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Numerical study of enhanced mixing in pressure-driven flows in microchannels
using a spatially periodic electric field
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We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic
solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic
flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid
elements along the channel. We show, through numerical simulations, that chaotic advection may be induced
by periodically varying the direction of the applied electric field along the channel length. This periodic electric
field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half
of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is
qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the
extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection
diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a
function of the Péclet number.
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I. INTRODUCTION

Lab-on-a-chip and other microfluidic devices play an im-
portant role in point of care medical diagnostics, chemical and
biochemical analysis, and intensification of processes [1–4].
The flow in microchannels is typically steady, unidirectional,
and laminar, with Reynolds numbers typically less than 100.
Mixing here occurs solely due to molecular diffusion, which
is a slow process, requiring large mixing times. Mixing can be
enhanced by inducing secondary motion, which aids in mixing
the fluid elements across the channel cross-section, i.e., in the
direction transverse to the primary flow.

Micromixers are categorized into two classes: passive
mixers and active mixers. Passive mixers utilize the energy
from the primary flow to drive secondary flows, whereas
active mixers require an external energy input to mix the
fluids. Different types of mixers studied in the past include the
staggered herringbone mixer [5], the serpentine mixer which
uses Dean vortices [6], electroosmotic mixers [7], etc. Nguyen
and Wu [8] and Lee et al. [9] have comprehensively reviewed
the different types of passive and active mixers. Active mixers
typically lead to more intense and controllable mixing. In
electroosmotic mixers, active mixing is induced by using an
electric field. The primary advantages of electroosmotic driven
mixers are that it does not involve any moving parts nor does
it require any geometrical modifications to the channel.

Electro-osmosis is based on the surface charge of the
microchannel. The walls of a channel typically acquire a
surface charge when they come in contact with an electrolytic
solution [10]. When the electrolytic solution flows through
such a channel, the counter ions in the solution accumulate
near the charged walls, forming an electrical double layer
(EDL). When an external electric field is applied tangential
to the channel wall, the fluid in the EDL experiences a body
force equal to the charge density multiplied by the electric field
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strength. This causes the fluid near the wall to move along or
opposite to the direction of the electric field. The momentum
from this thin EDL is transmitted into the bulk fluid by viscous
stresses resulting in an electroosmotic flow (EOF). Several
studies on the use of electro-osmosis to transport fluids in
micro-channels exist in the literature [11–13].

Chaotic advection in a flow field refers to the chaotic
behavior of Lagrangian trajectories of passive tracer particles
that are advected by the flow [14]. Chaotic advection can exist
when the flow is laminar, and therefore it has been extensively
utilized to enhance mixing in micro-devices, in which the
Reynolds number is very small [15]. In two-dimensional
(2D) flows, chaotic advection can occur only if the flow is
time-dependent. Typical devices employ a periodic (in time)
2D flow field in which streamlines of the first half cycle
intersect with streamlines of the second half cycle. Many
two-dimensional EOF mixers have been studied, and the
effects of various unsteady flow fields and complex surface
potential distributions have been analyzed [16–19].

Chaotic mixing can also be generated in three-dimensional
steady flows, provided that the flow field varies along the
streamwise direction [15]. The trajectories of passive tracers
are then chaotic along the streamwise direction, in addition to
being chaotic in time. The basic idea is to generate overlapping
secondary vortex patterns that alternate periodically along the
stream-wise direction. This idea was first introduced by Jones
et al. [20], who used centrifugally driven Dean vortices to
generate chaotic mixing in a twisted curved channel mixer.
Many of the mixers that have since been proposed are based
on curved geometries, in which streamline overlapping is
induced by modifying the channel geometry [15] or the surface
properties of the walls [21]. An example of a mixer that does
not use curved sections is the staggered herringbone mixer
[5]. A common feature of all these passive mixers is that the
intensity of mixing is dependent on the strength of the primary
axial flow.

There are relatively few studies on mixers using three-
dimensional steady EOF. Pacheco et al. [22] and Kim et al. [23]
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FIG. 1. Schematic of the electroosmotic mixer with a rectangular cross-section sustaining a pressure driven axial flow with an applied
electric field which alternates in direction. Electrodes placed on the left and right walls impose a horizontally directed electric field in the first
half cell (HC1) and electrodes place on top and bottom walls impose a vertically directed electric field in the second half cell (HC2). Two unit
cells are shown.

simulated mixing in a microchannel in which both the axial
and transverse flows are generated by electroosmosis. Lynn
et al. [24] proposed a micromixer that has a pressure-driven
primary axial flow, along with secondary flows that are induced
electro-osmotically by incorporating electrodes underneath the
channel. The secondary flow was varied along the length of
the channel to enhance mixing, by adjusting the width between
the electrodes.

The various mixers that have been analysed in the literature
have certain limitations. These include the need for unsteady
flows, complex surface potential distribution, and the inability
to control mixing independently of the flow rate. In this
theoretical work, we propose a mixer which can overcome
these shortcomings. We show that chaotic mixing can be
achieved in steady flow through a straight microchannel,
with uniform surface potential distribution, by applying a
longitudinally varying electric field. The flow of an electrolyte
solution in a straight rectangular microchannel is considered.
The primary axial flow is pressure driven. Transverse flow is
induced electroosmotically by applying an electric field in a
direction transverse to the primary flow. The orientation of
the transverse field is varied periodically along the length of
the channel. This results in a steady three-dimensional flow,
with a transverse component that varies periodically along the
streamwise direction, such that the projected streamlines of the
secondary flow in each half-cell overlap. As discussed above,
this is a classic recipe for inducing chaotic mixing in three-
dimensional steady channel flow. This electroosmosis based
chaotic mixer has advantages of efficient and controllable
mixing at low flow rates and small channel dimensions. The
electric field provides a handle to control mixing in the system,
which is independent of the flow rate prevailing in the channel.

This paper is organized as follows: In Sec. II, the geometry
of the proposed electroosmotic mixer is described. The
mathematical model for the velocity field is discussed in
Sec. III. The important features of the velocity field are
described in Sec. IV. We characterize mixing using different
approaches—Poincaré sections, Shannon entropy, and mixing
index based on the transport of a diffusing scalar—in Sec. V.
The major conclusions are summarized in Sec. VI.

