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Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length
in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow
is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for
both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as
the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from
above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent
slip length are rationalized by examining S(G1), the height of the main peak of the in-plane structure factor of the
first fluid layer (FFL) together with DWF, which is the average distance between the wall and FFL. The results of
numerical simulations demonstrate that reduced values of the structure factor, S(G1), correlate with the enhanced
slip, while smaller distances DWF indicate that fluid atoms penetrate deeper into the surface potential leading to
larger friction and smaller slip. Interestingly, at the lowest WFI energy, the combined effect of the increase of
S(G1) and decrease of DWF with increasing shear rate results in a dramatic reduction of the slip length.
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I. INTRODUCTION

Over the past decades, experiments [1–5] and molecular
dynamics (MD) simulations [6–13] have demonstrated that
the traditional no-slip boundary condition (BC) does not
necessarily hold in small-scale systems that involve either
hydrophobic surfaces or high shear rates. Application of
the slip BC, instead of no-slip BC, in numerical models
remediates the singular or unphysical behavior of fluid in
some situations, such as droplet spreading [14–17] and corner
flows [18,19]. Also, for micro- and nanoscale flows, interfacial
slip can significantly affect the fluid transport due to the
large surface-to-volume ratio in such systems [20–22]. Recent
studies have demonstrated that water flows through a carbon
nanotube nearly without friction because of the extremely
“large” slip [23,24]. The concept of slip length, originally
introduced by Navier, is commonly used to quantify the degree
of slip. By definition, the slip length is the distance with respect
to the wall-fluid interface where the linearly extrapolated fluid
velocity profile reaches the velocity of wall. Typical values
of slip length observed in experiments on fluids over smooth
nonwetting surfaces are of the order of ten nanometers [1–4].
Complimentary to the experimental approach, MD simulations
[6–13] were extensively used to study the slip behavior, since
this method provides the detailed information about structure
and dynamics of fluids near solid interfaces at the atomic level.

The MD studies of interfacial slip can be broadly catego-
rized in two types depending on the procedure for removing
the heat generated in the sheared fluid, as discussed in
detail by Yong and Zhang [25]. The first type of procedure
[6,7,12,25,26] is to extract the heat directly from the fluid phase
by applying a thermostat to fluid atoms. This thermostatting
strategy is referred to as TF (thermostat fluid). For TF, the wall
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model can be either rigid or flexible. When the flexible
wall model is adopted, the thermostat is also applied to the wall
atoms to ensure that the temperature of the system is properly
controlled. The second type of procedure documented in the
literature [9,27–31] involves the application of the thermostat
only to the wall atoms; that is, the heat generated in the fluid is
removed through the confining walls. This thermostat strategy
is referred to as TW (thermostat wall), and, thus, only the
flexible wall model can be used for TW.

The fluid temperature profiles strongly depend on the TF
and TW protocols. In particular, for TF, the fluid temperature
is spatially uniform and it remains nearly unchanged as shear
rate increases. In contrast, for TW, the fluid temperature is
usually distributed nonuniformly across the channel and it
increases at higher shear rates due to viscous heating. The
thermostatting strategy of TW closely resembles a laboratory
condition, and, thus, it is expected to produce more tenable
slip behavior [28,32]. However, it has been shown that the
rate-dependent slip in systems with TF protocol is consistent
with the results using TW at low shear rates [25], which can
be attributed to negligible viscous heating at low shear rates.

When TF procedure is applied at low shear rates, it has been
demonstrated that the slip length is inversely correlated to the
degree of structure in the first fluid layer (FFL) induced by
the periodic wall lattice [33–35]. The first fluid layer consists
of fluid atoms confined between the solid wall and the first
minimum in the fluid density profile perpendicular to the
wall. The degree of the surface-induced structure in the FFL
mainly depends on the wall-fluid interaction (WFI) energy
and the commensurability of liquid and solid structures at
the interface. In general, lower WFI energy results in less
pronounced structure of the FFL [10,33–35], while highly
incommensurable structures of the liquid and solid phases at
the interface reduce the ordering within the FFL [33]. The
surface topography also affects the velocity slip behavior.
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Thus, Zhang and Chen [36,37] carried out a series of MD
simulations on this topic using TF strategy. They found
that, in comparison with the atomically smooth surface, a
rough surface induces extra viscous dissipation in the flow
leading to reduction in boundary slip. Moreover, a more
irregular topography decreases boundary slip even for the same
statistical roughness height [37]. Previous MD studies [38–40]
have also demonstrated that the topography of surface has a
significant influence on the temperature jump, which in turn
affects the velocity slip [29].

At high shear rates, the functional form of the rate-
dependent slip length depends on the details of the MD
simulation model and the thermostatting procedure. The
original MD study by Thompson and Troian [6] showed
that, when TF is applied, the slip length increases as a
power-law function of shear rate up to a critical value. The
similar behavior of the slip length at high shear rates has
been also observed in a number of MD studies using the TF
strategy [7,10,12,41]. For example, when the WFI energy is
relatively high, it was shown that the slip length increases
linearly with shear rate [35], while generally the MD data
for the rate-dependent slip length can be well fitted by a
polynomial function [42]. On the other hand, other MD studies
with thermal walls predicted that the slip length is saturated
at high shear rates [9,27,43,44]. Using three methodologies,
namely, MD simulations with TW, an analytical theory of
slip, and a Navier-Stokes-based calculation, Martini et al.
[28] determined that the slip length first increases and then
approaches a constant value as the shear rate increases. Their
results further indicate that the MD simulation model should
accurately account for the heat transfer from the fluid phase
to the solid walls at high shear rates. In other words, the TW
strategy might be more appropriate to describe realistic slip
behavior at high shear rates using MD simulations. Hence,
the detailed analysis by Martini et al. [28] emphasized the
inconsistency in the slip behavior at high shear rates.

