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Orthotropic hydraulic permeability of arrays of parallel cylinders
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Approximate analytical methods are presented to calculate the overall orthotropic hydraulic permeability
of a flow with low Reynolds number, passing through a bundle of parallel circular cylinders. Two particular
distributions are considered: (i) arrays with ordered rectangular lattices and (ii) irregular nonrandom distributions
for which the unit cell cross sections are elliptical. The standard unit cell models, originally developed by Happel
and Kuwabara for a random distribution of cylinders, are adapted to the case of nonrandom distributions. The drag
force on a representative cylinder in a direction perpendicular to its axis is obtained based on the standard unit cell
model: the actual unit cell of rectangular or elliptical cross section is replaced with an “equivalent” cylindrical unit
cell of diameter equal to the maximum width of the actual unit cell. Using the obtained drag forces and referring
back to the original geometry of the unit cell, closed-form approximate expressions for the overall permeabilities
in the perpendicular directions are obtained. Numerical comparisons with more sophisticated approaches confirm
the good efficiency of the presented approach, especially in the range of low solid volume fraction, i.e., of high
porosity. Previous studies have revealed that, for the parallel fluid flow, the variation of permeability with aspect
ratio (or in general the lateral arrangement) of parallel cylinders is generally weak. These observations suggest
that Happel’s model for parallel permeability in a random distribution of cylinders could be a good approximation
for parallel permeabilities in nonrandom distributions with the same volume fraction.

DOI: 10.1103/PhysRevE.96.033112

I. INTRODUCTION

Fluid flows across a bundle of parallel cylinders are
commonly found in various examples, ranging from industrial
applications (such as heat exchangers, filters, and fibrous
porous materials) to biological applications (such as soft
tissues, bones, and biomaterials). In view of this wide range
of applications, several theoretical and experimental studies
exist (see, e.g., Refs. [1–33]). Here, we confine our attention
to creeping flow (i.e., flow with very low Reynolds number),
which is particularly relevant to the permeability of fibrous
biological tissues and biomaterials, with very low rate of
fluid flow. The pioneering works of Happel [1] and Kuwabara
[2] introduced classical methods for assessing the hydraulic
permeability of parallel cylindrical arrays. An important idea
in these works is adopting a unit cell model, in which the study
of the flow through an array of cylinders is reduced to that of
the flow in a unit cell. In both Happel’s [1] and Kuwabara’s
[2] models, the unit cell consists of a representative cylinder
surrounded by a cylindrical shell composed of fluid, with
appropriate boundary conditions at the interface between the
cylinder and surrounding fluid layer. The boundary conditions
on the outer surface of the fluid layer in Happel’s [1] and
Kuwabara’s [2] models are zero shear stress and zero vorticity,
respectively. Both models are suitable for modeling random
distributions of parallel cylinders, although Happel [1] seems
to have had regular arrays in mind, as he was considering an
application to heat exchangers.

*Corresponding author: salvatore.federico@ucalgary.ca

Based on an “effective medium approximation” (EMA),
Li and Park [34] calculated the normal and tangential
permeabilities of parallel arrays of cylindrical fibers and also
the overall permeability of a randomly orientated population
of fibers. The key difference between the EMA model and
the cell model of Happel [1] or Kuwabara [2] is that the fluid
medium outside the cell boundary in the cell model is replaced
by an effective porous medium whose permeability must be
determined. Analogously to self-consistent homogenization
methods, the compatibility of pressure gradients at the bulk
and microscopic scales in the EMA results in a characteristic
equation that can be solved for the overall permeability.
However, in general, no closed-form permeability expression
can be obtained from the EMA as the characteristic equation
seems to be solvable only numerically. In addition, Li
and Park [35] also considered the case in which the fibers
are randomly distributed on planar planes. Numerical
comparisons performed by Li and Park [35] indicate that
the EMA, compared to the unit cell models of Happel [1] or
Kuwabara [2], has the key benefit of predicting more accurate
results at smaller porosities (i.e., larger solid volume fraction).

We note that Happel’s [1], Kuwabara’s [2], and Li and
Park’s [35] models are all based on a unit cell with circular
cross section and a random distribution of parallel cylinders,
and therefore do not capture any anisotropy in the plane per-
pendicular to the direction of the cylinders’ axes, which would
be imposed by any positional nonrandomness of cylinders.

Various applications in biological, chemical, and industrial
examples require the study of fluid flow through parallel
cylinders that have a nonrandom distribution, which adds to
the complexity of the treatment. Particularly, much attention
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has been given to cylinders arranged on an ordered lattice,
both theoretically and experimentally. In general, a fluid
flow passing through an array of cylinders experiences an
anisotropy in the overall permeability of the array. The two
extreme possibilities are flow parallel and perpendicular to the
axes of cylinders for which the overall permeabilities differ. In
addition, the overall permeability of a fluid flow perpendicular
to the axes may depend on the particular direction on the plane
perpendicular to the axes. However, despite having a nonran-
dom distribution, due to their lattice symmetries, some arrays
do not have any anisotropic overall permeability on the plane
perpendicular to the cylinder axes. In other words, on average,
the fluid flow permeability in any direction perpendicular
to the axes is identical. For example, square, equilateral
triangular, and hexagonal lattices show such a property.
Thus, for these examples of ordered arrays, and of course for
random arrays, the overall permeability tensor is transversely
isotropic and has, in general, two distinct principal values,
one associated with the cylindrical axis direction and the other
associated with any direction perpendicular to the axis. An
example of ordered lattice exhibiting nontransversely isotropic
permeability is the rectangular lattice. For a rectangular lattice,
the permeability tensor is in fact orthotropic, and possesses
three principal values, two of them being perpendicular
permeabilities associated with major and minor dimensions of
the unit cell, and the third one being the parallel permeability
associated with the direction of the cylinder axes.