II. GEOMETRY OF ELECTROOSMOTIC MIXER

The electroosmotic mixer being analyzed consists of a
straight microchannel with a rectangular cross section of width
“W” and height “H” as shown in Fig. 1. The fluid flows along
z direction from z = 0 to z = L. Surface charge (a negative
charge for glass microchannels) is assumed to be uniform at the
microchannel walls. Mixing is induced in this microchannel by
applying a DC electric field whose direction varies periodically
in two perpendicular directions as depicted in Fig. 1. For the
purpose of the analysis the microchannel is divided into unit
cells. Each unit cell contains two half cells, each of length
“zl.” In the first half cell (HC1), the electric field is applied
horizontally (along x direction) by placing electrodes along the
left and right walls of the channel as viewed from the end of the
microchannel. In the second half cell (HC2), the electric field
is applied vertically (along y direction) by placing electrodes
along the top and bottom walls of the channel. These two
half cells constitute the unit cell of length 2zl. This alternating
pattern is repeated periodically as shown in Fig. 1

III. MODEL DEVELOPMENT

In this work, the model to describe the flow field is
developed based on the following assumptions:

(1) Fluid flow is steady, laminar and fully developed in
each half cell, and there is no transition region between the
two half cells.

(2) Gravitational force is negligible.
(3) The fluid flowing is Newtonian.
(4) The zeta potential is uniform along the channel length.
(5) The fluid properties are independent of ion concentra-

tion and the local applied electric field strength.
(6) Joule heating effect from the applied electric field is

negligible and the system is isothermal.
(7) Streaming potential induced by the fluid flow is

negligible.
The fluid flow in the microchannel is pressure driven. In the

creeping flow limit, the flow of an incompressible Newtonian
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fluid in the presence of an electric field is governed by

−�∇P + μ∇2 �u + �Eρe = 0. (1)

Here P is the pressure, �u is the velocity field (u,v,w), �E
(Ex,Ey,0) is the applied electric field, ρe is the net charge
density, and μ is the viscosity of the solution. In the above
equation, the effect of electric field manifests as a body force.

The net charge density is related to the electric potential (�)
by the equilibrium Boltzmann distribution. For a symmetric
electrolytic solution, this is given by

ρe = −2nen∞ sinh

(
ne�

kbT

)
. (2)

Here kb is the Boltzmann constant, T is the absolute
temperature of the solution, e is the charge of a proton, n∞ is
the bulk ionic concentration, and n is the valence of the ions.
According to the theory of electrostatics, the distribution of
electric potential (�) is governed by the Poisson equation [10],

∇2� = −ρe

εrε0
, (3)

where ε0 is the permittivity of vacuum and εr is the dielectric
constant of the solution. Substituting Eq. (2) for the net charge
density in Eq. (3) results in the Poisson-Boltzmann equation,

∇2� = 2nen∞
εrε0

sinh

(
ne�

kbT

)
, (4)

This is nondimensionalized using the following character-
istic scales:

xch = W, ych = W, �ch = kbT

ne
. (5)

The dimensionless variables and groups that arise are

x̄ = x

xch

, ȳ = y

ych

, �̄ = �

�ch

, λ = H

W
. (6)

Equation (4) expressed in dimensionless form is

∂2�̄

∂x̄2
+ ∂2�̄

∂ȳ2
= K2 sinh(�̄). (7)

In Eq. (7), K2 = (kxch)2 is the Debye-Huckel parameter,
where k2 = 2n2e2n∞/εrε0kbT . Here 1/k is a length scale
representative of the thickness of the EDL.

This is subject to the boundary conditions

�̄(x̄ = 0) = ζ̄ 0 < ȳ < λ,

�̄(x̄ = 1) = ζ̄ 0 < ȳ < λ,

�̄(ȳ = 0) = ζ̄ 0 < x̄ < 1,

�̄(ȳ = λ) = ζ̄ 0 < x̄ < 1. (8)

In Eq. (8), ζ̄ is the dimensionless ζ potential defined in
terms of the ζ potential at the solid/liquid interface ζ , i.e.,
ζ = neζ/kbT .

Equation (1) is nondimensionalized and the dimensionless
velocity field is governed by

∂ū

∂x̄
+ ∂v̄

∂ȳ
= 0, (9)

∂2ū

∂x̄2
+ ∂2ū

∂ȳ2
− ∂P̄

∂x̄
+ Gxρ̄e = 0, (10)

∂2v̄

∂x̄2
+ ∂2v̄

∂ȳ2
− ∂P̄

∂ȳ
+ Gyρ̄e = 0, (11)

∂2w̄

∂x̄2
+ ∂2w̄

∂ȳ2
= −1, (12)

subject to the following boundary conditions:

{ū,v̄,w̄} = 0 at x̄ = 0 for 0 < ȳ < λ,

{ū,v̄,w̄} = 0 at x̄ = 1 for 0 < ȳ < λ,

{ū,v̄,w̄} = 0 at ȳ = 0 for 0 < x̄ < 1,

{ū,v̄,w̄} = 0 at ȳ = λ for 0 < x̄ < 1. (13)

In the above equations, ū,v̄,w̄ are dimensionless velocities
along the x, y, z directions, respectively, P̄ is the dimensionless
pressure, Ēx and Ēy are the dimensionless applied electric
fields in the x and y directions, respectively. These are
nondimensionalized using the characteristic scales:

zch = xch, Pch = −dp

dz
xch, Uch = Pchxch

2

μ
,

Ech = |ζ |
xch

, ρech
= 2nen∞. (14)

This results in the following dimensionless variables and
dimensionless groups:

P̄ = P

Pch

, {ū,v̄,w̄} = {u,v,w}
Uch

, ρ̄e = ρe

ρech

,

{Ēx,Ēy} = {Ex,Ey}
Ech

; Gx = Echρech
xchĒx

μUch

,

Gy = Echρech
xchĒy

μUch

, z̄l = zl

zch

. (15)

The formal derivation of the governing equations is given
in the Appendix. These equations can be viewed as the zeroth-
order solution of a perturbation series expansion of the full
Navier Stokes equation around Re = 0.

