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Numerical estimation of structure constants in the three-dimensional Ising conformal field theory
through Markov chain uv sampler
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Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016)] introduced a numerical recipe, dubbed uv sampler,
offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical
Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice
marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The
main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents
a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations
of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation
functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap
methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036].
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I. INTRODUCTION

3D Ising model. The Ising model is a milestone of statistical
physics. It consists of a statistical model on a graph with binary
random variables and nearest-neighbor interactions. Having
been studied for more than a century now, it has given a
lot of insight in the fields of materials physics and critical
phenomena, among others.

One of its strengths lies in its easiness to be generalized
to any dimensions or even fractal graphs. Peierls’s argument
[1] brought a satisfying qualitative proof of the existence
of a critical point for the two-dimensional (2D) case. The
generalization of his droplets to higher dimensions implied
that such ordered-disordered phase transition had to exist for
any dimension d � 2. For d = 2, the model has since been
solved exactly by Onsager [2]; while for d � 4 it has been
proven that the Landau-Ginzburg theory gives the exact value
of the critical exponents [3]. Only d = 3 has resisted every
attempt at an exhaustive solution so far.

Recent breakthroughs by means of the conformal bootstrap
program applied to 3D conformal field theories (CFTs), e.g.,
the constraints of associativity and positivity on the CFT
operator algebra, have led to the most precise estimation of
the critical exponents and some structure constants [4–8]. The
numerical precision of this approach has far overtaken previous
Monte Carlo or analytical expansion results.

The goal of this paper is to extend the numerical procedure
of Ref. [9] to the 3D Ising model. This numerical procedure,
dubbed uv sampler, is a Markov chain Monte Carlo (MCMC)
allowing us to sample sublattice marginals of infinite-volume
statistical models at criticality by effectively producing a
holographic boundary condition that encodes the infinite
volume beyond it. It thus gives access directly to bulk data
of the critical point, without the need for finite-size scaling.
Catching up on the high precision of the bootstrap method
seems out of reach of the numerical procedure introduced here,
thus the aim is more of presenting an alternative approach using
this MCMC and free of the bootstrap’s assumptions. Its results
will be shown to agree with the state-of-the-art knowledge on
the 3D Ising universality class, giving a precision improvement
of the Monte Carlo estimations of the structure constants
(Cεσσ , Cεεε) in this model.

Markov chain holographic sampling. Reference [9] studied
the planar critical 2D Ising model through a MCMC. It showed
that an implementation of dilations on a lattice statistical model
at criticality coupled with a sufficiently long rethermalization
step through fixed boundaries Swendsen-Wang (SW) lattice
flip updates [10] would eventually mix into a Markov chain
sampling the distribution of the sublattice marginal in the
infinite plane Gibbs measure. Reference [11] showed a
successful generalization of this method and its results to the
O(1 < n � 2) loop gas models where nonlocal contributions
have to be accounted for.

Let us recall the main arguments of Ref. [9]. Working
on the complex plane with a radially quantized generic
(Euclidean) CFT and picking A a disk centered on the origin,
the subdomain marginal �∂A is defined by

�∂A =
∫

DφC\A e−SC\A[φ]. (1)

This can be enhanced to include operator insertions in C \ A.
Knowledge of �∂A allows us to measure any infinite plane
correlators with any insertions O1(x1)O2(x2) . . . On(xn) as
long as x1,x2, . . . ,xn ∈ A. In this sense it is the bulk marginal
of A. An interesting observation is that the information on the
marginal distribution is entirely contained on ∂A because of the
ultralocality of the measure. In this respect it is holographic: it
is a probability distribution on the set of boundary states of A,
which reproduces, from the viewpoint of observables in A, the
statistical information outside A. The goal of the uv sampler is
to approximate this marginal distribution by a typical sample
of �∂A—typical in the sense of Markov chain sampling.

We introduce the Rλ [·] operation, which acts as

Rλ : �∂A → λ · �λ−1∂A.

It maps a state on λ−1∂A to a state on ∂A by use of a dilation
of parameter λ > 1. For a Gibbs measure endowed with scale
invariance, it is shown in Ref. [9] (Sec. II A) that the fixed
point of such transformation is a MCMC sampling the infinite
plane marginal on A. The argument is broadly as follows.