Exact analytical study of fluid flow in arrays of cylinders in
a regular lattice generally demands complicated mathematical
manipulations. The analysis can become more complex, for
example, when cylinders are assumed permeable. Thus, this
problem has been numerically addressed extensively. Several
lattices are studied as, in different applications, some lattices
might be a preferred choice for designing (e.g., in heat
exchangers) or for modeling porous materials (e.g., foams,
filters, scaffolds, or biological tissues). Among the ordered
lattices, much attention has been given to the square, equi-
lateral triangular, and hexagonal ones, for which the overall
permeability has no anisotropy on the plane perpendicular to
the cylinder axes.

However, studies on permeability of rectangular lattices
exist. Drummond and Tahir [6] studied fluid flow across arrays
of cylinders on regular lattices (with boundary conditions of
zero velocity on the surface and periodic boundary conditions,
resulting in zero shear stress on the symmetry planes). Among
their cases, they considered fluid flow parallel to the directions
of cylinders for a rectangular array with aspect ratio (the
ratio of the width and the length of the unit cell cross
section) of two. Using eigenfunction expansion, collocation,
and matching methods, Wang [20] analytically calculated the
overall permeability of a system of parallel cylinders placed on
a rectangular lattice for parallel and transverse (perpendicular)
flow directions. Tamayol and Bahrami [26] used an analytical
method to calculate the overall permeability of the fluid flow
passing a bundle of parallel cylinders (fibers), arranged on reg-
ular lattices, parallel and perpendicular to the fiber axes. Their
method relied on the assumption that the fluid velocity profile
between the surfaces of adjacent cylinders is locally parabolic.
Among the different lattices they studied, they considered a
rectangular lattice for the fibers arrangement. DeValve and

Pitchumani [36] implemented the method of boundary collo-
cation to present a series solution for the parallel permeability
of rectangular and staggered arrays of parallel cylinders.

In some physical systems, it appears that arrays of cylinders
cannot be classified as either ordered (i.e., following a lattice)
or random. To better understand such a case, assume that a
group of parallel cylinders is randomly distributed. At the
bulk scale, in contrast to an individual cylinder scale, the
cylinders seem to be uniformly distributed. Now suppose
that, for example, driven by an external source, cylinders
are pushed or pulled in certain direction causing a directional
bias in their placements. The directional bias at the bulk level
causes an anisotropic state of permeability for a fluid flowing
perpendicular to the axes of the cylinders. Conversely, for such
an array, the directional bias can be canceled out by applying
a hypothetical uniform deformation that transfers the array to
a random one. In view of the kinematical considerations at
the bulk level, an array that has such a property should have a
unit cell with elliptical cross section. In the limiting case that
an array is random, its unit cell has a circular cross section.
Examples of unit cells with elliptical cross sections arise
in deformed fibrous materials or materials with distributed
cylindrical elements [37,38].

Quinn [37] and Quinn et al. [38] performed detailed
analyses on the permeability of the proteoglycan matrix, which
is a key component of articular cartilage. Their analyses
involve considering a circular unit cell containing a cylindrical
core (a glycosaminoglycan molecule) covered by a fluid layer.
Assuming that the bulk deformation of tissue is directly
transferred down to the micro level, they formulated the shape
change of an originally circular unit cell to a unit cell with
an elliptical cross section containing the same (rigid) circular
cylindrical core. Adopting the elliptical unit cell and using
perturbed versions of the unit cell models, they developed
analytical solutions for the effective permeability tensor for
the case that the shape of the unit cell cross section has a very
small ellipticity. In fact, deriving an analytical solution for the
overall permeability when the cross section of the unit cell has
a finite ellipticity seems very challenging.

In many applications, especially where multiscale fluid flow
analysis is involved, having closed-form permeability relations
at different scales is extremely useful. When such expressions
are available, the overall permeability of a multiscale material
and the role of important variables at different scales can be
conveniently studied. This work is motivated by our interest
in modeling the proteoglycan matrix in articular cartilage,
which is believed to play a major role in determining the
permeability of the tissue (e.g., see Refs. [39,40]) and has a
hierarchical structure, starting from proteoglycan aggregates,
down to individual glycosaminoglycan molecules. This type of
hierarchical structure is a suitable example of the applicability
of analytical permeability relations at different scales.

The aim of the present work is to provide approximate an-
alytical relations for the permeability of creeping fluid flow in
nonrandom distributions of parallel cylinders for which perme-
ability is orthotropic. Specifically, two cases will be studied:

(i) a rectangular array of parallel cylinders;
(ii) an array of cylinders having no ordered lattice, for

which the cross section of the unit cell is elliptical; we refer to
this array as an “irregular” (but not random) array.
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By replacing the actual unit cell with equivalent circular
unit cells of proper size, and implementing the standard unit
cell models of Happel [1] or Kuwabara [2], the drag force
applied on a representative cylinder in the perpendicular flow
is obtained. Next, referring to the original cross-sectional area
of the unit cell and following Happel [1] and Quinn [37], the
overall permeabilities in two principal directions perpendicular
to the direction of the axes of the cylinders are derived.
The existing results and comparisons [6,7,26,36–38] show
that the parallel permeability (compared to the perpendicular
permeability) of a bundle of parallel cylinders has a weak
dependance on the particular arrangement of the cylinders
or the shape of the unit cell, but a strong dependance on
the solid volume fraction. Thus, Happel’s [1] prediction for
the parallel permeability of random distributions of parallel
cylinders (circular unit cell model) can also be considered as
a good approximation for noncircular unit cells especially for
low solid volume fractions [7].

The technique presented here can be generalized to more
complex cases, where, for example, the cylinders are perme-
able. While obtaining exact analytical overall permeability
relations could be challenging, the proposed technique can be
used to adapt existing solutions for random arrays to arrays
with noncircular unit cell cross sections. This work provides
an efficient method in studying the permeability of nonrandom
arrays of cylinders, with the added benefit of being suitable
for multiscale structures and materials.

The work is organized as follows. In Sec. II, we discuss
rectangular and irregular arrays of cylinders and their cor-
responding rectangular and elliptical unit cells. Section III
introduces the models of Happel [1] and Kuwabara [2] for the
perpendicular flow and their relations for the perpendicular
drag forces, from which we have obtained the perpendicular
permeability relations for rectangular and elliptical unit cells.
Section IV presents the results available in the literature for
parallel permeability. The results of our model are presented
in Sec. V, along with comparisons with models available in
the literature. A summary is provided in Sec. VI.