Equations (9)–(11) govern the two-dimensional secondary
flow across the cross-section. Since the secondary flow is
decoupled from the axial flow, we use the stream function
(ψ) formulation to determine the secondary velocity field. We
define

ū = ∂ψ̄

∂ȳ
, (16)

v̄ = −∂ψ̄

∂x̄
, (17)

where, ψ̄ is the dimensionless stream function and defined as
ψ̄ = ψ

Uchxch
.

Substituting Eqs. (16) and (17) into Eqs. (10) and (11)
and eliminating P̄ leads to the following fourth-order partial
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TABLE I. Values of parameters used in the simulation [25].

Parameter Value

Width of microchannel 200 μm
Height of microchannel 200 μm
Applied axial pressure gradient 500 Pa/m
Absolute temperature of solution 298 K
Viscosity of solution 0.9 ∗ 10−3 kg/m s
Density of solution 1000 kg/m3

Zeta potential −200 mV
Electrolyte concentration of solution 10−6 M
Valance of ions in solution 1
Dielectric constant of solution 80

differential equation for the stream function:

∂4ψ̄

∂x̄4
+ 2

∂4ψ̄

∂x̄2∂ȳ2
+ ∂4ψ̄

∂ȳ4
= −Gx

∂ρ̄e

∂ȳ
+ Gy

∂ρ̄e

∂x̄
. (18)

The boundary conditions in Eq. (13) translate to the
following conditions on ψ̄ :

ψ̄ = ∂ψ̄

∂x̄
= 0 at x̄ = 0 for 0 < ȳ < λ,

ψ̄ = ∂ψ̄

∂x̄
= 0 at x̄ = 1 for 0 < ȳ < λ,

ψ̄ = ∂ψ̄

∂ȳ
= 0 at ȳ = 0 for 0 < x̄ < 1,

ψ̄ = ∂ψ̄

∂ȳ
= 0 at ȳ = λ for 0 < x̄ < 1. (19)

The nonlinear system of Eqs. (7), (8), (18), and (19) are
solved numerically using a finite difference scheme. The
spatial derivatives are discretised using a second-order central
difference approximation. The fully developed velocity field
is obtained by setting Gy to zero in HC1 and Gx to zero in
HC2. Inspection of governing equations reveals that the flow
depends on the imposed pressure gradient, the applied electric
field and solution properties. The number of grids used in each
of the x and y directions is 200, beyond which the flow field
is unaffected with the increase in number of grids.

The geometric dimensions of the microchannel, operating
conditions and properties of the solution used in the simula-
tions are given in Table I. The corresponding dimensionless
variables are λ = 1, K = 651.3, and ζ̄ = −7.785. These are
the values used for all calculations in this work.

IV. VELOCITY FIELD

A. Electric field in the horizontal or x direction

We first consider the case when the electric field is applied
only along the horizontal or x direction for the entire length of
the mixer. The fluid in the positively charged EDL experiences
a body force near the top and bottom walls. The fluid near the
walls ȳ = 0 and 1 is dragged by the applied electric field in
the positive x direction. When the fluid reaches the right wall,
it turns back and flows (recirculates) along the center line of
the channel. This results in a symmetric secondary circulatory
flow in the form of two horizontal counter rotating vortices
across the cross-section as shown in Fig. 2(a).

These vortices enhance transverse mixing in the microchan-
nel. These counter-rotating vortices formed due to electroos-
motic effects are similar to Dean vortices that are induced
by centrifugal forces in a curved microchannel. Dean vortices
have been studied extensively in the design of micromixers
[20,21,26]. Electro-osmotically induced vortices offer two
advantages over Dean vortices in micro- mixing applications:
(i) The channels here can be straight which allows for a
simple design of a microfluidic chip. (ii) The strength of Dean
vortices depends on the axial flow velocity and the curvature. In
contrast, the strength of electro-osmotically induced vortices
can be controlled independent of axial velocity by adjusting
the strength of the electric field. This allows for an independent
and better control over mixing characteristics.

This secondary flow along with the primary axial flow leads
to a helical motion of particles in the flow field as shown in
Fig. 2(b). This figure shows the path lines of two particles
initially located at (0.1, 0.1) and (0.1, 0.9). Each particle stays
in one half of the cross section. The drawback associated
with the symmetric structure of the secondary flow is that
the particles starting in the top (bottom) half can never cross
over into the bottom (top) half of the channel. Hence, in this
sense the mixing is poor across the cross-section.

FIG. 2. (a) The streamlines of the secondary flow for a horizontally directed applied electric field, i.e., the streamlines of flow projected
onto the cross-section. (b) Path lines of two particles along the length with the initial positions at (0.1, 0.1) and (0.1, 0.9). Each particle remains
confined to one half of the channel. Gx = 1930.
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FIG. 3. (a) The streamlines of the secondary flow for a vertically applied electric field, i.e., the streamlines of flow projected onto the
cross-section. (b) Path lines of fluid particles along the length with the initial positions at (0.1, 0.1) and (0.9, 0.1). They remain confined to their
respective half of the channel. Gy = −1930.

B. Electric field in the vertical or y direction

In this section, we consider the case when the electric field
is applied only along the vertical or y direction for the entire
length of the mixer. The fluid in the positively charged EDL
experiences a strong body force near the right and left walls.
Hence, two vertical counter rotating vortices are formed as
depicted in Fig. 3(a). The corresponding helical path lines of
the particles is shown in Fig. 3(b). This figure shows the path
lines of two particles initially located at (0.1, 0.1) and (0.9,
0.1). Here the particles starting in the left (right) half cannot
cross into the right (left) half of the channel, and vice versa.
This again limits the mixing efficiency of the microchannel.

C. Periodically applied electric field

To overcome the limitations of mixing when the electric
field is unidirectional, we propose periodically changing
the direction of the applied electric field, along the length
of the channel as shown in Fig. 1. The change in the direction of
the applied electric field results in a change in the orientation of

the secondary vortices by 90° from one half cell to the next half
cell. Now the secondary streamlines of one half cell overlap
with those of next half cell. The projection of the streamlines
in the two half cells depicting this intersection is shown in
Fig. 4. This periodically varying flow pattern leads to chaotic
advection of the fluid in which two particles that start out very
close to each other, diverge away exponentially quickly as they
flow along the channel [27]. This property causes fluid parcels
to mix and significantly reduces the effective path length for
molecular diffusion. The effect of the periodically rotated elec-
tric field on particle paths is shown in Fig. 4(b). The particles
are no longer confined to one half of the channel and can
move across the entire cross-section. This results in improved
mixing when compared to the case of a uniform electric field.

