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Convection induced by thermal gradients on thin reaction fronts
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We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw
cell or porous media. In this model we take into account density gradients due to thermal and compositional
changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal
relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless
flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations
of short wavelength, but they become unstable for some wavelengths depending on the values of compositional
and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths
that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape
with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as
they propagate through the domain. This increment in temperature decreases with increasing speed.
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I. INTRODUCTION

Convective fluid motion arises from buoyancy forces due
to density gradients. These density gradients can be due
to changes in fluid composition, such as those present in
Rayleigh-Taylor instabilities [1]. They can also be caused
by thermal expansion, as is the case of the Rayleigh-Bénard
instability [2], when a fluid is heated from below. We
find both types of mechanisms in chemical reaction fronts
propagating in liquids. These systems consist of an interface
separating fluids of different composition, thus allowing the
possibility of a Rayleigh-Taylor instability. At the same
time, the chemical reaction can release heat, resulting in
a hydrodynamic instability caused by thermal expansion.
Examples of these fronts can be found in combustion where
chemical reactions are exothermic [3]. Compositional and
thermal gradients lead to convection in polymerization fronts
[4], and also in autocatalytic chemical reactions propagating
in liquids such as the iron(II)-nitric acid reaction [5], the
iodate-sulfite reaction [6], the chlorite-tetrathionate reaction
[7–9], and the iodate-arsenous acid (IAA) reaction [10].

Previous theoretical work described the front propagation in
liquids using reaction-diffusion-convection equations coupled
to the appropriate hydrodynamics and the heat equation.
Different chemical reactions required different reaction terms:
a cubic polynomial for the IAA reaction [11–13] and a fourth-
order polynomial for a model of the chlorite-tetrathionate
reaction [14,15]. In these works, fluid density was considered
a linear function of temperature and chemical concentration.
These theories were also applied to three-dimensional convec-
tive systems with thermal and compositional gradients [9,16].

The propagation of the reaction fronts can also be modeled
using a thin interface separating the reactants from the
products. In this case, the normal speed of the front is
determined by the local front curvature using an eikonal
relation. The results for the linear stability analysis of flat
fronts in the IAA reaction using the eikonal relation are close
to the results using a reaction-diffusion model [17]. For this
reaction, the eikonal relation showed good agreement with
the speeds of convective fronts in vertical cylinders [18,19].

The heat effects in the stability of the flat fronts were also
described with the same approach [20]. The results of the thin
front model can be applied to other reactions since it depends
only on the front curvature with the chemical reaction taking
place in the very thin interface.

In this paper, we study the effects of thermal expansion
using a thin front model. The heat release takes place only at the
interface separating reacted from unreacted fluids. We include
thermal and compositional gradients to analyze the stability
of an unbounded horizontal flat front. We also investigate the
change in shape and increase of speed for fronts propagating
in vertical domains near the onset of convection.

II. THEORETICAL FRAMEWORK

A. Equations of motion

We study autocatalytic reaction fronts propagating upward
in aqueous solutions. The front separates reacted from un-
reacted fluids leading to density gradients across the front.
We consider fluids confined inside a Hele-Shaw cell or a
two-dimensional porous media; therefore, their velocities obey
Darcy’s law:

v(x,y,t) = − κ

μ
(∇P + ρg). (1)

Here κ is the permeability of the medium, μ is the dynamic
viscosity of the fluid, P is the pressure, ρ is the fluid
density, and g is the acceleration of gravity. We work in a
laboratory reference frame where the x axis is horizontal and
gravity points in the negative y direction: g = −gŷ. The fluid
velocity also satisfies a mass continuity equation, which in the
Boussinesq approximation [21] becomes

∇ · v = 0. (2)

This equation allows us to replace the fluid velocity field
with a stream function ψ(x,y,t), having the fluid velocity
components as vx = −∂ψ/∂y and vy = ∂ψ/∂x. We can
eliminate the pressure by taking the curl of Eq. (1) leading
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to a Poisson equation for the stream function:

∇2ψ = −κg

μ

∂ρ

∂x
. (3)

We model the reaction front as a thin interface located by
a height function H (x,t). An eikonal relation between the flat
front velocity and the curvature of the front provides the normal
front velocity thus resulting in a rule to propagate the front.
For fronts propagating in moving fluids, we add the normal
fluid velocity to the eikonal relation. For small curvatures and
slow fluid speeds the eikonal relation leads to

∂H

∂t
= C0 + C0

2

(
∂H

∂x

)2

+ DC

∂2H

∂x2
+ vy |y=H , (4)

where C0 is the flat front speed and DC the fluid molecular
diffusivity [22]. This equation corresponds to a deterministic
Kardar-Zhang-Parisi equation coupled to fluid flow.