Recently, Pahlavan and Freund [32] reported a counter-
intuitive dependence of the slip length on shear rate using
the TW strategy in MD simulations. More specifically, they
found that the slip length decreases with increasing shear rate
and asymptotes to the no-slip BC at high shear rates. One
of the notable differences between the MD setups of Martini
et al. [28] and Pahlavan and Freund [32], is the strength of
the WFI. To address the contradictory results regarding the
rate dependence of the slip length at high shear rates using the
TW thermostat strategy, the effects of viscous heating, shear
rate and WFI energy on the slip length have to be considered
concomitantly.

In this paper, we examine the slip behavior in force-driven
flows of simple fluids over smooth walls in the regime where
viscous heating becomes important at high shear rates. It
will be shown that the fluid temperature rises monotonically
with increasing shear rate, which results in either decrease
or increase of the slip length at low or high WFI energies.
By examining S(G1), the peak value of the in-plane structure
factor of the FFL together with DWF, the average distance
between the wall and FFL, we will demonstrate that two
distinct trends of the rate-dependent slip length originate from
the combined influence of fluid temperature and shear rate on
the parameters S(G1) and DWF at high and low WFI energies.

FIG. 1. The schematic diagram of the simulation domain. The
symbol ( ) denotes fluid atoms; the fluid phase consists of 19 652
atoms. Each wall consists of 25 000 atoms that form a faced-centered-
cubic (001) structure with 20 layers and the lattice constant of 1.15 σ .
There are three types of layers in both upper and lower walls; namely,
fixed layers (�), thermostat layers ( ) and free layers ( ). Note that
only a reduced set of wall atoms in the thermostat and free layers are
shown for clarity.

The paper is organized as follows. The details of MD
simulations are given in the next section. The representative
velocity and temperature profiles at different shear rates and
WFI energies are examined in Sec. III A. The effects of shear
rate and viscous heating on the slip length and Kapitza thermal
resistance length are discussed in Secs. III B and III C. The
analysis of the surface-induced fluid structure in the adjacent
fluid layer is presented in Sec. III D. The summary is provided
in Sec. IV.

II. DETAILS OF MD SIMULATIONS

The MD simulation model consists of the monatomic fluid
confined between stationary thermal walls (see as Fig. 1).
The pairwise interaction between atoms was modeled by the
truncated Lennard-Jones (LJ) potential:

Eij= 4εαβ

[(
σαβ

rij

)12

−
(

σαβ

rij

)6
]
, (1)

where Eij is energy between atoms i and j , and ε and σ

are the characteristic energy and length of the LJ potential,
respectively. Here, α and β are types of atoms i and j . The
indices αβ denote either fluid-fluid (FF), wall-fluid (WF), or
wall-wall (WW), which correspond to the interaction between
fluid atoms, between fluid and wall atoms, or between wall
atoms. The LJ units defined by the intrinsic properties of the
fluid phase: mFF, εFF, and σFF are used to express all physical
units, and, in what follows, the subscripts will be omitted. The
cutoff distance (rC = 2.5σ ) of the LJ potential was used to
improve the computational efficiency.

The width of channel is fixed H = 28.78σ along the y

axis and the lateral dimensions are set Lx = Lz = 28.78σ .
Periodic conditions are imposed along the x and z directions.
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The density of fluid and wall are ∼0.83σ−3 and ∼2.76σ−3,
respectively. To implement the so-called flexible wall model,
the wall atoms were allowed to vibrate around their lattice
sites. The characteristic energy and length of the LJ potential
between wall atoms are εWW = 50ε and σWW = 0.7342σ ,
respectively. The mass of wall atoms is mW = 4.94m. These
parameters were chosen to ensure that the ratio of the
root-mean-square displacement (

√
〈�u2〉) of the wall atoms

and their nearest-neighbor distance (d) was smaller than
the Lindemann criterion for melting (

√
〈�u2〉/d � 0.15)

[32,33,45] in all cases.
The top layer of the upper wall and the bottom layer of

the lower wall were rigidly fixed during the entire simulation
process to maintain the integrity of solid walls. These two
layers are referred to as fixed layers (black squares in Fig. 1).
The four layers adjacent to the fixed layer in each wall are
referenced as thermostat layers (blue diamonds in Fig. 1). The
other 15 wall layers in contact with the fluid phase are called
free layers (green circles in Fig. 1).

The planar Poiseuille flow was induced by applying a
constant external force Fx to each fluid atom in the +x
direction. At the beginning of the simulation, the Nosé-
Hoover thermostat was applied to the fluid atoms, thermostat
layers, and free layers to equilibrate the system at the
temperature of 0.75 ε/kB, where kB is the Boltzmann constant.
After additional 5 × 105 MD time steps, the external force
was applied to fluid atoms, and the thermostatting of fluid
atoms and free layers was canceled. Thus, the viscous heat
generated within the fluid was removed by the thermostat
layers. The time interval of 106 MD time steps was used
to reach the steady Poiseuille flow. The fluid velocity and
temperature profiles were averaged within slices of thickness
�y = 0.2σ for additional 2 × 106 MD time steps. The same
time interval was used to average the fluid density profile
with thinner slices �y = 0.02σ . All MD simulations were
carried out using the open-source LAMMPS MD code [46]
with the time step �t = 0.002τ , where τ =

√
(mσ 2/ε) in the

LJ time.
The slip length was computed using the relation LS =

vS/γ̇ , where vS and γ̇ are the slip velocity and shear rate
at the wall-fluid interface. The locations of the interfaces were
defined at the lattice positions of the bottom layer of the upper
wall and the top layer of the lower wall. The parameters vS

and γ̇ were determined by extrapolating a parabolic fit of
the velocity profile in the central part (3.1σ ∼ 25.7σ ) of the
channel to the locations of the wall-fluid interfaces.

The Kapitza resistance length (LK) was also computed to
quantify the thermal resistance between the fluid phase and
solid walls; a parameter which is analogous to the slip length
[39,47,48]. The Kapitza resistance length was calculated using
LK = TJ/Ṫ , where TJ and Ṫ are the temperature jump and
the temperature gradient at the wall-fluid interface. Both
parameters, TJ and Ṫ , were determined by extrapolating a
fourth-order polynomial fit of the temperature profile in the
central part (3.1σ ∼ 25.7σ ) of the channel to the wall-fluid
interfaces. Note, that TJ = TF |Wall − TW, where TF |Wall is the
extrapolated temperature of the fluid phase at the wall-fluid
interface and TW is the temperature of the bottom layer of the
upper wall and the top layer of the lower wall.