V. MIXING CHARACTERIZATION

In the earlier section, we have shown how the proposed
system shows intersection of streamlines and can be a good
mixer. We now focus on qualitative and quantitative methods

FIG. 4. (a) The crossing of the streamlines for the periodic electric field seen by projecting the streamlines of the individual electric fields.
(b) Particle paths in a channel subjected to the periodic electric field with the initial position (0.1, 0.1) and (0.9, 0.1). The particles are no longer
confined to the half of the channel in which they started. Instead they are transported throughout the cross section, leading to much better
mixing. Gx = 1930, Gy = −1930, z̄l = 5.

033117-5



KRISHNAVENI, RENGANATHAN, PICARDO, AND PUSHPAVANAM PHYSICAL REVIEW E 96, 033117 (2017)

to characterize mixing. For this, two traditional Lagrangian
techniques based on Poincaré sections and, Shannon entropy
are used. In addition to this, the species transport equation is
also used to get physical insight into mixing in the proposed
system, and understand the influence of molecular diffusion.

A. Poincaré sections

To investigate the mixing quality in the proposed mi-
crochannel, we study the dynamics of passive tracer particles,
whose three-dimensional motion is governed by

dx̄

dt̄
= ū = ∂ψ̄

∂ȳ
, (20)

dȳ

dt̄
= v̄ = −∂ψ̄

∂x̄
, (21)

dz̄

dt̄
= w̄. (22)

We are primarily interested in understanding the mixing
that occurs across the channel cross-section, which depends on
motion in the x-y plane, as given by Eqs. (20) and (21). These
two equations form a one degree of freedom Hamiltonian
system, with the streamfunction ψ̄ as the Hamiltonian. A
qualitative picture of the cross-sectional mixing may be
obtained from Poincaré maps. As the channel is composed of a
series of repeating unit cells, a natural choice for constructing
Poincaré maps is to sample the particle trajectories at the
end of each unit cell. However, because the axial velocity
w̄ varies across the cross-section, the time required for each
particle to reach the end of a unit cell will depend on their
(x̄,ȳ) position at the beginning of the unit cell. The required
time can be obtained by using Eq. (22) for the axial position
of the particle. It should be noted that the particle dynamics
with respect to axial position is not formally described by a
Hamiltonian system, due to the dependence of w̄ on (x̄,ȳ).
Nevertheless, many concepts used to understand mixing in
two-dimensional unsteady Hamiltonian flows are found to be
useful in understanding mixing in three-dimensional steady
flows, where particle paths are given by Eqs. (20)–(22) [20].

We now describe the computational procedure followed
to construct the Poincare maps. When the horizontally and
vertically applied electric fields alternate, the secondary flow
field is given by

ū = fI (z̄)ūI (x̄,ȳ) + fII (z̄)ūII (x̄,ȳ),
(23)

v̄ = fI (z̄)v̄I (x̄,ȳ) + fII (z̄)v̄I I (x̄,ȳ),

where subscripts I and II correspond to the flow field when the
electric field is applied horizontally and vertically, respectively,
in each half cell. In the above,

fI (z̄) =
{

1 mz̄l < z̄ < mz̄l + z̄l

0 mz̄l + z̄l < z̄ < mz̄l + 2z̄l

, (24)

and

fII (z̄) =
{

0 mz̄l < z̄ < mz̄l + z̄l

1 mz̄l + z̄l < z̄ < mz̄l + 2z̄l

, (25)

0 0.2 0.4 0.6 0.8 1

x̄

0

0.2

0.4

0.6

0.8

1

ȳ

FIG. 5. Initial positions of the 100 passive particles used to
determine the Poincaré sections. These passive particles are initially
distributed on a uniform grid across the cross-section.

where m = 0,2,4, . . . represents the set of even integers. Equa-
tions (24) and (25) can be viewed as being an on-off and the
resulting flow field is spatially periodic with a periodicity 2z̄l .

The trajectories of the passive particles are calculated by
dividing Eqs. (20) and (21) by Eq. (22). Using Eq. (23), this
yields

dx̄

dz̄
= fI (z̄)ūI (x̄,ȳ) + fII (z̄)ūII (x̄,ȳ)

w̄
, (26)

dȳ

dz̄
= fI (z̄)v̄I (x̄,ȳ) + fII (z̄)v̄I I (x̄,ȳ)

w̄
. (27)

The Poincare sections help determine the position of
particles entering the first half of a unit cell when they
exit the second half of the unit cell. The mapping is found
by numerical integration of Eqs. (26) and (27) using the
ode23s solver of Matlab. The velocities required in these
equations at a particular location, are determined using the
griddedInterpolant function of Matlab. Note that while the 2D
map thus constructed is one-to-one and invertible, it is not area
preserving because [ ∂

∂x̄
(ū/w̄) + ∂

∂ȳ
(v̄/w̄)] is nonzero.

At the entrance of the first unit cell, hundred passive
particles are uniformly distributed as shown in Fig. 5, This
was found to be sufficient to capture the full structure of
Poincare section. The particle position are tracked for 500
unit cells to study the long-time dynamics along the axial
direction. The Poincare sections were found to be invariant
beyond 100 unit cells. However, in order to approximate
the infinite-time Poincare map more closely, the results are
depicted after 500 unit cells. Figure 6 presents Poincare
sections for different lengths of each unit cell. Both chaotic
and regular regions are observable in these maps. The extent of
these regions depends on the magnitudes of the applied electric
fields (in the horizontal and vertical directions), the pressure
gradient along the channel, and the length of each unit cell.