(i) We start with any boundary condition �
gen
∂A (where

“gen” stands for generic).
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(ii) We construct a chain of iterations of Rλ where λ > 1
(in fact, it does not need to be the same on every link):

�
gen
∂A

Rλ−→ Rλ

[
�

gen
∂A

] Rλ−→ . . .
Rλ−→ Rn

λ

[
�

gen
∂A

] Rλ−→ . . . .

This chain converges to its fixed point, which must be a
marginal invariant under rescalings. Reference [9] (Sec. II
A) argues that the limit is the distribution obtained when
integrating out all fields outside A, by (1):

Rn
λ

[
�

gen
∂A

] → �∂A (n → ∞).

Scale invariance is an essential tool in constructing the
marginal distribution.

Using this ingredient, results in Ref. [9] evidenced that
finite size and boundary effects could be reduced to negligible
levels. This method was dubbed uv sampler as it can be seen
as a succession of inverse Kadanoff transformations or a RG
flow towards a uv fixed point [12].

II. ISING 3D UV SAMPLER

Implemented discrete lattice dilations. We define A as a
finite volume connected subset of R3, and LA = A ∩ Z3 the
(square) sublattice contained within. In the implementation
choice detailed hereafter, A is a simple cubic box. When
applying a dilation of parameter λ > 1, mapping λ−1A → A

induces a dilation on the sublattice Lλ−1A → LA such that, for1

σL
i ∈ {−1,1} ∀ i ∈ LA the binary lattice variables of the Ising

model are mapped as

σL
�λ−1i� → σL

i , (2)

where �·� returns the closest site on Lλ−1A. From this point
of view, the dilation is not a transformation on LA in the
sense that the lattice spacing is not dilated but a transformation
on the values taken by σL on LA, i.e., on a configuration
σ̄ = {σL

i : i ∈ LA}. It is a basic fact of discrete systems that
there is more information on LA than on Lλ−1A meaning that
(2) is a one-to-many mapping.

If applying straightforwardly this mapping, a value σL
i with

i ∈ λ−1A could be mapped to many images in A. This means
that a pixel or lump of many identically oriented neighbor sites
will be formed. This corresponds to an excess of short distance
correlations. It is dubbed a pixel dilation.

In Ref. [9], another prescription was used. First LA is
partitioned by the equivalence class i ∼ j if and only if
�λ−1i� = �λ−1j�. Second, within each subset of the partition a
single site i is randomly picked and (2) is performed on it. This
forces (2) to be applied in a one-to-one fashion. Last, every
unpicked site is unassigned at this stage, in other words left as
a hole; a heat-bath procedure is applied on each one of them
to assign a spin value depending solely on its first neighbors.
Since first neighbors can be missing—either because of being
holes themselves, or because they are not in A—this choice
induces a lack of smallest distances (σiσi+1) correlations. This
is dubbed heat-bath dilation.

It must be reminded that the rethermalization steps that
come after each dilation are performed with fixed boundaries,

1Bold variables stand for lattice vectors.

fixed σi for i ∈ ∂LA. This has the effect of propagating the
new boundary condition inside LA. The effects of any dilation
prescription only remain on and near the boundary, where the
sites will not be updated after discrete dilation.

As a general rule when going 2D to 3D, a larger fraction of
the spins are close to the boundary. The direct implication
is that the prescription, which was good enough in two
dimensions—in Ref. [9]—could leave too strong boundary
effects for precision fitting in three dimensions. Anticipating
such issues, an hybrid of the pixel and heat-bath prescriptions
was implemented. It follows the same partition and second
step as heat-bath but in the last stage, on each empty lattice
site, at random and with equal probability, either (2) is applied
or heat-bath assignment is used. This is named hybrid discrete
lattice dilations and has been used in every case throughout
this numerical work.

MCMC description. The starting point of the MCMC is a
200 × 200 × 200 cubic Ising lattice in a vacuum ordered state.
At zero external magnetic field and normalizing the nearest-
neighbour interaction strength J to 1, the unique coupling is
the inverse temperature β, which is set to the estimation2 of its
critical value βc in Ref. [14]:

β = βc ≈ 0.221 654 4 (3).