To account for thermal effects we include a heat equation
advected by the fluid velocity with a front-centered delta
function as a heat source. The equation for the temperature
of the fluid T (x,y,t) corresponds to

∂T

∂t
+ v · ∇T = DT ∇2T + Qδ(y − H ). (5)

Here DT represents the thermal diffusivity, and the constant
Q sets the amount of heat released at the front position. We do
not include slope corrections for the delta function since our
focus is on fronts near the onset of convection. We assume that
the fluid density varies linearly with T having a discontinuous
jump due to the change in composition at the front:

ρ(x,y,t) = ρ0[1 − α(T − T0) + β	(y − H )]. (6)

Here ρ0 is the density of the unreacted fluid at temperature T0,
α the thermal expansion coefficient, β the fractional change
in density across the front, and 	(y − H ) the Heaviside step
function. The boundary conditions correspond to no diffusive
flow across the wall, which leads to ∂H/∂x = 0 for the front
height. There is no heat flow through the walls, therefore, the
normal derivatives of T at the bottom and lateral walls are
zero. Ahead and far away from the front the temperature is set
to T0.

A convectionless solution of Eqs. (3)–(5) travels upward
with constant speed C0 having a temperature profile equal to

T (0) =
{
T0 + Q/C0, for y < 0,

T0 + (Q/C0)e−C0y/DT , for y � 0.
(7)

This steady state temperature solution corresponds to a
reference frame moving along the vertical y coordinate with
constant velocity C0. The front position is located at H (0) = 0,
with the stream function equal to ψ (0) = 0 representing zero
velocity in the laboratory frame. The zero superindex labels
this particular solution which has a constant temperature
below the front decreasing exponentially toward the unreacted
fluid temperature T0. Far below the front the temperature of
the reacted fluid corresponds to T1 ≡ T0 + 
T , with 
T =
Q/C0.

We introduce dimensionless units using τ ≡ DT C−2
0 for

time and � ≡ DT C−1
0 for length. With these definitions we

have the dimensionless coordinates and variables given by x =

x ′�, t = t ′τ , H = H ′�, T = T ′
T , and ψ = ψ ′�2τ−1. After
dropping the primes, we are left with the following nonlinear
system:

∂T

∂t
= ∇2T − v · ∇T + δ(y − H ) + ∂T

∂y
, (8a)

∇2ψ = RaT
∂T

∂x
+ RaC

∂H

∂x
δ(y − H ), (8b)

∂H

∂t
= 1

2

(
∂H

∂x

)2

+ 1

L

∂2H

∂x2
+ vy |y=H . (8c)

The last term in Eq. (8a) arises from using a comoving
reference frame; the first term in Eq. (4) vanishes for the same
reason. The system is defined by three dimensionless numbers:
RaT, RaC, and L . The first two are, respectively, the thermal
and compositional Rayleigh numbers:

RaT ≡ κgρ0α
T

μC0
, RaC ≡ κgρ0β

μC0
. (9)

The Lewis number L is the ratio between thermal and
molecular diffusivities, L ≡ DT /DC . In this paper we will
use values related to experiments in the iodate-arsenous
acid reaction where the thermal diffusivity is [23] DT =
1.45 × 10−3 cm2/s and the molecular diffusivity is DC =
2 × 10−5 cm2/s, resulting in a Lewis number L = 72.5.

B. Linear stability analysis

We carry out a linear stability analysis to determine the
stability of the flat front solutions with respect to small pertur-
bations. A new variable for the temperature is introduced by
defining T = T (0) + T (1), with T (1) being a perturbation to the
convectionless solution. Similarly, we introduce perturbations
to the front height and the stream function. Substituting the
variables into Eq. (8a), it reads

∂T (1)

∂t
+ v(1) · ∇(T (0) + T (1))

= d2T (0)

dy2
+ ∇2T (1) + δ(y − H (1)) + dT (0)

dy
+ ∂T (1)

∂y
.