II. DISTRIBUTIONS OF CYLINDERS
AND CORRESPONDING UNIT CELLS

Consider an array of parallel, identical, infinitely long
circular cylinders of radius a, and let the free space among
the cylinders be filled with an incompressible, Newtonian,
viscous fluid with dynamic viscosity μ. Consider two cases of
distribution of cylinders.

In the first case, the cylinders are arranged on a regular
rectangular lattice [Fig. 1(a)]. The lattice is defined by the
length d and the width ζd of a representative rectangular cell
in the x and y directions, respectively. Obviously, ζ serves
as the aspect ratio of the cell. Referring to the geometrical
symmetries of the rectangular lattice, a unit cell of length d

and width ζd can be realized with a representative cylinder
placed at its center [Fig. 2(a)].

The second case considers an irregular array in which
the cylinders have a positional bias in a certain direction. In
general, this case can be obtained by “deforming” a region
with a random distribution of parallel cylinders by means
of a deformation with a nonzero distortional part (see the

ζd

y

d

x L

L

λL

L

(a) (b () c)

FIG. 1. (a) A rectangular array of parallel cylinders; (b) a
hypothetical randomly distributed array of cylinders in a square
region; (c) following a “deformation” in the y direction, the square
region becomes rectangular and acquired a directional bias in the
arrangement of cylinders.

classical work by Flory [41]). A simple example is a uniaxial
stretch in one direction. We start from a perfectly random
distribution of cylinders over a referential square-shaped
region of side L, as depicted in Fig. 1(b). Let us imagine
to replace the cylinders by simply the points with coordinates
(xi,yi) corresponding to the axes of the cylinders. Then, let
us apply a uniform stretch λ in the direction y. As a result of
this stretch, the new coordinates of the points will be (xi,λyi)
and the region has become a rectangle with side L in the
x direction and λL in the y direction. Finally, we place the
cylinders in the deformed rectangular region, with the axes
at the displaced positions (xi,λyi). The result is the region
in Fig. 1(c): we can observe that, because of the bias in
direction y caused by the stretch λ imposed on the referential
square region, the cylinders are no longer randomly distributed
and in fact are less dense in the y direction compared to the
x direction.

For the random distribution of cylinders in the hypothetical
“undeformed” square region [Fig. 1(b)], a natural choice for
the unit cell in that configuration is a circular cylindrical,
where a cylindrical core of radius a is located at its center, as
considered, e.g., by Happel [1] and Kuwabara [2]. The outer
radius b of the unit cell is chosen in such a way that the volume
fraction of the solid phase within the unit cell matches the
solid phase volume fraction f0 of the bulk hypothetical region.
Thus, the condition f0 = (a/b)2 is satisfied. The unit cell of
the “undeformed” square region is shown in Fig. 2(b). The unit
cell of the “deformed” rectangular region [Fig. 1(c)] is obtained

d

ζd 2λb ≡ 2ζb

λ ≡ ζ

2b

2b

2b

(a) (b) (c)

FIG. 2. (a) The rectangular unit cell of a rectangular array of
parallel cylinders; (b) the circular unit cell of an irregular random
distribution of cylinders; (c) the elliptical unit cell of an irregular
non-random distribution of cylinders: the outer ellipse can be viewed
as having been “deformed” from the outer circle of the circular unit
cell depicted in panel (b).
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from that of the “undeformed” square region [Fig. 1(b)] with
a “deformation” process analogous to the one that brought the
“undeformed” to the “deformed” region [Figs. 1(b) and 1(c)].
Thus, the outer circle of diameter b is deformed into an ellipse
with semiaxes b in the x direction and λb in the y direction
[Fig. 1(c)]. This implies that the outer boundary of the unit
cell must be elliptical [37,38], and the aspect ratio ζ of the
deformed unit cell coincides with the stretching parameter λ

[37,38]. Under such condition, the solid volume fraction f in
the deformed configuration can also be given as f = f0/ζ .
It should be mentioned that, unlike the ordered rectangular
arrays for which the unit cell [Fig. 2(a)] is an actual periodic
part of the system, the unit cells for irregular arrays [Figs. 2(b)
and 2(c)] do not represent any actual repeating subdomain
of the system. This is naturally due to a lack of periodicity
for irregular arrays. Thus, the approximation in dealing with
irregular arrays starts at the stage of defining a “unit cell.”

III. PERPENDICULAR PERMEABILITY RELATIONS

At the bulk level, the system of cylinders behaves like a
saturated porous medium with an anisotropic permeability
tensor κ . As depicted in Fig. 1, assume that for the rectangular
distribution the axes x and y are oriented in the lattice
directions and, for the irregular distribution, the axes x and
y are perpendicular to the cylindrical axes while the axis y

is oriented in the direction of the directional bias (which was
obtained by the fictitious stretch described in Sec. II). Thus,
at the bulk level, the three xy, xz, and yz planes are the three
planes of material symmetry for both rectangular and irregular
distributions. This implies that the permeability tensor κ is,
in general, orthotropic, having three distinct principal values.
Also at the level of the unit cell, the geometrical symmetries
(Fig. 2) imply that the three axes x, y, and z are the three
principal axes of the overall permeability tensors κ . The
principal permeability values associated with these principal
axes are denoted by κx , κy , and κz, respectively.