The following steps are taken for the MCMC to produce
samples of holographic boundaries.

(i) Torus intermediate state. 200 lattice flips, Swendsen-
Wang (SW) flips [10], are applied, with periodic boundary
conditions. The goal here is to bring the vacuum state to a
torus critical state, which is closer to the critical plane, with
relatively small CPU effort.

(ii) Dilations and rethermalizations. The chain enters then
the cycle of hybrid discrete lattice dilations followed by fixed-
boundaries SW flips. The parameters—the scaling factor λ and
the number NSW number of lattice updates—take successive
values as per the following lists:

{λ} = 2, . . . ,2︸ ︷︷ ︸
5 times

, 1.5, . . . ,1.5︸ ︷︷ ︸
4

, 1.3, . . . ,1.3︸ ︷︷ ︸
4

, 1.2, . . . ,1.2︸ ︷︷ ︸
4

,

1.1, . . . ,1.1︸ ︷︷ ︸
4

, 1.05, . . . ,1.05︸ ︷︷ ︸
7

, 1.03, . . . ,1.03︸ ︷︷ ︸
7

{NSW} = 150, . . . ,150︸ ︷︷ ︸
5

, 100, . . . ,100︸ ︷︷ ︸
16

, 80, . . . ,80︸ ︷︷ ︸
14

.

This means that the first pass is a λ = 2 dilation followed by
150 SW flips, this being repeated for the next four passes, etc.,
until the last pass consisting of a λ = 1.03 dilation followed
by 80 lattice flips. This totals 35 passes of dilations and
lattice flips. At first this can seem like a long process. These
somewhat arbitrary numbers give a correctly mixing chain as
the following results will show, but this implementation does

2It was later pointed to us that Ref. [13] offers the improved
numerical estimation βc = 0.221 654 62 (2). As a matter of fact, one
of the few requirements of the uv sampler is to be provided a coupling
value close enough to the critical point to give ξ � L; this seems
verified with our value in use.
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not have any pretension of using the optimal parameters. They
were found by trial and error. It takes ∼20 min to complete
this mixing step.3

(iii) Measurements. This Markov chain measures spatial
correlations on the lattice. These correlations involve operators

3On a single core of an AMD Opterontm 6174 CPU.

defined on the lattice: the spin lattice operator σL
i and the

energy density operator

εL
i ≡ σL

i σL
i+1.

The list of measured correlators is explicitly

〈
εL

i

〉
,
〈
σL

i σL
j

〉
,
〈
εL

i εL
j

〉
,
〈
εL

i σL
j σL

k

〉
and

〈
εL

i εL
j εL

k

〉
.

(a) (b)

(c) (d)

FIG. 1. Measured lattice correlators. (a) Graph of the 〈σL
0 σL

n 〉 correlations as a function of the separation |n| ∈ [1,50]. The power-law
behavior seems manifest. The gray line represents the most accurate power-law fit. This is solid proof that the sample is very close to
the planar expectation. (b) Graph of the 〈εL

0 εL
n 〉 − 〈εL〉2 connected two-point function for separations |n| ∈ [1,25]. As much as for σLσL

correlations, the power-law behavior is explicit. This observable seems to show more microscopic excess of correlations for the smallest
values of the separation. (c) Graph of the connected part 〈σL

−kε
L
0 σL

k 〉 − 〈εL〉〈σL
−kσ

L
k 〉 as a function of |k| ∈ [3,35]. With the two σL insertions

diametrically opposed when sitting on the εL insertion point, CFT predicts a ∝ Cεσσ |k|−2
σ −
ε profile. (d) Graph of the connected part
〈εL

−kε
L
0 εL

k 〉 − 〈εL〉(〈εL
−kε

L
0 〉 + 〈εL

−kε
L
k 〉 + 〈εL

0 εL
k 〉) − 〈εL〉3 as a function of |k| ∈ [5,14]. Conformal symmetry constrains the decay to be as

Cεεε N 3
ε 2−
ε |k|−3
ε .
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The long-distance behavior of such correlators is known from
their expansion on the basis of the CFT operators:

σL
i = a
σ Nσ σ (ai) + . . . ,

εL
i = 〈εL〉I + a
εNε ε(ai) + . . . ,

where a is the lattice spacing, setting a = 1 from here on. This
choice of correlators was picked on the principle that they
would be enough to fit an interesting subset of the CFT data
of the 3D Ising model, namely the scaling dimensions 
σ and

ε, and the three-point couplings Cεσσ and Cεεε.