(10)

A Taylor series expansion helps to evaluate the delta func-
tion for small front heights: δ(x − H (1)) ≈ δ(x) − H (1)δ′(x).
Neglecting second order terms, together with the fact that T (0)

is a solution for the convectionless front, we arrive at a set of
linear equations describing the evolution of the perturbations,

∂T (1)

∂t
+ v(1) · ∇T (0) = ∇2T (1) − H (1)δ′(x) + C0

∂T (1)

∂x
,

(11a)

∇2ψ (1) = RaT
∂T (1)

∂y
+ RaC

∂H (1)

∂y
δ(x), (11b)

∂H (1)

∂t
= 1

L

∂2H (1)

∂y2
+ vx

(1). (11c)

Since Eqs. (11) are linear, we can introduce plane waves
that extend along the horizontal direction having wave number
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q. Taking into account the boundary conditions, we write the
perturbations as

T (1) = Tq(y,t) cos(qx), (12a)

ψ (1) = ψq(y,t) sin(qx), (12b)

H (1) = Hq(y,t) cos(qx). (12c)

After substituting Eqs. (12) into Eqs. (11) and simplifying,
we obtain a system for the time evolution of the plane wave
perturbations:

∂Tq

∂t
= ∂2Tq

∂y2
− q2Tq − qψq

dT (0)

dy
− Hqδ

′(y) + ∂Tq

∂y
,

(13a)

∂2ψq

∂y2
= q2ψq − q RaTTq − q RaCHqδ(y), (13b)

∂Hq

∂t
= − q2

L
Hq + qψq |y=0. (13c)

Since these equations vary linearly with time, we look for
solutions where the variables of temperature, height, and
stream function are proportional to eσ t . The stability of the
flat front solution is determined by the sign of the growth rate
σ for a given value of the wave number q, if σ is positive then
the perturbations will grow indefinitely with the front being
unstable. If the growth rate is negative, the flat front is stable
since the perturbations will vanish after a long time.

III. NUMERICAL METHODS

We solve the linear and nonlinear partial differential
equations using numerical techniques. A rectangular mesh is
set to approximate all spatial derivatives using second order
finite difference schemes. The time evolution is carried out
by using a first order finite difference approximation allowing
one to calculate the temperature and height variables after
a small time step [24]. The stream function is calculated
by solving the discretized Poisson equation (8b) using an
alternating-direction relaxation method [25]. Our results were
compared with the solution of the Poisson equation using the
GENBUN subroutine of the FISHPACK package [26] finding good
agreement between both methods.

Our equations involve Dirac’s δ function and its derivative,
δ′. We approximate both with representations in terms of a
small parameter, ε. For the δ functions we use the Poisson
kernel,

δε(y − H ) = 1

π

ε

(y − H )2 + ε2
, (14)

which equals δ(y − H ) in the limit ε → 0. To implement δ′
we opt for a “rectangular” representation [27]:

δ′
ε(y) =

⎧⎪⎨
⎪⎩

0, if y < −ε,

−1/ε2, if −ε < y < 0,

1/ε2, if 0 < y < ε,

0, if y > ε.

(15)

The value of ε is comparable to the distance between adjacent
grid points. We set the mesh size 
y = 0.1875 and time step


t = 10−3 for the linear calculations. To solve the nonlinear
Poisson equation with GENBUN, we work on a two-dimensional
grid with 
x = 4.54 × 10−2 and 
y = 6.25 × 10−2; the
corresponding time step is 
t = 5 × 10−4. When working
with the alternating-directions implicit method we use a range
of mesh sizes and time steps close to the previous values.

Studying the time evolution of small random perturbations
on the plane wave expansion [Eq. (13c)] allows us to calculate
their growth rate. After a long time, the system variables
evolve proportional to eσ (q)t ; therefore, σ can be obtained
from the time evolution. If σ (q) is positive, the perturbations
will grow indefinitely eventually reaching extremely large
numbers. To avoid this problem, after a certain time, all the
variables are multiplied by a normalizing factor, with the new
variables evolving with the same exponential rate. A similar
approach is used when σ (q) is negative as the numbers will
eventually become too small. Since the front travels upward,
the singularity of δ(y − H ) shifts with time. We switch to
a system that moves with the speed of the average front
position allowing us to keep the system variables within our
computational domain.