III. RESULTS AND DISCUSSION

A. Fluid velocity and temperature profiles

With increasing shear rate, the viscous heating effect
in sheared fluids can be significant and the temperature
profiles become spatially nonuniform [12,25,32,47,49,50]. For
nanoconfined monatomic fluids, the velocity and temperature
profiles in the central part of the channel are well described
by the continuum fluid dynamics [35,51]. To remind, the
solution of the Navier-Stokes and heat conduction equations
for incompressible steady Poiseuille flow, with slip BC and the
Kapitza thermal resistance, are given by

vx(y) = ρFxH
2

2μ

[
1

4
−

(
y

H
− 1

2

)2
]

+ vS, (2)

T (y) = ρ2F 2
x H 4

12λμ

[
1

16
−

(
y

H
− 1

2

)4
]

+ TJ + TW, (3)

where H is the channel height and TW is the wall temperature
[52]. Here, μ and λ are the fluid shear viscosity and thermal
conductivity, respectively.

Figure 2 shows representative velocity profiles in steady-
state flow for four selected values of the external force Fx . The
data for the WFI energy εWF = 1.0ε and 0.3ε are presented
only in a half of the channel because of the symmetry with
respect to the mid-plane of the computational domain. As is
evident, the fluid velocity profiles are well fitted by a parabola,
as predicted by the continuum hydrodynamics [see Eq. (2)]. It
can be clearly seen that the slip velocity vS increases with the
applied force for εWF = 1.0ε and 0.3ε. The fluid slip velocity
is larger for εWF = 0.3ε and relatively small values of the
external force Fx � 0.2 ε/σ . By sharp contrast, larger slip is
observed at interfaces with higher WFI energy (εWF = 1.0ε)

FIG. 2. The velocity profiles vx(y) for the indicated values of the
applied force Fx for the wall-fluid interaction energies εWF = 1.0ε

(left) and 0.3ε (right). The solid curves represent a parabolic fit to
the MD data in the central part of the channel (3.1σ ∼ 25.7 σ ). The
vertical dashed lines denote the location of wall-fluid interfaces at
y = 0σ and y = 28.78σ .
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FIG. 3. The fluid temperature profiles T (y) for the indicated
values of the applied force Fx for the WFI energies εWF = 1.0ε

(left) and 0.3ε (right). The solid curves represent a fourth-degree
polynomial fit to the MD data. The dashed lines indicate the location
of wall-fluid interfaces at y = 0σ and y = 28.78σ .

and larger external forces Fx = 0.3ε/σ and 0.5ε/σ . A more
detailed analysis of the slip behavior for different flow condi-
tions and WFI energies will be presented in the next section.

The viscous heating and the rate of the heat removal at
different external forces and WFI energies determine fluid
temperature profiles in steady state. For example, Fig. 3 shows
the corresponding temperature profiles in steady flow for the
same values of the external force Fx as in Fig. 2. Similarly, the
data for WFI energies εWF = 1.0ε and 0.3ε are also presented
only in a half of the channel because of the symmetry. The
temperature profiles, except near interfaces, are well described
by a fourth-order polynomial, as expected from the continuum
predictions [see Eq. (3)]. Note that the fluid temperature near
the walls slightly increases and deviates from the theoretical
prediction, which was also observed in the previous study [53].

Furthermore, it can be observed in Fig. 3 that the fluid
temperature profiles are nearly flat at Fx = 0.01 ε/σ for
εWF= 1.0ε and 0.3ε, indicating that viscous heating is not
significant at low shear rates. As Fx increases, the average
temperature of the fluid increases and nonlinearity of the tem-
perature profiles becomes more pronounced. In other words,
viscous heating in the sheared fluid increases with the external
force in both cases εWF = 1.0ε and 0.3ε. At Fx � 0.3 ε/σ ,
a reduced WFI leads to a more significant viscous heating
since the Kapitza thermal resistance is expected to be larger at
lower WFI energies [39,47,48]. However, at Fx = 0.5 ε/σ , the
temperature profiles are nearly the same for εWF = 1.0ε and
0.3ε (see Fig. 3). These results suggest that the WFI strength
and the external force, and the corresponding shear rate, have
a nontrivial combined effect on the Kapitza thermal resistance,
which will be discussed in more detail below.

We note that the average temperature of the fluid increases
from ∼0.90 ε/kB to ∼36 ε/kB as Fx increases from 0.01 ε/σ

to 0.5 ε/σ at different WFI energies. A similar increase in
the fluid temperature at high shear rates was also observed in
the previous MD studies using the TW thermostatting strategy

[12,29,49,50]. In contrast, the average temperature of the solid
walls increases from ∼0.75 ε/kB to ∼2.0 ε/kB, while it should
be emphasized that they remain rigid for all flow conditions
considered in the present study. The significant variation of
the fluid temperature affects the state of the fluid on the phase
diagram. Below, we include a comment on this issue.

By modifying the 33-parameter Benedict-Webb-Rubin
(MBWR) equation, Nicolas et al. [54] have developed an
equation of state for the LJ fluid. Later, Johnson et al. [55]
improved the equation of Nicolas et al. [49] using more
accurate MD simulation results. Using the MBWR equation of
Johnson et al. [55] and the Maxwell construction, Cosden [56]
numerically calculated the liquid-vapor coexistence (binodal)
curve, which was plotted along with the spinodal curve in the
density-temperature phase diagram [57]. In our study, the bulk
density and the average temperature of the fluid are ∼0.83 σ−3

and ∼0.90 ε/kB at the lowest shear rate for different WFI
energies. According to the phase diagram of Cosden, the phase
state of fluid at these conditions is clearly above the coexistence
curve and below the critical point, indicating that the fluid is
a stable liquid [58]. As the shear rate increases, the average
temperature of fluid increases significantly, while the variation
of the fluid bulk density is less than 0.05 σ−3. Thus, when the
average fluid temperature Tave increases but remains below the
temperature of the critical point TC (∼1.3 ε/kB), the state of
fluid remains a stable liquid [58]. As Tave increases above TC

with increasing shear rate, the state of fluid enters into the
supercritical fluid-phase region on the phase diagram [58].