To derive the perpendicular permeability relations, we
propose to replace a noncircular cell with an equivalent circular
one, for which analytical solutions exist (e.g., those by Happel
[1] and Kuwabara [2]). This approach allows for finding an
approximated solution to the problem, which is simpler than
attempting to find an analytical solution for noncircular unit
cells directly. In the models by Happel [1] and Kuwabara
[2], a creeping flow passing a system of parallel cylinders
with random distribution is replaced by a flow passing a unit
cell of circular cross section. For the flow perpendicular to
the axes of cylinders, Happel [1] and Kuwabara [2] derived
the drag forces applied to a representative cylinder. The two
models differ for the boundary conditions at the outer surface
of the unit cell: while Happel’s model requires vanishing of the
shear stress, Kuwabara’s model requires satisfaction of zero
vorticity. Happel [1] and Kuwabara [2] provided the following
expressions for the perpendicular drag force F⊥ on the
cylinder,

F⊥ = 4πμU

[
ln(b/a) − 1

2

(
b4 − a4

b4 + a4

)]−1

(Happel [1])

(1)

ζd

ζd

ζd

d

d d

2ζb

2ζb

2ζb

2b

2b 2b

y

x

y

x

(a)

(b)

FIG. 3. Unit cells with rectangular [left column in panel (a)] and
elliptical [left column in panel (b)] cross sections and the equivalent
unit cells with circular cross sections [right column in panels (a) and
(b)] for two cases of perpendicular fluid flow: in x direction [the top
rows in panels (a) and (b)], and in y direction [the bottom rows in
panels (a) and (b)].

and

F⊥ = 4πμU
[

ln(b/a) − 3
4 + (a/b)2 − 1

4 (a/b)4
]−1

(Kuwabara [2]), (2)

where b and U denote the radius of the unit cell and the
magnitude of the average fluid velocity in the porous medium,
respectively. We remark that, in principle, any model for the
drag force F⊥ developed for a circular unit cell would be
suitable for the equivalent unit cell (which is described in
Fig. 3). Here, the classical models of Happel [1] and Kuwabara
[2] are chosen due to their wide acceptance.

The drag force F⊥ can be used to derive the effective
permeability κ⊥ in the perpendicular direction as [1]

κ⊥ = AucμU

F⊥
, (3)

where Auc = πb2 is the cross-sectional area of the unit cell.
Thus,

κ⊥ = b2

4

[
ln(b/a) − 1

2

(
b4 − a4

b4 + a4

)]
(Happel [1]) (4)
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and

κ⊥ = b2

4

[
ln(b/a) − 3

4
+ (a/b)2 − 1

4
(a/b)4

]
(Kuwabara [2]) (5)

are the perpendicular permeability values of Happel [1] and
Kuwabara [2], respectively. The analysis of Quinn [37] showed
that Eq. (3) also holds for noncircular (such as rectangular and
elliptical) unit cells. For such a case, Auc and F⊥ in Eq. (3)
will be the cross-sectional area of the noncircular unit cell and
the drag force on the core cylinder inside the noncircular unit
cell, respectively [37].

The proposed method uses the closed-form expressions
of unit cell models of Happel [1] and Kuwabara [2] for
the drag force applied on a cylinder in arrays of parallel
cylinders with noncircular unit cells. To illustrate how this
is achieved, consider the scheme depicted in Fig. 3, where unit
cells of rectangular shape or elliptical shape of aspect ratio
ζ are studied. First, consider a uniform creeping flow of a
viscous fluid of viscosity μ passing through a unit cell in the
x direction with the average velocity U . To obtain the drag
force on the core cylinder, the idea is to replace the unit cell of
rectangular and elliptical cross sections with equivalent unit
cells of circular cross sections with diameters ζd and 2ζb,
respectively. Thus, the equivalent unit cell effectively offers
the same maximum channel width for the fluid flow in the x

direction as the original unit cell of rectangular or elliptical
cross section does [see the top rows in Figs. 3(a) and 3(b)].
Hence, the drag force Fx is obtained as

Fx = F⊥|b=ζd/2 (6)

for the rectangular distribution and

Fx = F⊥|b=ζb (7)

for the irregular distribution. The perpendicular drag forces F⊥
in Eqs. (6) and (7) are substituted from Eqs. (1) and (2) based
on Happel’s [1] and Kuwabara’s [2] models, respectively.

An analogous strategy is used to study the fluid flow in
the second principal direction y. For that case, the equivalent
unit cells will have radii d and 2b for the original rectangular
and elliptical unit cells, respectively [see the bottom rows in
Figs. 3(a) and 3(b)]. Hence, the drag force Fy is obtained as

Fy = F⊥, (8)

with the perpendicular drag force F⊥ given in Eqs. (1)
and (2) based on Happel’s [1] and Kuwabara’s [2] models,
respectively. When the drag forces Fx and Fy in the x and
y directions are obtained, following Happel [1] and Quinn
[37], they will be substituted in Eq. (3), leading to the overall
permeabilities κx and κy in the x and y directions as

κx = AucμU

Fx

, (9a)

κy = AucμU

Fy

, (9b)

where, for the unit cells of rectangular and elliptical cross sec-
tions, the areal cross sections are Auc = ζd2 and Auc = πζb2,
respectively.

From now on, we will use the following terminology for
the developed models:

(1) RHUC, for rectangular distributions based on Happel’s
[1] unit cell model;

(2) EHUC, for irregular distributions with elliptical unit
cell cross sections based on Happel’s [1] unit cell model;

(3) RKUC, for rectangular distributions based on
Kuwabara’s [2] unit cell model;

(4) EKUC, for irregular distributions with elliptical unit
cell cross sections based on Kuwabara’s [2] unit cell model.

A. Permeability relations for rectangular distribution

Following the aforementioned procedure, upon the use of
Eqs. (6), (8), (9a), and (9b), the nondimensional permeability
relations, developed based on Happel’s [1] or Kuwabara’s [2]
unit cell models, for a rectangular lattice with solid volume
fraction f and the aspect ratio ζ are derived as

κx

4a2
= −1

32f

⎡
⎣ln

(
4

πζ
f

)
+

1 − (
4

πζ
f

)2

1 + (
4

πζ
f

)2

⎤
⎦, (10a)

κy

4a2
= −1

32f

[
ln

(
4ζ

π
f

)
+ 1 − ( 4ζ

π
f

)2

1 + ( 4ζ

π
f

)2

]
, (10b)

for the RHUC model, and

κx

4a2
= −1

32f

[
ln

(
4

πζ
f

)
+ 3

2
− 8

πζ
f + 8

π2ζ 2
f 2

]
, (11a)

κy

4a2
= −1

32f

[
ln

(
4ζ

π
f

)
+ 3

2
− 8ζ

π
f + 8ζ 2

π2
f 2

]
, (11b)

for the RKUC model. It is noteworthy that κx and κy , for both
RHUC and RKUC models, are interchanged when ζ and ζ−1

are interchanged (depicted in Fig. 5). This can be justified by
the geometrical symmetries of the problem.