IV. RESULTS

A. Linear stability analysis results

To study the importance of thermal expansion, we carry out
a linear stability analysis of convectionless flat fronts without
compositional gradients (RaC = 0). The resulting dispersion
relations in Fig. 1 show the dependence of the growth rate σ

with respect to the corresponding wave number q for different
values of the thermal Rayleigh number RaT. Here we focus
on exothermic reactions where RaT is positive, which results
in having the less dense fluid underneath heavier cold fluid.
In all of these cases we find dispersion relations having a
maximum growth rate that is positive, indicating that the front
is unstable for perturbations of certain wave number. For zero
wave numbers, the growth rate is zero; however, the slope

0.5 1 1.5 2 2.5 3

−0.2

0.2

0.4

0.6

0.8

q

σ(q) RaT = 2.0
RaT = 3.0
RaT = 4.0
RaT = 5.0

FIG. 1. Dispersion curves for different values of RaT, with RaC =
0. Unstable perturbations correspond to wave numbers with positive
values of sigma. The range of wave numbers leading to instabilities
increases as RaT is increased.
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FIG. 2. Dispersion relations for compositional and thermal
Rayleigh numbers of (a) the same sign and (b) opposite signs. In (a),
curve A corresponds to RaC = 0.3 and RaT = 2, curve B to RaC = 0.1
and RaT = 0.75, curve C to RaC = −0.05 and RaT = −0.25, and
curve D to RaC = −0.1 and RaT = −1.5. In (b), curve E corresponds
to RaC = 0.4 and RaT = −1.5, curve F to RaC = 0.1 and RaT = −2,
curve G to RaC = −0.2 and RaT = 2.5, and curve H to RaC = −0.1
and RaT = 0.75.

of the dispersion relation is positive; thus perturbations with
nonzero but small wave numbers (large wavelengths) will have
a destabilizing effect. Since the growth rate is negative for very
large wave numbers there is a critical wave number where the
growth rate is exactly zero. This fact shows that flat fronts
propagating in narrow tubes are stable since the tube width
only allows perturbations of small wavelengths which have
negative growth rate. We notice that for higher values of RaT

the range of wave numbers that have positive growth rate
increases, with the maximum growth rate becoming larger;
consequently the flat front becomes more unstable. As long as
the front propagates in a wide enough tube, the exothermicity
of the reaction will always make the flat front unstable.

In the presence of compositional gradients, thermal gradi-
ents will affect the front stability depending on the combined
effects of both gradients on the density. In the case of having
both Rayleigh numbers positive, we find that perturbations

of small wave numbers will always have positive growth
rate, indicating an unstable flat front. We show in Fig. 2(a)
dispersion relations for two sets of positive Rayleigh num-
bers. The dispersion relation corresponding to RaT = 2.0
and RaC = 0.3 has higher growth rates compared to the
one with RaT = 0.75 and RaC = 0.1; this is due to the
fact that each respective Rayleigh number is higher. In the
case where both Rayleigh numbers are negative, we find
negative growth rates for all perturbations; therefore, the flat
front is stable. The stronger the Rayleigh numbers in the
negative direction the more negative the values of the growth
rate as displayed in lines C and D of Fig. 2(a); therefore,
favorable density gradients enhance the stability of the flat
front.

When the compositional and thermal Rayleigh numbers
have opposite signs the onset of convection will depend
on their relative strength. In the case of having a negative
RaT, we find that small values of RaC could lead to an
unstable flat front. In curve F of Fig. 2(b) we show a case
where the growth rates are negative, but the curve exhibits
a relative maximum very close to zero. Slightly increasing
the compositional Rayleigh number will result in having
some growth rates positive. Here the onset of the instability
takes place at a wave number away from zero, in contrast to
having both Rayleigh numbers positive, where wave numbers
close to zero always have positive growth rates. Away from
the critical case, we find a range of wave numbers with
positive growth rates, as shown in curve E. This result was
also found in a hydrodynamic reaction-diffusion model for
the chlorite-tetrathionate reaction [14]. Here wave numbers
close to zero have negative growth rates, as well as large wave
numbers. In the case of having a positive RaT, we find that wave
numbers near zero show positive growth rates, thus allowing
instabilities at large wavelengths as shown in curves G and H
of Fig. 2(b).

The stability of the flat front as a function of the compo-
sitional and thermal Rayleigh numbers is shown in Fig. 3. In
this figure we indicate two different regions in the RaC-RaT

plane where combinations of these Rayleigh numbers results

−0.5 0.5

−1.5

−1

−0.5

0.5

1

RaC

RaT

FIG. 3. Rayleigh number configurations for stable and unstable
flat fronts. The values in the dark region correspond to stable flat
fronts, while the ones in the light region lead to instabilities.
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in stable and unstable fronts. When both Rayleigh numbers
are negative there is only stable flat fronts since fluid of lower
density is placed above a fluid of higher density. Having both
Rayleigh numbers positive there is always a perturbation of
wave number close to zero that has a positive growth rate;
thus unbounded flat fronts will always be unstable. The figure
also shows that when the Rayleigh numbers have opposite
sign, there is a curve that separates stable from unstable
domains. This curve is steeper for negative thermal Rayleigh
numbers RaT, indicating that a small positive RaT can lead to
an instability.