The dramatic increase of the average fluid temperature with
increasing shear rate influences the fluid viscosity, which might
also depend on the position relative to the walls. In a force-
driven flow, the viscosity of the fluid at different locations along
the y-axis can be computed using the following equation:

μ(y1) = μ(y2) = Fx�yA
∑n

i=1 ρi

(γ̇1 + γ̇2)A
, (4)

where �y is the thickness of a slice parallel to the lattice
plane, A is the area of simulation domain in the xz plane.
Here, γ̇1 and γ̇2 are shear rates of the fluid phase at y1 and
y2, respectively. The locations y1 and y2 are symmetrical with
respect to the midplane of the fluid phase whose y coordinate
can be set at the center of the channel, i.e., at 14.39 σ . In
our calculations, y1 increases from 3.1σ to 11.9 σ in slices
of thickness 0.2 σ , and correspondingly, y2 decreases from
25.7 σ to 16.9 σ . For given external force and WFI energy, it
can be seen from Fig. 3 that the temperature profile of the
fluid is nearly flat in the center of channel, which means
the shear viscosity is position independent in the center of
channel. Therefore, the shear viscosity was evaluated in the
region where the nonlinearity of the temperature profiles is
pronounced. In our flow geometry, the shear viscosity μ was
evaluated in 45 adjacent slices parallel to walls.

Figure 4 shows the average values of μ for different external
forces and WFI energies. To make a comparison with the
results of the previous study [49], the data in Fig. 4 are plotted
as a function of the interfacial shear rate γ̇ for each εWF. The
error bars represent the standard deviation of 45 values of μ at
each εWF. It can be clearly seen that the values of the standard
deviation are small in comparison with the average values of
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FIG. 4. The fluid viscosity μ as a function of the interfacial shear
rate γ̇ for the indicated values of the wall-fluid interaction energy
εWF. The error bars represent the standard deviation of 45 values.

μ. Therefore, the viscosity of the fluid does not depend on
the location of the averaging bin inside the channel for given
values of γ̇ (or external force) and εWF. In other words, the fluid
shear viscosity is spatially uniform for given values of γ̇ (or
external force) and εWF. At a given εWF, the fluid viscosity is
negatively (positively) correlated with the interfacial shear rate
γ̇ , when γ̇ is smaller (larger) than ∼0.3τ−1, respectively. A
similar relationship between the fluid viscosity and interfacial
shear rate was also reported in the previous study [49].

The influence of γ̇ on the fluid viscosity can be understood
by considering the fluid temperature and the corresponding
fluid state on the phase diagram. As discussed above, at
low interfacial shear rates, the fluid is in a liquid state
whose viscosity is dominated by attractive LJ forces [59,60].
Thus, with increasing shear rate, higher temperature results
in smaller sizes of coherent groups of atoms because of the
increased agitation of individual atoms, and, consequently,
there is less resistance to deformation in the liquid, i.e., smaller
viscosity [59]. At higher shear rates, the temperature of the
fluid increases significantly and the momentum transport is
mainly governed by the repulsive part of the LJ potential [60].
Thus, the shear viscosity of the LJ fluid at high temperatures is
similar to that of the soft-sphere system, i.e., μ ∼ ρT 5/12 [60].
Therefore, the increase in the fluid temperature leads to larger
fluid viscosity at high shear rates. Taken together, the shear
viscosity first decreases and then increases with increasing
shear rate and, as a result, fluid temperature, i.e., the minima
appear in the dependence of viscosity as a function of shear
rate, as shown in Fig. 4.

As shown in Fig. 4, at γ̇ � 0.3τ−1, i.e., relatively low
shear rates, the fluid viscosity is smaller for lower εWF at
a given γ̇ because lower WFI results in higher temperature
of the fluid (see Fig. 3). At γ̇ � 0.3τ−1, the shear viscosity
is nearly the same for εWF � 0.3ε for a given γ̇ because of
the negligible difference in the fluid temperature in these cases
[Figs. 3 and 6(a) presented in Sec. III C]. For εWF = 0.005ε, the
fluid viscosity is smaller than for εWF = 1.0ε ∼ 0.3ε at both

low and high shear rates due to the lower fluid temperature
[see Fig. 6(a) presented in Sec. III C]. Another contributing
factor leading to smaller values of the shear viscosity in the
case εWF = 0.005ε is that the FFL is displaced closer to the
walls, which effectively increases the channel height and,
consequently, reduces viscosity [13].

B. The rate-dependence of the slip length for
high and low WFI energies

Figure 5(a) shows the slip length LS as a function of the
interfacial shear rate γ̇ for different WFI energies εWF. It is
clearly seen that in all cases the slip length depends strongly
on shear rate. However, the relationships between the slip
length and shear rate show opposite trends for high and low
WFI energies. Thus, for high WFI energies εWF = 1.0ε and
0.9ε, the slip length saturates asymptotically to a constant
value. At γ̇ � 1.0τ−1, the slip length is larger for εWF = 0.9ε

than for εWF = 1.0ε for a given value of the interfacial shear
rate, while at higher shear rates, γ̇ � 1.0τ−1, the slip length
is nearly the same for εWF = 0.9ε and 1.0ε. A similar positive
correlation between the slip length and shear rate was also
observed in thin films of n-decane confined by solid walls
with the WFI energy of about 3.0ε when the TW thermostat
was used in the Couette cell [28].