B. Permeability relations for irregular distribution

Upon use of Eqs. (7), (8), (9a), and (9b), the nondimensional
permeability relations for an array of cylinders, with nonran-
dom and irregular distribution and a unit cell of elliptical cross
section with aspect ratio ζ , can be derived using Happel’s [1]
or Kuwabara’s [2] unit cell models as

κx

4a2
= −1

32f

[
ln(ζ−1f ) + 1 − (ζ−1f )2

1 + (ζ−1f )2

]
, (12a)

κy

4a2
= −1

32f

[
ln(ζf ) + 1 − (ζf )2

1 + (ζf )2

]
, (12b)

for the EHUC model, and

κx

4a2
= −1

32f

[
ln(ζ−1f ) + 3

2
− 2ζ−1f + 1

2
ζ−2f 2

]
, (13a)

κy

4a2
= −1

32f

[
ln(ζf ) + 3

2
− 2ζf + 1

2
ζ 2f 2

]
, (13b)

for the EKUC model. Similar to the case of the rectangular
lattice, in the irregular lattice, κx and κy for both EHUC
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and EKUC models are interchanged when ζ and ζ−1 are
interchanged (depicted in Fig. 5).

IV. PARALLEL PERMEABILITY

Also, Happel [1], based on the same unit cell model, derived
the following expression for the effective permeability κ‖ for
the fluid flow parallel to the axes of cylinders [1]:

κ‖ = 1

8b2
[4a2b2 − a4 − 3b4 + 4b4 ln(b/a)]. (14)

Relation Eq. (14) can alternatively be expressed nondimen-
sionally and in terms of the solid volume fraction f = (a/b)2

as [1]

κ‖
4a2

= 1

32f
(4f − f 2 − 3 − 2 ln f ). (15)

Fluid flow parallel to arrays of parallel cylinder has been
studied previously. However, compared to perpendicular per-
meabilities, the existing studies show insignificant variations
of parallel permeabilities with the aspect ratio (or the lateral
arrangement of fibers). Drummond and Tahir [6] showed
the weak dependence of the parallel permeability κ‖ to the
particular arrangement of parallel cylinders and emphasized
the primary role of the volume fraction. They also identified a
similar structure for the parallel permeability relations among
several types of unit cells. Jackson and James [7] compared the
results of Drummond and Tahir [6] and Happel [1] and pointed
out that different models show close agreement when their
volume fractions are equal, and that Happel’s [1] model can
be a good approximation especially for small volume fractions.
Also, Tamayol and Bahrami [26] observed a small dependence
of the parallel permeability κ‖ on the aspect ratio of rectangular
arrays.

Figure 4 shows the results of Happel’s model [1] compared
to the results of rectangular arrays presented by Drummond
and Tahir [6] (in which the aspect ratio is ζ = 2), Wang [20]
(in which several aspect ratios ζ are considered), and DeValve
and Pitchumani [36] (for aspect ratios ζ = 1, ζ = tan 60◦, and
ζ = tan 70◦). It can be noted that the range of variations of
the nondimensional parallel permeability κz/(4a2) among the
different aspect ratios and models are not significant, in the
sense that their values are in the same order of magnitude.
The difference is particularly small for smaller volume
fractions f . Also, the difference between Happel’s model [1]
and the other models becomes more evident for larger aspect
ratios ζ .

It is also noteworthy that Quinn [37] and Quinn et al.
[38], when studying the permeability of elliptical unit cells
with infinitesimal ellipticity, observed that the deviatoric strain
has no first-order contribution to the parallel permeability,
implying that, when the area of the elliptical unit cell is fixed
(which is equivalent to constancy of the volume fraction f ),
the parallel permeability κz of the unit cell is not sensitive to
first-order geometrical changes.

In summary, following Drummond and Tahir [6] and
Jackson and James [7], Happel’s model [1] can represent a fair
approximation for the parallel permeability for nonrandom
distributions. This approximation has better predictions for

f

κ
z
/(

4a
2
)

Happel [1] (Eq. (15))
Drummond & Tahir [6]
ζ = 1.0 (Wang [20])
ζ = 1.5 (Wang [20])
ζ = 2.0 (Wang [20])
ζ = 2.5 (Wang [20])
ζ = 3.0 (Wang [20])
ζ = 1.0 (Ref. [36])
ζ = tan 60◦ (Ref. [36])
ζ = tan 70◦ (Ref. [36])

FIG. 4. Comparison of the variation of the nondimensional
parallel permeability κz/(4a2) of Happel [1] (i.e., Eq. (15) of the
present paper), and the results for rectangular arrays presented by
Drummond and Tahir [6] (for aspect ratio ζ = 2), Wang [20] (for
aspect ratios ζ = 1, ζ = 1.5, ζ = 2, ζ = 2.5, and ζ = 3), and the
rectangular arrays presented by DeValve and Pitchumani [36] (for
aspect ratios ζ = 1, ζ = tan 60◦, and ζ = tan 70◦) versus the volume
fraction f .

smaller values of volume fractions f and aspect ratios ζ closer
to unity.

V. RESULTS AND DISCUSSIONS

In this section, numerical values of the perpendicular
permeability are generated via the proposed permeability
models and compared to those obtained via other models
available in the literature. Depicted in Fig. 5 are the variations
of the nondimensional perpendicular permeability components
κx/(4a2) and κy/(4a2) versus the aspect ratio ζ . Comparisons
are made between different unit cell models of rectangular and
elliptical cross sections, i.e., the RHUC, RKUC, EHUC, and
EKUC models, and selected values of volume fractions f . It
is observed that, for ζ > 1, we have κx > κy while, for ζ < 1,
we have κx < κy , which is physically reasonable because, for
a fixed volume fraction f , the permeability of a flow in a
direction with a wider channel is larger. Thus, when the aspect
ratio ζ increases, the x direction (y direction) permeability κx

(κy) increases (decreases). In the limit ζ → 1 (i.e., a square or
random array), κx and κy coincide.