A Kolmogorov-Arnold-Moser (KAM) surface is seen to
separate the chaotic region from the regular regions, which are
periodic orbits [27]. The KAM surface acts as a barrier across
which fluid particles cannot be transported. The particles that
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FIG. 6. The Poincaré sections for the periodically applied electric field for varying unit cell length (a) z̄l = 2, (b) z̄l = 4, (c) z̄l = 6,
(d) z̄l = 10. Gx = 193, Gy = −193 for all the cases with the initial condition shown in Fig. 5.

are trapped inside the KAM surface cannot mix with those
outside. Thus, the presence of these surfaces implies that
mixing does not occur over the entire domain. The particle
trajectories in the chaotic region exhibit chaotic dynamics.
Here, a particle on visiting a particular neighbourhood follows
a trajectory that diverges exponentially from the trajectory
followed after their earlier visit to the same neighborhood.

We see that there exist a number of periodic orbits at small
unit cell length (z̄l), which disintegrate on increasing the unit
cell length. This leads to an increase in the chaotic region as
depicted in Fig. 6. As the unit cell length is increased from
z̄l = 2 to z̄l = 4, the outer KAM surfaces are destroyed and
the area of chaotic sea increases. As we further increase z̄l

almost all periodic orbits are destroyed and the chaotic region
is further increased.

As mentioned above, the nature of Poincare sections
depends on the magnitude and the direction of the applied
electric field. Poincare sections obtained by increasing the
magnitude of Gx and Gy are shown in Figs. 7 and 8, for
different z̄l . When the horizontally applied electric field (Gx)
alone is increased (for a given z̄l and Gy), the chaotic region
increases as can be observed by comparing Figs. 6 and 7. When
we increase the electric field in both the directions, chaotic
regions are further enhanced as shown in Fig. 8. Considering
Figs. 6, 7, and 8, it can be concluded that on increasing z̄l , the
chaotic region increases for any given Gx and Gy . However,
the influence of z̄l on the chaotic region is less significant

when the applied electric field is high. Further, we can observe
in Fig. 7 that the regular region shifts with increase in z̄l .

The Poincare maps analyzed in this section give qualitative
insight about the chaotic mixing. However, it does not give
any quantitative estimate of the extent of mixing. This is the
subject of the next section.

B. Shannon entropy

Poincare maps yield only qualitative information on mix-
ing. In contrast Shannon entropy is a measure which helps
quantify the extent of mixing. This is also based on the
Lagrangian approach. This quantification is independent of
the physical process responsible for mixing and relies only on
the information of entropy. This can be used to analyse data
from numerical simulations, as well as experiments.

Shannon entropy was calculated following Camesasca et al.
[28] using particle positions at the end of every unit cell.
Particle positions are calculated using Eqs. (26) and (27).
The microchannel cross section is divided into several regions
called bins. Each bin is denoted by j = 1,2, . . ., M. Let there be
“c” species where c = 1,2, . . ., C. We calculate the probability
distribution of each species in each bin. This is used to calculate
the Shannon entropy, which is given by

S = −
M∑

j=1

C∑
c=1

pj,c ln pj,c. (28)
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FIG. 7. The Poincaré sections for the periodically applied electric field for varying unit cell length (a) z̄l = 2, (b) z̄l = 4, (c) z̄l = 6.
Gx = 1930, Gy = −193 are the constants for all the cases with the initial condition shown in Fig. 5.

Here pj,c is the joint probability that a particle of species c

is located in bin j . It is given by

pj,c =
nj,c

Pc∑M
i=1

∑C
c=1

ni,c

Pc

, (29)

where nj,c is the number of particles of species c in bin j and
Pc is the total number of particles of species c in all the bins.

The total entropy is additive and can be written as a
sum of the entropy of spatial distribution S(location) and the
conditional entropy Slocation(species). S(location) is the entropy
associated with the spatial distribution of particles irrespective
of species and is given by

S(location) = −
M∑

j=1

pj ln pj , (30)

where pj is the probability that a group of particles, irrespec-
tive of species is in bin j and it is given by

pj =
∑C

c=1
nj,c

Pc∑M
i=1

∑C
c=1

ni,c

Pc

. (31)

Slocation(species) is given by

Slocation(species) = −
M∑

j=1

pj

C∑
c=1

pc/j ln pc/j . (32)

Slocation(species) is an average over the M spatial bins and
signifies the entropy of mixing, that the species c is conditional
on being in bin j . Here pc/j is the conditional probability that
a group of particles of species c is in bin j is given by

pc/j =
nj,c

Pc∑C
c=1

nj,c

Pc

. (33)

S(location) quantifies the spatial homogeneity of the par-
ticles irrespective of the species, whereas Slocation(species)
quantifies the quality of mixing of the species conditional on
locations. S(location) and Slocation(species) are normalized by
ln Mand ln C, respectively (the maximum of S(location) and
Slocation(species), respectively).

For our computations, we have considered 1600 particles
of two species (red and blue). The red and blue particles are
placed at the bottom and top halves, respectively, at z̄ = 0.
Hence, initially there is uniform distribution of particles.
Consequently, S(location) is maximum and is unity. There

FIG. 8. The Poincaré sections for the periodically applied electric field for varying unit cell length (a) z̄l = 2, (b) z̄l = 4, (c) z̄l = 6.
Gx = 1930, Gy = −1930 are the constants for all the cases with the initial condition shown in Fig. 5.
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FIG. 9. Variation of normalized S(location) with number of unit cells for (a) Gx = 193, Gy = −193. (b) Gx = 1930, Gy = −1930, and
z̄l = 2 for different number of bins (M). The normalized S(location) is independent of number of bins. The corresponding Poincare maps are
depicted in Figs. 6(a) and 8(a), respectively.

also exists a perfect segregation of species for a given bin, so
Slocation(species) is zero. Mixing is quantified using Shannon
entropy for conditions for which Poincare sections are depicted
in Figs. 6(a) and 8(a), respectively. These correspond to
qualitatively low and high mixing, represented by case I and
case II, respectively, in the following.

Figure 9 shows the variation of normalized S(location)
with number of unit cells, for different number of bins.
Figure 9(a) corresponds to case I, wherein mixing is relatively
poor, while Fig. 9(b) corresponds to case II, wherein mixing
is superior (cf. the Poincaré maps in Figs. 6(a) and 8(a),
respectively). The value of S(location) undergoes a series of
decaying oscillations until it reaches an asymptotic value of
around 0.95, which indicates that the spatial distribution of
particles after a sufficient number of unit cells is very nearly
uniform, although not exactly so. In both cases, the normalized
S(location) is almost independent of the number of bins used
in the calculation.