As shown in Fig. 5(a), an opposite correlation emerges at
low WFI energies εWF = 0.5ε and 0.3ε; namely, the slip length
decreases monotonically with increasing interfacial shear rate.
Moreover, the slip length decreases faster at εWF = 0.3ε than
at εWF = 0.5ε. Note that at γ̇ � 0.55τ−1, the slip length is
larger at the lower WFI energy [see Fig. 5(a)]. This behavior is
intuitively expected since interfaces with lower WFI energies
result in larger slip lengths, if the WFI is sufficiently strong
[13]. However, as shown in Fig. 5(a), the slip length can
be smaller at lower WFI energies at very high shear rates.
For example, for εWF = 0.5ε, the slip length is smaller than
LS for εWF = 0.9ε and 1.0ε at γ̇ � 1.2τ−1. This behavior
is consistent with the results reported for the fluid velocity
profiles in Fig. 2 for high and low WFI energies. Note also that
the slip length is smaller for εWF = 0.3ε than for εWF = 0.5ε

at γ̇ � 0.5τ−1 [see Fig. 5(a)].
In the case of the lowest WFI energy, εWF = 0.005ε, the

decay rate of the slip length is the largest and LS asymptotes
to a small but non-zero value (∼0.34σ ). It is interesting to
note that the slip length is smaller for εWF = 0.005ε than for
εWF = 0.3ε in the range of accessible shear rates, which is
different from the cases εWF = 0.3ε and εWF = 0.5ε. This
behavior is consistent with the results of the previous MD
study where similar parameters of the fluid and solid phases
were used but with the rigid wall model and TF thermostat
[13]. In particular, it was demonstrated in Ref. [13] that the
slip length acquires a distinct maximum at the critical value
of the WFI energy (εCR ∼ 0.06ε) that separates the positive
and negative correlations between the slip length and WFI
energy. In other words, the slip length first increases and then
decreases when the WFI energy is reduced [13]. Thus, the
results presented in Fig. 5(a) indicate that the nonmonotonic
dependence of the slip length as a function of the WFI energy
still holds at high shear rates for the system with the flexible
wall model and the TW thermostatting strategy.
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FIG. 5. (a) Variation of the slip length (LS) as a function of the interfacial shear rate (γ̇ ) for different values of the wall-fluid interaction
energy (εWF). (b) The same as (a) but the selected data for LS are replotted as a function of εWF for the indicated values of Fx .

Figure 5(b) shows the same data for the slip length but
replotted as a function of the WFI energy for the indicated
values of Fx . In the present study, the value of εCR was not
determined accurately since only 5 different values of the WFI
energy were considered. However, the qualitative trends of
εCR dependence on the external force and fluid temperature
can be easily deduced from the limited data. Following the
conclusions from Ref. [13], it can be seen in Fig. 5(b) that
the magnitude of εCR is smaller than 0.3ε for the case of
Fx = 0.03ε/σ . As Fx increases to 0.2ε/σ , the slip length is
maximum when εWF ∼ 0.5ε, and, hence, the value of εCR

should be greater than 0.5ε [see Fig. 5(b)]. In the case of the
largest external force Fx = 0.5ε/σ , the slip length decreases
monotonically as WFI decreases from 1.0ε to 0.005ε, indicat-

ing that εCR is greater than 1.0ε. Therefore, we conclude that
the critical value εCR increases with increasing external force,
which in turn leads to higher fluid temperature in the MD setup
with the TW strategy used in the present study. The relationship
between εCR and the fluid temperature is consistent with the
previous findings [13] that the positive correlation between
εCR and the fluid temperature originates from the fact that the
FFL is displaced closer to the wall at higher T .

C. Viscous heating at different interfacial
shear rates and WFI energies

We next perform a detailed analysis of the viscous heating
effect when the shear rate increases at different WFI energies

FIG. 6. (a) The temperature jump (TJ) and (b) the Kapitza thermal resistance (LK) versus the interfacial shear rate (γ̇ ) for the indicated
values of the wall-fluid interaction energy (εWF).
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by examining the average fluid temperature (Tave) and the
Kapitza thermal resistance length (LK). It can be seen in
Fig. 6(a) that Tave increases dramatically at higher shear rates
indicating that significant viscous heating occurs in the sheared
fluid. At different WFI energies, LK decreases monotonically
as the interfacial shear rate increases [see Fig. 6(b)], which
indicates that the efficiency of thermal transport between the
fluid and wall becomes higher with increasing viscous heating,
i.e., the average temperature of the fluid.

At relatively low interfacial shear rates, such as γ̇ ≈
0.04τ−1, Tave increases as the WFI energy decreases from
1.0ε to 0.3ε [see Fig. 6(b)]. This behavior is consistent with
the observation that LK is larger at lower WFI energies, which
demonstrates that the lower WFI energy results in less efficient
thermal transport between the fluid and wall. Furthermore, as
the interfacial shear rate increases, the differences in Tave and
LK at different WFI energies (εWF = 1.0ε ∼ 0.3ε) become
reduced. In particular, at higher shear rates, γ̇ ≈ 1.6τ−1 or
1.8τ−1, such differences in Tave and LK are negligible for
εWF = 1.0ε ∼ 0.3ε. This behavior is consistent with the
results reported Fig. 3 that the fluid temperature profiles are
the approximately same at large external forces.

In the case of the lowest WFI energy εWF = 0.005ε, the
average fluid temperature increases slower with increasing
shear rate than in the other cases of WFI energy [see Fig. 6(a)].
Correspondingly, the Kapitza thermal resistance length de-
creases faster with increasing shear rate for εWF = 0.005ε.
In contrast to the cases εWF = 1.0ε ∼ 0.3ε, both Tave and
LK are smaller at high shear rates γ̇ ≈ 1.6τ−1 or 1.8τ−1

for εWF = 0.005ε. We finally comment that the reported rate
dependence of Tave and LK is related to the relatively low values
of the fluid viscosity for εWF = 0.005ε (shown in Fig. 4).

D. The analysis of the fluid structure near solid walls

In this section, the two opposite trends of the rate-dependent
slip length are analyzed by examining the influence of the
viscous heating effect on the properties of the FFL at different
interfacial shear rates and WFI energies.