It can be shown that, at a given volume fraction f , the
aspect ratios of rectangular and elliptical unit cells must be
limited as 4f/π � ζ � π/(4f ) for the rectangular unit cell
[26], and f � ζ � 1/f for the elliptical unit cell. Beyond
these limits, the neighboring cylinders intersect, which is not
physically admissible. Figure 5 also reveals that, among the
four models, the EHUC and RKUC models provide the largest
and smallest permeability values, respectively (in both x and y

directions). In addition, the RHUC and EHUC models always
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ζ

ζ

ζ

ζ

κx/(4a2) (RHUC)
κy/(4a2) (RHUC)
κx/(4a2) (RKUC)
κy/(4a2) (RKUC)
κx/(4a2) (EHUC)
κy/(4a2) (EHUC)
κx/(4a2) (EKUC)
κy/(4a2) (EKUC)

(a b)

(c

()

() d)

FIG. 5. Variations of the non-dimensional perpendicular perme-
ability components κx/(4a2) and κy/(4a2) versus the aspect ratio ζ ,
based on the RHUC, RKUC, EHUC, and EKUC models, for selected
values of volume fraction: (a) f = 0.05, (b) f = 0.1, (c) f = 0.2,
and (d) f = 0.4.

predict larger permeability values, respectively, compared to
the RKUC and EKUC models in both x and y directions.

Figure 6 shows the variations of the nondimensional
perpendicular permeabilities κx/(4a2) and κy/(4a2) with the
volume fraction f , for RHUC, RKUC, EHUC, and EKUC
models, for selected aspect ratios ζ . It is observed that, when
the volume fraction f increases, all permeability values (in
both x and y directions) decrease. A change in the aspect ratio
ζ does alter the values of the permeabilities, but otherwise
it has no significant impact on their trends. Moreover, the
observation made in Fig. 5 on the order of permeability values
among different unit cell models and unit cell shapes also holds
for the case of Fig. 6.

Comparisons of the variations of nondimensional perme-
abilities in directions x and y versus the volume fraction f

κx/(4a2) (RHUC)
κy/(4a2) (RHUC)
κx/(4a2) (RKUC)
κy/(4a2) (RKUC)
κx/(4a2) (EHUC)
κy/(4a2) (EHUC)
κx/(4a2) (EKUC)
κy/(4a2) (EKUC)

(a

ff

() b)

FIG. 6. Variations of the nondimensional perpendicular perme-
ability components κx/(4a2) and κy/(4a2) versus the volume fraction
f , based on the RHUC, RKUC, EHUC, and EKUC models, for
selected values of the aspect ratio: (a) ζ = 2 and (b) ζ = 4.

(a)

f

κ
x
/(

4a
2
)

ζ = 1.0 (RHUC)

ζ = 1.0 (RKUC)
ζ = 1.5 (RHUC)
ζ = 1.5 (RKUC)
ζ = 2.0 (RHUC)
ζ = 2.0 (RKUC)
ζ = 2.5 (RHUC)
ζ = 2.5 (RKUC)
ζ = 4.0 (RHUC)
ζ = 4.0 (RKUC)

ζ = 1.0 (Ref. [20])
ζ = 1.5 (Ref. [20])
ζ = 2.0 (Ref. [20])

ζ = 2.5 (Ref. [20])

(b)

f

κ
y
/(

4a
2
)

ζ = 1 (RHUC)
ζ = 1 (RKUC)
ζ = 2 (RHUC)
ζ = 2 (RKUC)
ζ = 3 (RHUC)
ζ = 3 (RKUC)
ζ = 6 (RHUC)
ζ = 6 (RKUC)
ζ = 11 (RHUC)
ζ = 11 (RKUC)
ζ = 21 (RHUC)
ζ = 21 (RKUC)

ζ = 1 (Ref. [20])

ζ = 2 (Ref. [20])
ζ = 3 (Ref. [20])
ζ = 6 (Ref. [20])
ζ = 11 (Ref. [20])
ζ = 21 (Ref. [20])

FIG. 7. (a) Variations of nondimensional perpendicular perme-
ability component κx/(4a2) of RHUC and RKUC models [Eqs. (10a)
and (11a)] versus volume fraction f for rectangular arrays and
selected values of the aspect ratio, ζ = 1, ζ = 1.5, ζ = 2, ζ =
2.5, and ζ = 4, and comparison with the results of Wang [20].
(b) Variations of the nondimensional perpendicular permeability
component κy/(4a2) in the RHUC and RKUC models [Eqs. (10b) and
(11b)] versus volume fraction f for rectangular arrays and selected
values of the aspect ratio, ζ = 1, ζ = 2, ζ = 3, ζ = 6, ζ = 11, and
ζ = 21, and comparison with the results of Wang [20].

for rectangular arrays, between relation Eqs. (10) and (11) and
the results of Wang [20], are provided in Figs. 7(a) and 7(b),
respectively. It can be observed that the permeability relation
Eqs. (10) and (11) show good agreement with the analytical
results of Wang [20], particularly for smaller values of the
aspect ratio ζ and volume fraction f . In fact, most permeability
values predicted by Eqs. (10) and (11) are slightly smaller than

033112-7



MALEKI, MARTINUZZI, HERZOG, AND FEDERICO PHYSICAL REVIEW E 96, 033112 (2017)

ζ

κ
x
/(

4a
2
)

f = 0.1 (RHUC)
f = 0.1 (RKUC)
f = 0.3 (RHUC)
f = 0.3 (RKUC)
f = 0.5 (RHUC)
f = 0.5 (RKUC)

f = 0.1 (Ref. [26])
f = 0.3 (Ref. [26])
f = 0.5 (Ref. [26])

FIG. 8. Variation of the nondimensional perpendicular perme-
ability component κx/(4a2) in the RHUC and RKUC models
[Eqs. (10a) and (11a)] versus the aspect ratio ζ , for selected values
of volume fraction, f = 0.1, f = 0.3, and f = 0.5, and comparison
with the results of Tamayol and Bahrami [26].

the corresponding values predicted by Wang [20]. However,
the trends of the results between the presented methods and
Wang’s [20] are very close.