B. Nonlinear system results

We study the propagation of reaction fronts with convection
solving numerically the nonlinear system of equations (8).
In this work we focus on thermal density changes while
varying the domain width; thus the Rayleigh numbers are set to
RaT = 0 and RaT = 3. According to the dispersion relation
Fig. 1 flat fronts are stable for perturbations of large wave
number (small wavelength); consequently flat fronts in narrow
tubes will be stable. Perturbations with the wave number
greater than q = 2.5 will decay exponentially (Fig. 1); thus
convectionless flat fronts will propagate in rectangular do-
mains of width less than L = π/q = 1.26. For larger widths,
the perturbations grow leading to the formation of fronts of
steady shape and higher speed.

We obtain axisymmetric and nonaxisymmetric fronts of
steady shape as the flat front loses stability in wider domains.
Here the axis is defined as a line pointing in the vertical y

direction, halfway between the walls. We show in Fig. 4(a)
the shape of the front and the fluid velocity field of the
nonaxisymmetric front as it propagates in a domain of width
L = 5. The front is represented with a line that separates
reacted from unreacted fluid, the velocity field shows a single
convective roll that lifts the front on one side of the domain,
and lowers it in the opposite side. For a domain width L = 12,
the front takes a constant axisymmetric shape as it moves
upward, with two counter-rotating convective rolls lifting
the front at the center of the domain [Fig. 4(b)]. In these
figures, the nonaxisymmetric front propagates upward with
a speed of 1.39, while the axisymmetric front moves with
1.47 as measured in the laboratory frame of reference. These
values are significantly higher than the flat front speed which
corresponds to one in dimensionless units. Near the center of
the axisymmetric front the fluid pushes the front upward, while
the curvature in the eikonal relation provides a smaller normal
velocity. The opposing effects of fluid flow and curvature result
in a front of constant shape, traveling with constant velocity.

We calculate the temperature profile and the stream function
of reaction fronts propagating with constant curvatures. In
Fig. 5(a) the stream function associated with a nonaxisym-
metric front exhibits a single convective roll. In this case
the stream function has a local maximum near the center of
the tube, corresponding to the fluid rotating clockwise. This
type of fluid motion leads to a front raised higher on the left
wall similar to the flow shown in Fig. 4(a). The temperature
profile [Fig. 5(b)] follows the shape of the front; however,
the temperature gradients across the front are not uniform.
We observe hot spots developing a higher temperature near
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FIG. 4. Nonaxisymmetric (a) and axisymmetric (b) fronts of con-
stant shape with corresponding velocity fields. The fronts propagate
upward with constant speed. The tube widths are L = 5 (a) and
L = 12 (b).

the wall where the front is nearly horizontal. Far behind the
front, the substance is away from the heat source showing a
uniform temperature that is higher that the temperature of the
unreacted fluid. This is due to the heat release by the front and
the insulating boundary conditions. We display in Fig. 6(a)
the stream function corresponding to an axisymmetric front
developed in a tube of width L = 12. The stream function
has a relative maximum and a relative minimum resulting in
two counter-rotating convective rolls. In this case, the stream
function is antisymmetric with respect to a reflection about
the axis; thus fluid rotates in opposite directions around two
rolls. The combined effect of both rolls results in having fluid
rising on the center of the tube and falling near the walls.
The temperature profile for the axisymmetric front shows a
hot spot at the center of the tube with two other hot spots
near the walls [Fig. 6(b)]. This situation is similar to the case
of nonaxisymmetric fronts where hot spots appear where the
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FIG. 5. Stream function (a) and temperature (b) around a nonax-
isymmetric front of constant shape in a tube of width L = 6.

slope of the front is horizontal. Hot spots have been observed
in fronts propagating in the chlorite-tetrathionate reaction that
are located near the trailing portions of the reaction fronts
[28]. Numerical simulations of a reaction-diffusion-convection
equation accounted for their location [29]. However, there
are several aspects that make both systems different. Here
we consider insulated boundaries while in experiments heat
losses are noticed. In our confined geometry we find hot spots
near the boundary walls, while experiments are carried out in
a more extended Hele-Shaw cell. Although the direction of
propagation of the front is different, we also find hot spots in
the direction of rising fluid. We observe uniform temperatures
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FIG. 6. Stream function (a) and temperature (b) around an
axisymmetric front of constant shape in a tube of width L = 13.

far away from the front, with a higher temperature behind
the front. As we shall see later, the uniform temperatures
behind the fronts are different due to their different propagating
speeds.