In general, the velocity slip in fluid flows over flexible
walls can be strongly influenced by the lattice structure and
the relative position of the FFL with respect to the adjacent
wall layer. The lattice structure and WFI strength determine
the potential energy landscape that induces a higher-order
structure in the FFL, which in turn is found to be inversely
correlated with the slip length [10,12,32–34,45]. The location
of the FFL is also correlated with the slip length as it reflects
the strength of the coupling between fluid and solid phases
[32,45]. In the present study, the lattice structure of confining
walls remains unchanged for all flow conditions. However, for
a given WFI energy, the fluid temperature in contact with solid
walls increases significantly at high shear rates, which affects
the induced order within the FFL. In addition, the increase in
fluid temperature, and, therefore, fluid pressure, leads to the
displacement of the FFL closer to the adjacent wall layer. This
effect becomes especially pronounced at low WFI energies
[13,32]. As a result, the fluid atoms in the FFL penetrate
slightly deeper into the wall structure leading to larger friction
and, consequently, reduced slip [61].

The induced structure in the FFL can be quantitatively
measured using the concept of the in-plane static structure
factor, S(k). It has been demonstrated in the previous MD
studies [10,12,32–34,45] that the slip length is inversely
correlated with the magnitude of the main peak of the in-plane
static structure factor of the FFL, S(G1), where G1 is the
shortest reciprocal-lattice vector. The in-plane static structure
factor is given by [33,45]

S(k) = 1

N

∣∣∣∣∣∣
∑

j

eik·rj

∣∣∣∣∣∣
2

,

where rj = (xj , zj ) is the two-dimensional position vector of
the j th atom and the sum is taken over N atoms within the
FFL. Here, k = (kx, kz) is the reciprocal vector parallel to the
walls. In a finite system, the components of the vector k are
restricted to integer multiples of 2π/L, where L is the system
size in the x and z directions [52]. Thus, the larger the system
size, the smaller the values of kx and kz can be.

The quantity S(G1) depends on the system size and the
number of atoms. In our simulations, the average number
of fluid atoms in the FFL depends of the fluid temperature
and WFI energy. Therefore, the size-independent quantity
S(G1)/S(0), averaged over 100τ , was used in our analysis
to correlate the fluid structure with the slip length. In addition,
we measured how close, on average, the fluid atoms are
located near the solid wall by computing the distance between
the time-averaged center-of-mass (COM) of the FFL and the
innermost wall layer, DWF.

Figures 7(a) and 7(b) shows the variation of S(G1)/S(0) and
DWF as a function of the interfacial shear rate for different WFI
energies. We first discuss the correlation between S(G1)/S(0),
DWF and the slip length at high WFI energies. For εWF =
1.0ε and 0.9ε, the surface-induced structure in the FFL,
S(G1)/S(0), decreases significantly as the interfacial shear
rate increases from 0.045τ−1 to 1.8τ−1 [see Fig. 7(a)]. At
the same time, DWF remains nearly shear-rate-independent
for γ̇ � 0.5τ−1. These results imply that the increase in
fluid temperature is not sufficiently large to displace the
FFL towards the walls because of the relatively steep surface
potential at high WFI energies. Therefore, it can be concluded
that, as the shear rate increases up to γ̇ � 0.5τ−1, the decrease
in S(G1)/S(0) correlates inversely with increasing slip length,
which is consistent with the previous MD results [33–35]. At
γ̇ � 0.5τ−1, DWF decreases slightly with increasing shear rate
because of the very high fluid temperature, which counterbal-
ances the influence of the reduced structure S(G1)/S(0) on
the slip length. As a consequence, the rate of the slip length
increase becomes slower at γ̇ � 0.5τ−1, and LS asymptotes
to a constant value at high shear rates [see Fig. 5(a)].

At the lower WFI energy εWF = 0.5ε, S(G1)/S(0) de-
creases more slowly with increasing shear rate than in the cases
εWF = 1.0ε and 0.9ε. As shown in Fig. 7(a), at εWF = 0.3ε,
S(G1)/S(0) is nearly shear-rate-independent. Therefore, the
variation of S(G1)/S(0) with increasing shear rate cannot
explain the negative correlation between the slip length and
the external force or the interfacial shear rate [see Fig. 5(a)].
Instead, the increase in pressure due to high fluid temperature
causes the displacement of the FFL towards the wall because
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FIG. 7. (a) The normalized peak value of the in-plane static structure factor computed in the first fluid layer, S(G1)/S(0), versus the
interfacial shear rate (γ̇ ) for the indicated values of the wall-fluid interaction energy (εWF). (b) Variation of DWF as a function of γ̇ for the same
εWF.

of the relatively soft surface potential at low WFI energies. As
shown in Fig. 7(b), DWF decreases with increasing interfacial
shear rate for εWF = 0.5ε and 0.3ε. Note also that this trend
becomes more evident in the case of the lower WFI energy,
εWF = 0.3ε, where DWF decreases faster with increasing
shear rate than for εWF = 0.5ε, because of the softer surface
potential. As discussed above, smaller values of DWF reflect
the fact that fluid atoms, on average, penetrate deeper into the
adjacent wall layer causing larger friction between the fluid
and wall. Thus, the decrease in DWF results in the negative
correlation between the slip length and the interfacial shear
rate at low WFI energies as shown in Fig. 5(a).

In the case of the lowest WFI energy, εWF = 0.005ε, it can
be observed in Fig. 7(a) that the structure factor S(G1)/S(0) is
relatively small, and it is nearly the same as in the case εWF =
0.3ε at the low shear rate γ̇ ≈ 0.045τ−1. However, S(G1)/S(0)
increases quickly with increasing shear rate at εWF = 0.005ε,
which is markedly different from the case εWF = 0.3ε. It
was previously shown that the FFL is displaced closer to
the wall with increasing fluid temperature at the lowest
value of the WFI energy εWF = 0.005ε [13]. This behavior
is consistent with the distinct negative correlation between
DWF and γ̇ at εWF = 0.005ε [shown in Fig. 7(b)]. Altogether,
the positive correlation S(G1)/S(0) ∼ γ̇ and the negative
correlation DWF ∼ γ̇ both contribute to the decay of the slip
length with increasing γ̇ for εWF = 0.005ε [see Fig. 5(a)].