Figure 8 presents a comparison between κx/(4a2), given
in Eqs. (10a) (RHUC model) and (11a) (RKUC model) for
rectangular arrays, and the results of Tamayol and Bahrami
[26], as functions of the aspect ratio ζ , for selected values of
the volume fraction f . Fairly good agreement exists between
the predicted results and those of Tamayol and Bahrami
[26]; the agreement is slightly better for smaller volume
fractions f . Also, relation Eqs. (10a) and (11a) predict smaller
permeability values compared to the those by Tamayol and
Bahrami [26]. In comparison to the RKUC model, the RHUC
model predicts closer results to the results of Tamayol and
Bahrami [26]. It should be noted that Tamayol and Bahrami
[26] approximated the velocity field with a parabolic behavior
at each section of the flow channel.

Although, as depicted in Figs. 7 and 8, the presented models
RHUC and RKUC show fair agreement with Wang [20] and
Tamayol and Bahrami [26], it could be useful to compare
these models in the linear scale as opposed to the logarithmic
scale. This is especially important because recognizing the
differences between the results in the logarithmic scale may
not be easy. However, the logarithmic scale has the benefit of
covering a wide range of scales which exist in the permeability
resutls. We investigated the variations of the ratios of the
permeability results RHUC and RKUC, presented in Figs. 7
and 8, and the permeability results of Wang [20] and Tamayol
and Bahrami [26] in those figures. Our investigation revealed
that the deviation of the RHUC and RKUC results from those
of Wang [20] and Tamayol and Bahrami [26] in Figs. 7 and 8
does not involve a change in the order of magnitude. Regarding
the high sensitivity of the permeability values to volume
fraction and aspect ratio (see Figs. 7 and 8), we consider
this deviation in an acceptable range. To establish this
argument, as an example, Fig. 9 shows the variation of the
ratio κx/(κx of Wang [20]) of the perpendicular permeability
results κx and the perpendicular permeability component κx of

f

κ
x
/(

κ
x

of
W

an
g

[2
0]

)

ζ = 1.0 (RHUC)
ζ = 1.0 (RKUC)
ζ = 1.5 (RHUC)
ζ = 1.5 (RKUC)
ζ = 2.0 (RHUC)
ζ = 2.0 (RKUC)
ζ = 2.5 (RHUC)
ζ = 2.5 (RKUC)

FIG. 9. Variation of the ratio κx/(κx of Wang [20]) of the
perpendicular permeability component κx , in the RHUC and RKUC,
and the perpendicular permeability component κx of Wang [20], with
volume fraction f for selected values of the aspect ratio ζ .

Wang [20] [depicted in Fig. 7(a)], with volume fraction f for
the selected values of the aspect ratio ζ . The results are shown
for both permeability models RHUC and RKUC.

We now compare numerical values of the perpendicular
permeabilities κx and κy for unit cells of elliptical cross
sections, as obtained from our model, with results from
previous studies. To the best of our knowledge, only Quinn
[37] and Quinn et al. [38] have addressed such a problem,
and only for the case of unit cells with infinitesimal ellipticity.
By applying the perturbation method to Kuwabara’s model,
Quinn et al. [38] derived the permeability tensor for unit
cells with infinitesimal ellipticity on their cross sections. As
an example, upon considering the deviatoric strain tensor
D = ε(ex ⊗ ex − ey ⊗ ey) (where ex and ey are the unit
vectors in directions x and y, respectively), Quinn et al. [38]
studied the change of the unit cell permeability due to the
change of the unit cell cross section from a circular to an
elliptical shape, controlled by the infinitesimal strain parameter
ε, which also serves as the perturbation parameter. As studied
by Quinn [37] and Quinn et al. [38], a distortion of the cross
section of the unit cell from a circular to an elliptical shape
emerges during the deformation of the proteoglycan network
of articular cartilage, modelled as a system of cylindrical GAG
molecules suspended in a solution. Such a consideration, of
course, holds for any other system with similar microstructure.
Notice that, in the small strain regime, the tensor D does not
change the cross-sectional area of the unit cell. In fact, when a
unit cell with initially circular cross section is compressed in
the y direction, it is also stretched by the same amount in the
x direction [38]. As the major and minor axes of the elliptical
cross section of the unit cell in the perturbed Kuwabara model
[38] are stretched and contracted by the strain ε respectively in
the x and y directions (when ε > 0), the aspect ratio ζellip in the
elliptical unit cell models is given as ζellip = (1 − ε)/(1 + ε),
which is used as the aspect ratio of the elliptical unit cell models
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in the present study (i.e., the EHUC and EKUC models) for
comparing our results with those of Quinn et al. [38].

Furthemore, Quinn et al. [38] used the finite element
method (FEM) to obtain the overall permeabilities of rectan-
gular arrays, which constitutes another opportunity to compare
our results for rectangular arrays. Quinn et al. [38] provided
numerical comparisons between FEM results of rectangular
arrays and the analytical results for unit cells with an elliptical
cross section. For such a comparison, Quinn et al. [38]
explained that the strain parameter ε must be related to the
aspect ratio ζrect of the rectangular array via ε = (ζ−1

rect − 1)/2,
which alternatively implies that ζrect = (1 + 2ε)−1. This is
used as the aspect ratio of the rectangular unit cell models
in the present study (i.e., the RHUC and RKUC models) for
comparing our results with those of Quinn et al. [38].

Figure 10 shows the comparisons between the predicted
results for the non-dimensional permeability κx/Auc based on
the RHUC and RKUC models for rectangular unit cells and
the EHUC and EKUC models for elliptical unit cells with
those of the perturbed Kuwabara model [38] for elliptical
unit cells (linear theory with respect to ε) and the FEM
[38] for rectangular arrays, given by Quinn et al. [38]. With
Auc being the unit cell cross-sectional area, and the property
f = πa2/Auc, we have κx/Auc = 4

π
f κx/(4a2). Similarly to

Quinn et al. [38], three volume fractions, f = 0.2, f = 0.3,
and f = 0.4, are considered.