Some prescriptions were taken for the insertions choice i, j,
and k: no insertions were made less than 30 lattice units afar
from the boundaries—to remove possible remnant boundary
effects—and i − j, i − k, and j − k are always taken along the
three lattice directions for computational simplicity. In addi-
tion, for the last two correlators listed above, insertions were
made with j and k diametrically opposed when sitting on i,
e.g., j − i = −(k − i). Each measurement is spaced by five SW
flips. Every 20 measurements a new λ = 1.03 lattice dilation
is applied followed by a rethermalization consisting of 80 SW
flips. This aims at updating the boundary configuration and at
diminishing the autocorrelations of the measurements [15].

Uncertainties estimations. To estimate the uncertainties of
the uv sampler is different from estimating the uncertainties
of a typical MCMC. Here the relevant quantity measuring
the number of uncorrelated samples is not the total number
of measurements but the number of boundary configurations
used. In the 2D critical Ising model, this is a consequence
of exhibiting the property of strong self-averaging, and it has
been checked numerically [15]. In our case of interest, the
estimation of the uncertainties was done the following way,
focusing on the 〈σL

0 σL
n 〉 observable.

(i) For each boundary configuration �i
∂A, with 1 � i � N ,

N ≡ total number of boundary states, a graph gi of 〈σL
0 σL

n 〉 is
collected using the operator insertion prescriptions detailed
above.

(ii) After having reached the end of the MCMC, we are
left with a collection of N graphs Sσσ = {g1, . . . ,gN }. These
graphs can be checked to have negligible autocorrelations. Sσσ

can be read as a matrix with row-index |n| and column index i.
The final graph of 〈σL

0 σL
n 〉 is obtained by taking a row average

over Sσσ , and the uncertainty by calculating the standard
deviation—along the same direction—and renormalizing it
by a 1/

√
N factor. This is performed for each value of |n|.

Two-point functions and correlators. Figures 1(a)–1(d)
show the results collected for the correlators 〈σLσL〉, 〈εLεL〉,
〈εLσLσL〉, and 〈εLεLεL〉, respectively. The number of samples
of �∂A used is 9000 for the first two graphs, and 50000
for the last two. For each graph, the axes are log scaled
and possible disconnected contributions—from the nonzero
one-point expectation value of εL—were subtracted [16].

The fitted nonuniversal quantities are contained in Table I
(Nonuniversal), while universal quantities are split between
Table I (Universal) and (Structure constants). All the fits were
performed by χ2 minimization with each data point weighted
by the inverse square of its uncertainty. Details on the fit are
stored in Table I (Fit details).

Comments specific to each observable are as follows.
(i) 〈σLσL〉, Fig. 1(a): Smallest separations, |n| � 5, show

the most departure from the fitted power law, e.g., fitted on
a x → axb function, a,b being the fit’s degrees of freedom,
this can be imputed to microscopic effects inducing an excess
of correlations. The best power-law behavior was fitted for
larger separations, |n| � 30. It is represented on the graph by
the gray line.

TABLE I. Summary of the numerical results with comparison to previous MCMCs and CFT bootstrap.

〈εL〉 Nσ Nε

Nonuniversala

.3302047 (88) .3302022 (5) .55245 (13) .550 (4) .2306 (38) .2377 (9)


σ 
ε

Universalb

.518354 (63) .5181489 (10) 1.4100 (67) 1.412625 (10)

Cεσσ Cεεε

Structure constantsc

1.0978 (189) [42] 1.051 (3) 1.0518537 (41) 1.46 (12) [2] 1.32 (15) 1.532435 (19)
1.05037 (152) [398] one DOF fit 1.5508 (62) [176] one DOF fit