IV. CONCLUSIONS

In summary, the effect of viscous heating on liquid slip over
smooth surfaces with high and low WFI energies was studied
using molecular dynamics simulations. The monatomic fluid
was adopted to model a planar Poiseuille flow induced by a
constant force. In steady-state flow, the heat in the fluid phase
was removed by the thermostat applied to several layers within
the solid walls, thus leaving unaffected the dynamics of wall

and fluid atoms at interfaces. The values of interfacial shear
rate and slip length were computed from the parabolic fits of
the velocity profiles.

It was shown that the average fluid temperature rises
significantly as the shear rate increases for both high and low
WFI energies. Moreover, with increasing shear rate, the slip
length asymptotes to a constant value from below (above)
for high (low) WFI energies. These trends were analyzed by
examining the influence of fluid temperature and shear rate
on S(G1)/S(0), the normalized main peak of the in-plane
structure factor of the FFL, and DWF, the distance between
the wall and FFL. We found that slip is enhanced when
S(G1)/S(0) is reduced, while smaller values of DWF imply that
fluid atoms penetrate deeper into adjacent wall layer resulting
in larger interfacial friction and, consequently, smaller slip
lengths.

More specifically, at high WFI energies and low shear rates,
S(G1)/S(0) decreases quickly with increasing shear rate, but
DWF remains unchanged despite increasing fluid temperature,
which altogether leads to the positive correlation between
slip length and shear rate. At very high shear rates, the fluid
temperature is extremely high so that DWF decreases slightly
with increasing shear rate, which counterbalances the influence
of the reduced parameter S(G1)/S(0) on slip length. As a
consequence, the slip length increases slowly at very high shear
rates and high WFI energies. In contrast, at low WFI energies,
the increase in shear rate, which is accompanied by rising
fluid temperature, does not affect S(G1)/S(0) significantly. On
the other hand, DWF decreases monotonically with increasing
shear rate. Therefore, the slip length correlates negatively with
increasing shear rate at low WFI energies. Notably, in the
case of the lowest WFI energy, the increase of S(G1)/S(0)
and, at the same time, decrease of DWF with shear rate result
in the sharp decrease of the slip length. These findings open
perspectives for modeling complex systems with combined
effects of rate dependence, viscous heating and wettability.

033110-8



EFFECTS OF VISCOUS HEATING AND WALL-FLUID . . . PHYSICAL REVIEW E 96, 033110 (2017)

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant No. 51679203) and Natural

Science Basic Research Plan in Shenzhen City of China(Grant
No. JCYJ20160510140747996).

[1] R. Pit, H. Hervet, and L. Leger, Phys. Rev. Lett. 85, 980 (2000).
[2] V. S. J. Craig, C. Neto, and D. R. M. Williams, Phys. Rev. Lett.

87, 054504 (2001).
[3] E. Bonaccurso, M. Kappl, and H. J. Butt, Phys. Rev. Lett. 88,

076103 (2002).
[4] C. H. Choi, K. J. A. Westin, and K. S. Breuer, Phys. Fluids 15,

2897 (2003).
[5] C. Neto, D. R. Evans, E. Bonaccurso, H. J. Butt, and V. S. J.

Craig, Rep. Prog. Phys. 68, 2859 (2005).
[6] P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).
[7] N. V. Priezjev and S. M. Troian, Phys. Rev. Lett. 92, 018302

(2004).
[8] D. M. Huang, C. Sendner, D. Horinek, R. R. Netz, and L.

Bocquet, Phys. Rev. Lett. 101, 226101 (2008).
[9] A. Martini, A. Roxin, R. Q. Snurr, Q. Wang, and S. Lichter, J.

Fluid Mech. 600, 257 (2008).
[10] X. Yong and L. T. Zhang, Phys. Rev. E 82, 056313 (2010).
[11] F. C. Wang and Y. P. Zhao, Soft Matter 7, 8628 (2011).
[12] X. Yong and L. T. Zhang, Microfluid. Nanofluid. 14, 299 (2013).
[13] H. Hu, L. Bao, N. V. Priezjev, and K. Luo, J. Chem. Phys. 146,

034701 (2017).
[14] P. A. Thompson and M. O. Robbins, Phys. Rev. Lett. 63, 766

(1989).
[15] P. A. Thompson, W. B. Brinckerhoff, and M. O. Robbins, J.

Adhes. Sci. Technol. 7, 535 (1993).
[16] A. J Koplik and J. R. Banavar, Annu. Rev. Fluid Mech. 27, 257

(2003).
[17] L. Bocquet and J.-L. Barrat, Soft Matter 3, 685 (2007).
[18] H. K. Moffatt, J. Fluid Mech. 18, 1 (1964).
[19] J. Koplik and J. R. Banavar, Phys. Fluids 7, 3118 (1995).
[20] N. V. Priezjev, A. A. Darhuber, and S. M. Troian, Phys. Rev. E

71, 041608 (2005).
[21] S. Lichter, A. Martini, R. Q. Snurr, and Q. Wang, Phys. Rev.

Lett. 98, 226001 (2007).
[22] B. Ramos-Alvarado, S. Kumar, and G. P. Peterson, Phys. Rev.

E 93, 023101 (2016).
[23] M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature

438, 44 (2005).
[24] D. S. Sholl and J. K. Johnson, Science 312, 1003 (2006).
[25] X. Yong and L. T. Zhang, J. Chem. Phys. 138, 084503 (2013).
[26] N. Asproulis and D. Drikakis, Phys. Rev. E 84, 031504 (2011).
[27] S. Lichter, A. Roxin, and S. Mandre, Phys. Rev. Lett. 93, 086001

(2004).
[28] A. Martini, H.-Y. Hsu, N. A. Patankar, and S. Lichter, Phys.

Rev. Lett. 100, 206001 (2008).
[29] C. Liu and Z. G. Li, J. Chem. Phys. 132, 024507 (2010).
[30] Z. G. Li, Phys. Rev. E 79, 026312 (2009).
[31] C. Liu and Z. G. Li, Phys. Rev. E 80, 036302 (2009).
[32] A. Alizadeh Pahlavan and J. B. Freund, Phys. Rev. E 83, 021602

(2011).

[33] P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830
(1990).