While the asymptotic values of S(location) are nearly
the same for both cases I and II, the number of unit cells
required to attain this value is much less in case II, which
corresponds to better mixing. In case I, Fig. 9(a) shows that
S(location) undergoes large oscillations which gradually decay

with the number of unit cells. The underlying reason for
these oscillations is that the 2D dynamical system given by
Eqs. (26) and (27) is not area preserving. This follows from the
dependence of the axial velocity w̄ on the x̄,ȳ position in the
cross-section, due to which the divergence of the vector field
[ ∂
∂x̄

(ū/w̄) + ∂
∂ȳ

(v̄/w̄)] is nonzero, although [ ∂ū
∂x̄

+ ∂v̄
∂ȳ

] = 0. As
a result of this non-area-preserving property, particles get
concentrated in certain regions of the cross-section (negative
divergence of the vector field), while they get dispersed in oth-
ers (positive divergence). Figure 10 shows the divergence of the
vector field for the two half-cells, along with the corresponding
streamlines. As particles flow along the channel, some of
them may experience a predominantly convergent (divergent)
vector field [(ū/w̄),(v̄/w̄)], due to which they get concentrated
(dispersed) and result in a decrease (increase) of S(location).

The spatial distribution of particles at various locations
along the channel (number of unit cells) is shown in Fig. 11.
These are the particle distributions that are used to calculate
S(location). It can be seen that within the first few unit cells,
particles get concentrated into a clump near the bottom-right of
the cross-section. This clump persists for about the first 15 unit
cells, and results in the initial sharp decrease of S(location)
seen in Fig. 9(a). Subsequently, the concentrated patch of

FIG. 10. The divergence of vector field [(ū/w̄),(v̄/w̄)] for the (a) first half cell and (b) second half cell along with the stream line plot.
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ȳ

0 0.5 1
x̄

0

0.5

1
ȳ
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FIG. 11. The spatial distribution of particles along the length of the channel (number of unit cell) for the case I. The number of unit cells
corresponding to each spatial distribution is mentioned above the respective panel.

particles is advected across the channel into the top-left corner,
where it gets dispersed under the action of a predominantly
divergent vector field. This leads to the rise of S(location)
between unit cells 18 to 30 in Fig. 9(a). This process repeats
itself, but with a reduced agglomeration of particles each time.
This results in decaying oscillations of S(location), which
ultimately attains a relatively unchanging asymptotic value.
The degree of these oscillations is much less in Fig. 9(b),
because the chaotic region of the Poincare map is much larger
in this case [compare Figs. 6(a) and 8(a)]. Therefore, particles
are able to sample larger regions of the flow field more rapidly.
Consequently, the divergence of the vector field experienced
by them fluctuates too quickly for any significant amount of
agglomeration to take place.

To verify that the oscillations of S(location) are due to
the dependence of the axial velocity on the x̄,ȳ position, we
have recalculated S(location) after replacing the axial velocity
with its cross-sectional average value (which is independent
of position). The corresponding vector field is divergence free
and area preserving. The result for case I, corresponding to
Fig. 9(a), is depicted in Fig. 12, which shows that S(location)

remains close to unity without any significant oscillations, for
all bin numbers.

Next, we analyze the variation of normalized
Slocation(species) with the number of unit cells. The results
for case I, considering different number of bins, is shown
in Fig. 13(a). For this case, as the extent of mixing is less,
Slocation(species) has not reached the maximum value of unity
when the number of bins is 100, but rather has a much lower
value of 0.62. In this case, the region occupied by islands
in the Poincaré map is more than the region of the chaotic
sea [cf. Fig. 6(a)], as a result of which interspecies mixing
is low. Consequently, it requires a greater number of unit
cells, or an increase in unit cell length, to achieve good
mixing. Figure 13(b) depicts the variation of normalized
Slocation(species) for case II, in which the chaotic region
of the Poincaré map is much larger [cf. Fig. 8(a)]. Here,
Slocation(species) approaches a value close to unity, within 20
unit cells, which indicates more rapid and uniform interspecies
mixing. In both these cases, the normalized Slocation(species)
is dependent on the number of bins and the maximum value
is observed for fewer bins. The entropy of mixing decreases
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FIG. 12. Variation of normalized S(location) with number of unit
cells for Gx = 193, Gy = −193, and z̄l = 2 for different number
of bins (M) with the axial velocity replaced by its cross-sectional
average value. The normalized S(location) is independent of number
of bins and particle distribution is uniform.

with increase in the number of bins, i.e., when the system is
analyzed at smaller scales. This indicates that the composition
of the two species varies with the scale of observation.

When the number of bins is low, i.e., 16, we see an
oscillatory response of Slocation(species), especially for low
electric fields. Unlike the oscillations of S(location), these
oscillations are not related to the non-area-preserving nature
of Eqs. (26) and (27). They are found to persist even when
the cross-sectional average of the axial velocity is used in
the calculation, instead of the spatially varying axial velocity.
On the other hand, the amplitude of the oscillations decreases
as the number of bins increases, until a relatively monotonic
variation is obtained. This implies that the oscillations of
Slocation(species) are an artifact of low resolution, i.e., having
too few bins.

From the behavior of S(location) and Slocation(species), we
conclude that mixing is more uniform for high applied electric

fields. The number of unit cells required for a particular extent
of mixing is low when the applied electric field is high.

