with ν is
an index of polynomial degree when transforming f (r1,r2 . . .) → ∑

gν(ρ)hν(α1, . . .). The hyperspherical harmonic functions
must be chosen in order that they satisfy the orthonormal condition∫

α,...,�...

Y∗
μ(α1, . . . ,�1,�2, . . .)Yμ′(α1, . . . ,�1,�2, . . .)dα . . . d�1d�2 . . . = δμμ′ . (22)

For a two electron atom system, ρ may be chosen as ρ =
√

r2
1 + r2

2 and α = tan−1(r2/r1). The two electron wave function can
be written as

ψ(r1,r2) =
∑

l1l2m1m2

Gl1l2 (r1,r2)Cl1l2L
m1m20 yl1m1 (θ1,ϑ1)yl2m2 (θ2,ϑ2)

=
∑

νl1l2m1m2

Gνl1l2 (ρ)J ν
l1l2

(α)Cl1l2L
m1m20 yl1m1 (θ1,ϑ1)yl2m2 (θ2,ϑ2)

=
∑

νl1l2m1m2

Rνl1l2 (ρ)

ρ5/2 sin α cos α
J ν

l1l2
(α)Cl1l2L

m1m20 yl1m1 (θ1,ϑ1)yl2m2 (θ2,ϑ2). (23)

Here, J ν
l1l2

(α) is Jacobi polynomial and C
l1l2L
m1m20 is the Clebsch-

Gordon coefficient. Following Eq. (7), the iteration procedures
to select the eigenfunction must satisfy

(
H − Ek

n

)
φk+1

n (r1,r2, . . .) = φk
n(r1,r2, . . .). (24)

Again, the superscript k is used to label the itera-
tion number. Now, expanding both φk+1

n (r1,r2, . . .) and
φk

n(r1,r2, . . .) according to Eq. (21), multiplying with
Y∗

μ′(α1, . . . ,�1,�2, . . .), and then integrating over whole solid
angles dα . . . d�1d�2 . . ., we get a set of coupled Schrödinger
equations in hyperradial coordinates:

(
Hμμ(ρ) − Ek

n

)
Rk+1

μ (ρ) +
∑
μ �=μ′

Hμμ′(ρ)Rk+1
μ′ (ρ) = Rk

μ(ρ).

(25)

This set of coupled hyperradial Schrödinger equations (25)
can be solved using the matrix-iterative method, described
elsewhere, e.g., in [29].

VI. CONCLUSIONS

In conclusion, we have developed a filter method for
simultaneous computation of eigenfunction and eigenvalue of
a stationary Schrödinger equation on a grid, without imposition
of boundary conditions. The filter operator is chosen to have
the form of 1/(H − E), such that when the filter operator is
exerted on an arbitrary continuous wave function, the desired
eigenfunction is singled out at the rate of the δ function.

The comparison of the results with the well known 1D
solvable problems show an excellent agreement with each
other, e.g., harmonic oscillation and Coulomb wave function,
which indicates the reliability of the method. In the case of
Coulomb potential, we also provided an approximation of
maximum radial distance rmax to be set in simulations, both
for discrete and continuum wave functions.

In further simulations, we studied the eigenenergy of
ground and excited states of the Hamiltonian with soft
Coulomb potential V (a,x) = −1/

√
a + x2. We found that the

curve of eigenenergy displays a cusp, which is apparently
due to the transforming behavior of the potential from
Coulombic to 1D potential valley. We further found that,
for a = 2 a.u., the ground-state energy is the same as the
ground state of the hydrogen atom, but the excited energies
in general are deeper by a factor more than twice that
of the corresponding excited energy levels in the hydrogen
atom.

Finally, by presenting the wave function in a hyperspherical
coordinate, one can expect to further implement the filter
method to solve the stationary Schrödinger equation for a many
electron system.
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