Figure 7(a) shows the speeds of axisymmetric and nonax-
isymmetric fronts as functions of tube width. The speed of
convective fronts increases in wider tubes. Convective fronts
develop when the convectionless flat front loses stability; the
linear stability analysis provides a critical width equal to 1.25
for these conditions. Our nonlinear results are in agreement,
showing an increase of speed due to convection for tubes
of width larger than the critical width. For tubes of width
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FIG. 7. Front speed (a) and variance (b) for different values of the
tube width L. The curve with squares correspond to nonaxisymmetric
fronts, while the circles represent axisymmetric fronts.

larger than twice the critical width, we obtain axisymmetric
fronts. Although we found axisymmetric fronts from random
conditions at large widths (L = 12), we could not find them
close to the transition point. The results shown here correspond
to axisymmetric solutions obtained by imposing the axial
symmetry on the equations. Therefore, the initial axisymmetric
fronts with slow speed may be unstable. The stability analysis
of these fronts is beyond the scope of the present work.
We point out that the axisymmetric solutions correspond to
two identical nonaxisymmetric fronts mirroring one another
across the axis. Therefore, the speed of an axisymmetric front
corresponds to the speed of a nonaxisymmetric front in a
domain half as wide. The fronts continue to deviate from
the flat front as the width of the tube increases, as shown in
Fig. 7(b). Here we plot the variance of the front as a function
of tube width, showing that the fronts become more spread out
with increasing convection.
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FIG. 8. Fluid temperature far behind convective fronts as a
function of speed. Faster fronts correspond to a smaller increase
in temperature. This temperature difference approximates an inverse
relation to the speed. This result is similar to the temperature change
due to a pointlike source moving with constant speed.

The temperature behind the front reaches a constant value
that decreases with increasing front speed. In the case of
a convectionless front, the rise in temperature is inversely
proportional to the speed of the front as shown in Eq. (7). In
dimensionless units flat fronts have a speed equal to one with
a temperature increment equal to one. When convection takes
place the speed of the front increases, lowering the temperature
increment behind the front. The change in temperature for the
convective front depends on the speed of the front as shown in
Fig. 8. We notice that the temperature change is very close to
being inversely proportional to the final speed of the convective
front, as it was the case of convectionless fronts.

V. SUMMARY AND DISCUSSION

We have introduced a set of nonlinear equations describing
the evolution of an exothermic reaction front in a fluid. Our
model takes into account density changes due to thermal and
compositional gradients which may result in convective fluid
motion. For density gradients due only to thermal effects, a
linear stability analysis on the flat front solutions showed
that long wavelength perturbations will destabilize the front
when the less dense fluid is underneath a more dense fluid,
but perturbations of short wavelength will decrease in time. In
this case, the critical wavelength that separates growing from
decaying perturbations depends on the value of the thermal
Rayleigh number. This result is also found for density changes
due only to chemical composition [30]. When compositional
and thermal effects are in the opposite direction the Rayleigh
numbers have opposite sign. In this case the front can be
unstable to perturbations in a range of wave numbers without
being unstable to large perturbations.

The nonlinear equations exhibit solutions of fronts of
constant shape moving steadily in narrow rectangular domains.
Flat fronts in bounded domains can propagate steadily in
regions of sufficiently small width. However, for widths
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larger than a critical value, they lose stability becoming
nonaxisymmetric fronts of higher speed. For widths larger
than twice the critical width for the onset of convection, we find
axisymmetric solutions that consist of two nonaxisymmetric
fronts placed next to each other. Axisymmetric solutions can
be found from random perturbations to the flat front only away
from the onset of convection. Future work should establish the
stability of both types of steady fronts.

An exothermic front moving through the fluid increases its
temperature. The temperature profile exhibits regions of higher
temperatures near the front; however, far behind the front the
temperature is uniform, decreasing for faster moving fronts.
Since convection increases the speed of the front, we also find
this effect in fronts with convection. The result is similar to

the one caused by a one-dimensional front, where the increase
of temperature is inversely proportional to the front speed.
Measurements of the temperature behind the front and the
dependence with the front speed will require treatment of the
heat losses, which will lower the temperature behind the front.
The temperature dependence with front speed can be measured
in experiments varying the width of a Hele-Shaw cell or the
diameter of a tube.
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