C. Species transport equation

In the previous sections, we discussed the use of Poincare
maps and Shannon entropy to estimate the extent of mixing.
In this section, we analyze another measure, which is based on
using the scalar transport of a species to quantify mixing. At
steady state, the scalar species transport equation is given by

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D

(
∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2

)
, (34)

where C is the concentration of the species and D is the
diffusivity of the species. We neglect diffusion along the flow
direction, as the advection in flow direction dominates the
diffusion process. Under these conditions, the dimensionless
species transport equation is given by

ū
∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
+ w̄

∂C̄

∂z̄
= 1

Pe

(
∂2C̄

∂x̄2
+ ∂2C̄

∂ȳ2

)
. (35)

This equation is subject to the following boundary condi-
tions

∂C̄

∂x̄
= 0 at x̄ = 0 for 0 < ȳ < λ,

∂C̄

∂x̄
= 0 at x̄ = 1 for 0 < ȳ < λ,

∂C̄

∂ȳ
= 0 at ȳ = 0 for 0 < x̄ < 1,

∂C̄

∂ȳ
= 0 at ȳ = λ for 0 < x̄ < 1,

and C̄ = C̄0 at z̄ = 0. (36)

In the above equations, C̄ = C
C0

and Pe = Uchxch

D
. Equa-

tions (35) and (36) are solved numerically using an operator
splitting method [29]. Here z̄ is treated as analogous to time
since fluid always moves forward in z̄. In the operator splitting
method the species transport by convection and diffusion is
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FIG. 13. Variation of normalized Slocation(species) with number of unit cells for (a) Gx = 193, Gy = −193. (b) Gx = 1930, Gy = −1930,
and z̄l = 2 for different number of bins (M). The behavior of normalized Slocation(species) is dependent on the number of bins and a higher
value is obtained for fewer number of bins.
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considered sequentially in each direction, over a given time
interval. After calculating convection and diffusion steps in
a particular time interval, the time step is advanced and the
process is repeated.

To implement this method, Eq. (35) is divided into
four differential equations, where only one transport step is
considered at a time as shown below.

Diffusion in x direction : w̄
∂C̄1

∂z̄
= 1

Pe

∂2C̄1

∂x̄2
, (37)

Diffusion in y direction : w̄
∂C̄2

∂z̄
= 1

Pe

∂2C̄2

∂ȳ2
, (38)

Advection in x direction : w̄
∂C̄3

∂z̄
+ ū

∂C̄3

∂x̄
= 0, (39)

Advection in y direction : w̄
∂C̄4

∂z̄
+ v̄

∂C̄4

∂ȳ
= 0. (40)

In an interval dz̄, Eq. (37) is solved first to obtain C̄1 with
the initial condition given by Eq. (36) for C̄0. We then solve for
C̄2 using Eq. (38) with the initial condition as C̄1. Similarly C̄3

is obtained by solving Eq. (39) with the initial condition as C̄2

and finally Eq. (40) is solved for C̄4 with the initial condition

as C̄3. This is solved sequentially in an interval dz̄ to find the
concentration C̄. The time (z̄) is then advanced to the next step.

The transport by diffusion in the x and y directions is
solved numerically using an explicit second order central
difference approximation. The numerical algorithm for the
purely advection equations in x and y directions have to
ensure that no errors arise by artificial diffusion. Different
numerical schemes for solving these hyperbolic equations are
discussed in the literature [30]. Traditional first order upwind
and Lax-Friedrichs schemes leads to numerical dissipation
and the solution obtained is highly diffusive. On the other
hand second order schemes such as Lax-Wendroff and QUICK
lead to oscillatory solutions due to dispersion. Hence, high
resolution schemes such as flux corrected transport (FCT)
and total variation diminishing (TVD) schemes have been
proposed to minimize the dissipation and dispersion errors. In
this work, the TVD scheme [31] based on the finite difference
method is employed.

Simulations were performed to study the mixing of a
species that has an inlet concentration of C̄0 = 1 and C̄0 = 0
in the upper and lower halves of the domain respectively.
A uniform concentration (C̄ = 0.5) everywhere in the cross-
section would signify complete mixing. In order to quantify
mixing efficiency, we have used the mixing index, which is
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FIG. 14. Variation of inverse mixing index for a periodically altering applied electric field as a function of the number of unit cells
for different Péclect numbers for two combinations of Gx and Gy . Here half-cell length is 2. (a) Pe = 100, (b) Pe = 1000, (c) Pe = 5000,
(d) Pe = 10000.
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based on the deviation of the concentration distribution from
a uniform value. This is given as [32]

M = σ

C̄avg
= 1

C̄avg

√
〈C̄2〉 − 〈C̄〉2

�

√√√√ 1

N − 1

N∑
i

(
C̄i

C̄avg
− 1

)2

, (41)

where, M is the mixing index of the species, σ is the standard
deviation, N is the number of nodes (grid points), C̄i is
the concentration at the node i, and C̄avg is the average
concentration of species. Mixing efficiency is defined as

Mixing efficiency =
(

1 − σ

C̄avg

)
× 100%. (42)

According to the mixing index definition in Eq. (41),
perfect mixing results in M = 0, since the concentration
everywhere is equal the average concentration. Hence, lower
values of M indicate better mixing.

For the proposed electroosmotic mixer, the mixing index
depends on the length of the unit cell, the applied electric field,
and the pressure gradient. Results are depicted in terms of the
inverse mixing index (M−1) to facilitate comparison between
various cases. Larger values of M−1 indicate better mixing.

Figure 14 shows the variation of the inverse mixing index
(M−1) with the number of unit cells, for different values of the
Peclet number (Pe). In advective mixing, the mixing index
decays with the length of the microchannel. Hence, M−1

increases exponentially for all Pe and it saturates to a constant
value after a certain number of unit cells. Beyond this, there
is no further improvement in mixing. Figure 14(a) depicts the
variation of M−1 for a small Peclet number of Pe = 100, and
for two different combinations of Gx and Gy values. It can be
seen that an increase in Gx and Gy has no effect on mixing.
This is to be expected since for low Pe, diffusion plays a
dominant role in species transport as compared to advection.

As we increase Pe, the effect of diffusion on species
transport is supressed and advection starts to dominate. Under
these conditions mixing is affected by Gx and Gy as shown
in Figs. 14(b)–14(d). Figure 14(b) depicts the variation of
M−1 for Pe 1 000, where both diffusion and advection play
a comparable role in species transport. The effect of Gx and
Gy is clearly observed in this figure. An increase in Gx and
Gy results in a significant increase of M−1, which implies a
better mixing of fluids across the cross-section. We further
increase Pe to reduce the effect of diffusion as compared to
advection on species transport. Figures 14(c) and 11(d) show
the variation of M−1 for Pe 5 000 and 10 000, respectively.
Here M−1 decreases with an increase in Pe as mass transfer
due to diffusion is negligible. It can be seen that the influence
of Gx and Gy become more prominent as Pe is increased.