Compared to other models, the EKUC model shows the
closest match to the FEM data [38], particularly for smaller
values of the volume fraction f . Thus, the presented EKUC
model improves the model of Quinn et al. [38] for finite
values of ε, or, in general, when the cross section of the
unit cell possesses a finite ellipticity. The good consistency
of Kuwabara’s model [2] with the FEM results, compared to
Happel’s model [1], was observed by Quinn et al. [38] for
square arrays. Among the examined models in Fig. 10 (i.e.,
the RHUC, RKUC, EHUC, and EKUC models) the RKUC
(EHUC) model considerably underestimates (overestimates)
the permeability values. Also, the EKUC and RHUC models
show relatively close agreement for smaller values of the

volume fraction f , but they deviate for larger values of f .
It should be noted that the slopes of the EHUC model and
the perturbed Kuwabara model [38] at ε = 0 do not match.
In fact, the slope of the EHUC model shows better agreement
with the slope of the FEM data [38] compared to the slope of
the perturbed Kuwabara model [38].

VI. SUMMARY

The overall hydraulic permeability of a creeping fluid
flow passing through a system of parallel impermeable
cylindrical elements with orthotropic symmetry was studied
using approximate analytical techniques. Two cases of arrays
of cylinders were considered. In the first case, the cylinders
were arranged on a regular rectangular lattice. In the second
case, the cylinders were assumed to be arranged irregularly,
while the cross section of a representative unit cell (containing
a representative cylindrical core surrounded by interstitial
fluid) is elliptical. Such an array, possessing an orthotropic
overall permeability, can, for example, be attained as a result
of deformation of an initially random distribution of arrays
of parallel cylinders [37,38]. To completely describe the
ortho-tropic permeability tensor of the system, it suffices to
specify fluid flow permeabilities in three orthogonal directions:
the direction parallel to the axes of the cylinders, and two di-
rections perpendicular to the axes of the cylinders and oriented
with the principal directions of the permeability tensor.

The previous studies [6,7,26] show weak sensitivity of
parallel permeability to the lateral arrangement of parallel
fibers (or the aspect ratio in rectangular arrays) and they [6,7]
suggest that Happel’s [1] parallel permeability relation can
be a fair approximation even for nonrandom distribution of
parallel fibers. In other words, when the solid volume fraction
f is fixed, the orthotropy of an array, which is controlled by the
aspect ratio ζ of the cross section of the unit cell, does not play
an important role on the value of overall parallel permeability,
especially for low values for the solid volume fraction f . This
is also consistent with the observations previously made by
Quinn [37] and Quinn et al. [38], indicating that the deviatoric

×××

κ
x
/A

u
c

(a) (b () c)

εεε

RHUC
RKUC
EHUC
EKUC
Pert. Kuw. [38]

Rect., FEM [38]

FIG. 10. Variation of the nondimensional perpendicular permeability component κx/Auc = 4
π
f κx/(4a2) (normalized by the cross-sectional

area Auc of the unit cell) versus the deviatoric strain ε (defined as D = ε(ex ⊗ ex − ey ⊗ ey), where D is the deviatoric strain tensor in the
small strain theory, and ex and ey are the unit vectors in the x and y directions). The RHUC, RKUC, EHUC, and EKUC models are considered
for selected values of the volume fraction: (a) f = 0.2, (b) f = 0.3, and (c) f = 0.4. Comparisons with the perturbed Kuwabara’s model and
the FEM results for rectangular array in Quinn et al. [38] are provided.
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strain responsible for distortion of the unit cell cross section of
elliptical shape (while not altering its area) has no first-order
contribution to the parallel permeability of arrays of parallel
cylinders.

For perpendicular permeabilities, a key step was to replace
an actual noncircular unit cell with an equivalent cylindrical
unit cell for each perpendicular flow direction. However, in
contrast with choosing an equivalent circular unit cell with the
cross-sectional area equal to that of the original unit cell (as
done by Happel [1]), it was proposed that, for each of the two
perpendicular flows, the outer diameter of the equivalent unit
cell be equal to the maximum width available for the fluid flow
passing through the original, noncircular, unit cell with either
rectangular or elliptical cross section. For the equivalent unit
cells, the drag forces on the core cylinders are calculated using
Happel’s [1] and Kuwabara’s [2] unit cell models, originally
developed for random arrays of cylinders for which the unit
cells are cylindrical. Next, having the drag forces for the two
perpendicular flows, the overall permeabilities in the perpen-
dicular directions are calculated by following the conventional
method [1,37]. However, realizing that the drag force on each
cylinder must be associated with the actual geometry of the unit
cell, the original cross-sectional area of the unit cell (for both
unit cells of rectangular and elliptical cross sections) is used
for calculating the overall perpendicular permeabilities. This
finally yields closed-form approximate analytical relations for
perpendicular permeabilities of orthotropic arrays of parallel
cylinders for which the unit cells have either rectangular or
elliptical cross sections.

The accuracy of the developed relations for the perpendic-
ular permeabilities of rectangular and irregular (with elliptical
unit cell cross section) arrays is tested by comparing numerical

values from our model against those from models available
in the literature, either analytical (for rectangular unit cells
[20,26] or for elliptical unit cells [38]) or FEM (for rectangular
unit cells [38]). The results reveal that the proposed method
has provided efficient and reliable closed-form permeability
relations. Numerical comparisons indicate that the accuracy
of the proposed relations increases for smaller solid volume
fractions f and for aspect ratios closer to unity.

Regarding the observed efficiency of the present method,
we believe that this technique can also be generalized to obtain
simple solutions for more complex systems of nonrandom
parallel cylinders, e.g., in which the cylindrical elements are
permeable or inhomogeneous. In a forthcoming paper, we are
going to exploit the model developed here to describe the per-
meability of the proteoglycan matrix of articular cartilage.
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