Lattice correlator Function template Fitting range χ2

Fit details
〈σL

0 σL
k 〉 x → axb |k| ∈ [30,50] 1.06 × 10−9

〈εL
0 εL

k 〉connected x → axb |k| ∈ [10,25] 4.5 × 10−6

〈εL
0 σL

−kσ
L
k 〉connected/NεN

2
σ 2
ε−2
σ x → axb |k| ∈ [12,35] 3.8 × 10−6

· x → ax−
ε−2
σ · 3.8 × 10−6

〈εL
−kε

L
0 εL

k 〉connected/N
3
ε 2−
ε x → axb |k| ∈ [8,13] 9.6 × 10−8

· x → ax−3
ε · 1.02 × 10−7

aBold blue entries are the best MCMC estimates found in the literature: respectively, Refs. [13], [18], and [17].
bBold red-color numbers are the numerical bootstrap estimations taken from Ref. [8].
cRed numbers are again the numerical bootstrap estimations from Ref. [8], while blue numbers are MCMC results from Ref. [17].
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(ii) 〈εLεL〉, Fig. 1(b): To exclude microscopy, the power-
law fit was performed on the subset |n| � 10, after subtraction
of the disconnected contribution 〈εL〉2.

(iii) 〈εLσLσL〉, Fig. 1(c): After removal of the discon-
nected contribution, a power-law fit for insertions |n| ∈
[12,35] returns exponent and offset estimates agreeing with the
bootstrap predictions. In particular the fitted structure constant
1.0978 (189) has a satisfying agreement. In estimating the
structure constant by fitting the offset of this correlator, it
is necessary to remove the N2

σNε contribution by using our
estimates of Nσ and Nσ from the previous two correlators
estimations, see Table I (Nonuniversal) for values. The sys-
tematic error from the uncertainty of Nσ is negligible, unlike
the (larger relative) uncertainty of Nε. To minimize this error
the more precise value from Ref. [17]—Nε = .2377 (9)—is
used. This gives a systematic error contribution of 4.2 × 10−3,
written in square brackets in Table I (Structure constants).

For a numerical estimation with smaller uncertainty, one
option is to remove 
σ and 
ε from the fit free parameters by
replacing them by their bootstrap estimations. Such fit with a
single degree of freedom (DOF), and performed on the same
range, returns Cεσσ = 1.05037 (152) [398]. This result is in
striking agreement with the bootstrap estimation.

(iv) 〈εLεLεL〉, Fig. 1(d): Here again, nonconnected con-
tributions need to be removed to reveal an approximate
power-law profile. Fitting on a power law and reading the
exponent gives a close estimate of the energy density scaling
weight at 1.403 (13). The offset fit offers a Cεεε numerical
estimation of 1.46 (12) [2] for a fitting range |k| ∈ [8,13]. This
fitting uncertainty is rather large, but the estimate is in a 1σ

range of the CFT bootstrap value.
If restricting the fit to a single degree of freedom, its offset,

by inputting the bootstrap value of 
ε and fitting on x →

ax−3
ε , our estimation becomes 1.5508 (62) [176]. The latter
fit is in much closer agreement with the expected value. In
the single DOF fits of the two structure constants, the main
contribution to the error comes from the uncertainty on Nε

and a more accurate numerical estimation of each constant
would require a more precise knowledge of Nε.

III. DISCUSSION

The general conclusion is that the averages show a behavior
close to their expectation on the infinite plane. Especially
the measurements of the 〈σL

i σL
j 〉 and 〈εL

i εL
j 〉connected show

clear power-law profiles typical of planar CFTs. In addition,
the fitted nonuniversal and universal observables match with
previous Monte Carlo studies [17,18], which use an entirely
different method based on a massive deformation of the CFT to
reduce their finite-size and boundary effects, and agree within
smaller uncertainties with the more precise bootstrap methods
[5], see Table I (Weights) and Table I (Structure constants).

Further work could include the study of the complete
profile of 〈εL

i σL
j σL

k 〉connected as its CFT formula depends on the
assumption that conformal invariance follows from scaling
invariance in dimensions. The investigation of four-point
functions such as 〈σL

i σL
j σL

k σL
l 〉 could also bring numerical

insights on its expansion on conformal blocks [6].
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