The length required to achieve a desired degree of mixing
depends upon Pe. We define the mixing length as the length
required for 95% mixing (i.e., M = 0.05). The dependence
of the mixing length on Pe is shown in Fig. 15. As expected,
the mixing length required increases with an increase in Pe,
because the effect of diffusion on species transport is reduced.
The dependence of mixing length on Pe generally follows a
logarithmic or power law [33] relationship. For the conditions

101 102 103 104

Pe

0

5

10

15

20

25

30

M
ix

in
g 

le
ng

th

FIG. 15. Variation of mixing length for a periodically altering
applied electric field as a function of Péclet number for Gx = 1930,
Gy = −1930, and z̄l = 2 for 95% mixing.

shown in Fig. 14, the mixing length follows the following
power law behavior:

zmαPe0.83. (43)

VI. SUMMARY AND CONCLUSIONS

In this work, we have shown how electro-osmosis induces
chaotic mixing in a microchannel. The geometry consists of
a straight channel that is subject to an applied electric field
with a periodically alternating direction. The primary flow is
pressure driven and the transverse flow is electroosmotic. The
periodic variation of the electric field along the channel leads to
a crossing of streamlines, which in turn is responsible for the
chaotic mixing. The concept proposed can be implemented
without making any changes to the geometry of an existing
microchannel. In fact, the micro channel can have a simple
straight geometry.

A common issue encountered in flows driven by electric
fields is the occurrence of electrochemical reactions at the
electrodes, in case they are in contact with the fluid. These reac-
tions could produce gas bubbles that will interfere with the flow
field. One way of overcoming this issue is to use noncontact
electrodes in the construction of the proposed electro-osmotic
mixer. These electrodes will drive a transverse electro-osmotic
flow without coming in contact with the fluid [34].

The mixing efficiency of the mixer has been analyzed
numerically using Lagrangian techniques, as well as by solving
the species transport equation. In the former, the paths of
passive tracer particles are tracked and used to obtain Poincaré
maps and to calculate Shannon entropy, which provided
qualitative and quantitative measures of mixing, respectively.
The influence of molecular diffusion on mixing has been
studied by solving the species transport equation and analyzing
the influence of the Péclet number on the extent of mixing.
These different techniques of quantifying mixing lead to
a consistent picture of enhanced mixing in the proposed
electro-osmotic mixer. Mixing efficiency increases when the
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applied electric field strength is increased. Longer unit cells
also lead to better mixing.

To conclude, we have proposed a micromixer based on
an alternating applied electric field. The performance of this
mixer has been theoretically analyzed for different operating
conditions by studying the effect of different parameters on
the mixing performance.

APPENDIX

The equations governing the system are the continuity
equation, the Navier-Stokes equations, and the Poisson-
Boltzmann equation. These are nondimensionalized using the
characteristic scales [Eqs. (14)] and result in the dimensionless
variables given in Eq. (15). The dimensionless continuity and
momentum balance equations are

∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄
= 0, (A1)

Re

(
ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)

= −∂P̄

∂x̄
+ ∂2ū

∂x̄2
+ ∂2ū

∂ȳ2
+ ∂2ū

∂z̄2
+ Gxρ̄e, (A2)

Re

(
ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)

= −∂P̄

∂ȳ
+ ∂2v̄

∂x̄2
+ ∂2v̄

∂ȳ2
+ ∂2v̄

∂z̄2
+ Gyρ̄e, (A3)

Re

(
ū

∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)

= −∂P̄

∂z̄
+ ∂2w̄

∂x̄2
+ ∂2w̄

∂ȳ2
+ ∂2w̄

∂z̄2
, (A4)

where, Re is the Reynolds number defined as ρUchxch

μ
. The

general solution of the nonlinear governing Eqs. (A1)–(A4)
is dependent on the Reynolds number Re. In the creeping
flow limit, i.e., for low Reynolds numbers (Re < 1), the
perturbation approach can be used to obtain an approximate
solution to the nonlinear governing equations.

In this approach, the dependence of the solution on Re is
explicitly represented as a power series:

ū(x̄,ȳ,z̄; Re) � ū0(x̄,ȳ,z̄) + ū1(x̄,ȳ,z̄)Re + ū2(x̄,ȳ,z̄)Re2

+O(Re3), (A5)

v̄(x̄,ȳ,z̄; Re) � v̄0(x̄,ȳ,z̄) + v̄1(x̄,ȳ,z̄)Re + v̄2(x̄,ȳ,z̄)Re2

+O(Re3), (A6)

w̄(x̄,ȳ,z̄; Re) � w̄0(x̄,ȳ,z̄) + w̄1(x̄,ȳ,z̄)Re + w̄2(x̄,ȳ,z̄)Re2

+O(Re3), (A7)

P̄ (x̄,ȳ,z̄; Re) � P̄0(x̄,ȳ,z̄) + P̄1(x̄,ȳ,z̄)Re + P̄2(x̄,ȳ,z̄)Re2

+O(Re3). (A8)

We substitute Eqs. (A5)–(A8) into (A1)–(A4) and equate

the different powers of Re. This yields a series of linear
problems, which have to be solved sequentially to determine
the asymptotic solution.

When Re = 0, there are no inertial forces acting. Hence,
the zeroth-order solution O(Re0) corresponds to the creeping
flow limit. We refer to this as the base flow. Equating the
coefficients of Re0, we obtain the following equations:

∂ū0

∂x̄
+ ∂v̄0

∂ȳ
+ ∂w̄0

∂z̄
= 0, (A9)

∂2ū0

∂x̄2
+ ∂2ū0

∂ȳ2
+ ∂2ū0

∂z̄2
− ∂P̄0

∂x̄
+ Gxρ̄e = 0, (A10)

∂2v̄0

∂x̄2
+ ∂2v̄0

∂ȳ2
+ ∂2v̄0

∂z̄2
− ∂P̄0

∂ȳ
+ Gyρ̄e = 0, (A11)

∂2w̄0

∂x̄2
+ ∂2w̄0

∂ȳ2
+ ∂2w̄0

∂z̄2
− ∂P̄0

∂z̄
= 0. (A12)

These equations admit a fully developed flow field when
the pressure gradient ∂P̄0

∂z̄
is a constant. The governing

equations used in this work are the zeroth-order solution of
the momentum equations.
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