[34] J. L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).
[35] N. V. Priezjev, Phys. Rev. E 75, 051605 (2007).
[36] C. Zhang and Y. Chen, Chem. Eng. Process. 85, 203 (2014).
[37] Y. Chen, C. Zhang, M. Shi, and G. P. Peterson, Appl. Phys. Lett.

100, 074102 (2012).
[38] C. Zhang, Z. Deng, and Y. Chen, Int. J. Heat. Mass. Transf. 70,

322 (2014).
[39] C. Zhang, Y. Chen, and G. P. Peterson, Phys. Rev. E 89, 062407

(2014).
[40] Y. Chen and C. Zhang, Int. J. Heat. Mass. Transf. 78, 624 (2014).
[41] R. S. Voronov, D. V. Papavassiliou, and L. L. Lee, J. Chem.

Phys. 124, 204701 (2006).
[42] A. Niavarani and N. V. Priezjev, Phys. Rev. E 81, 011606 (2010).
[43] R. Khare, J. J. D. Pablo, and A. Yethiraj, Macromolecules 29,

7910 (1996).
[44] S. A. Gupta, H. D. Cochran, and P. T. Cummings, J. Chem. Phys.

107, 10316 (1997).
[45] N. V. Priezjev, J. Chem. Phys. 127, 144708 (2007).
[46] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[47] J. Sun, W. Wang, and H. S. Wang, J. Chem. Phys. 138, 234703

(2013).
[48] J. Sun, W. Wang, and H. S. Wang, Phys. Rev. E 87, 023020

(2013).
[49] R. Khare, J. dePablo, and A. Yethiraj, J. Chem. Phys. 107, 2589

(1997).
[50] X. Song and J. K. Chen, Int. J. Heat. Mass. Transf. 51, 1770

(2008).
[51] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and

Nanoflows: Fundamentals and Simulation (Springer, New York,
2005).

[52] D. C. Rapaport, The Art of Molecular Dynamics Simulation
(Cambridge University Press, New York, 2004).

[53] N. V. Priezjev, J. Chem. Phys. 136, 224702 (2012).
[54] J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley,

Mol. Phys. 37, 1429 (1979).
[55] J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78,

591 (1993).
[56] I. A. Cosden, A Hybrid Atomistic-Continuum Model for Liquid-

Vapor Phase Change, Dissertation, University of Pennsylvania,
2013.

[57] M. Thol, G. Rutkai, A. Koster, R. Lustig, R. Span, and J. Vrabec,
J. Phys. Chem. Ref. Data 45, 023101 (2016).

[58] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, New York, 2006).

[59] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge
University Press, New York, 2000).

[60] W. T. Ashurst and W. G. Hoover, Phys. Rev. A 11, 658 (1975).
[61] N. V. Priezjev and S. M. Troian, J. Fluid Mech. 554, 25 (2006).

033110-9

https://doi.org/10.1103/PhysRevLett.85.980
https://doi.org/10.1103/PhysRevLett.85.980
https://doi.org/10.1103/PhysRevLett.85.980
https://doi.org/10.1103/PhysRevLett.85.980
https://doi.org/10.1103/PhysRevLett.87.054504
https://doi.org/10.1103/PhysRevLett.87.054504
https://doi.org/10.1103/PhysRevLett.87.054504
https://doi.org/10.1103/PhysRevLett.87.054504
https://doi.org/10.1103/PhysRevLett.88.076103
https://doi.org/10.1103/PhysRevLett.88.076103
https://doi.org/10.1103/PhysRevLett.88.076103
https://doi.org/10.1103/PhysRevLett.88.076103
https://doi.org/10.1063/1.1605425
https://doi.org/10.1063/1.1605425
https://doi.org/10.1063/1.1605425
https://doi.org/10.1063/1.1605425
https://doi.org/10.1088/0034-4885/68/12/R05
https://doi.org/10.1088/0034-4885/68/12/R05
https://doi.org/10.1088/0034-4885/68/12/R05
https://doi.org/10.1088/0034-4885/68/12/R05
https://doi.org/10.1038/38686
https://doi.org/10.1038/38686
https://doi.org/10.1038/38686
https://doi.org/10.1038/38686
https://doi.org/10.1103/PhysRevLett.92.018302
https://doi.org/10.1103/PhysRevLett.92.018302
https://doi.org/10.1103/PhysRevLett.92.018302
https://doi.org/10.1103/PhysRevLett.92.018302
https://doi.org/10.1103/PhysRevLett.101.226101
https://doi.org/10.1103/PhysRevLett.101.226101
https://doi.org/10.1103/PhysRevLett.101.226101
https://doi.org/10.1103/PhysRevLett.101.226101
https://doi.org/10.1017/S0022112008000475
https://doi.org/10.1017/S0022112008000475
https://doi.org/10.1017/S0022112008000475
https://doi.org/10.1017/S0022112008000475
https://doi.org/10.1103/PhysRevE.82.056313
https://doi.org/10.1103/PhysRevE.82.056313
https://doi.org/10.1103/PhysRevE.82.056313
https://doi.org/10.1103/PhysRevE.82.056313
https://doi.org/10.1039/c1sm05543g
https://doi.org/10.1039/c1sm05543g
https://doi.org/10.1039/c1sm05543g
https://doi.org/10.1039/c1sm05543g
https://doi.org/10.1007/s10404-012-1048-x
https://doi.org/10.1007/s10404-012-1048-x
https://doi.org/10.1007/s10404-012-1048-x
https://doi.org/10.1007/s10404-012-1048-x
https://doi.org/10.1063/1.4973640
https://doi.org/10.1063/1.4973640
https://doi.org/10.1063/1.4973640
https://doi.org/10.1063/1.4973640
https://doi.org/10.1103/PhysRevLett.63.766
https://doi.org/10.1103/PhysRevLett.63.766
https://doi.org/10.1103/PhysRevLett.63.766
https://doi.org/10.1103/PhysRevLett.63.766
https://doi.org/10.1163/156856193X00844
https://doi.org/10.1163/156856193X00844
https://doi.org/10.1163/156856193X00844
https://doi.org/10.1163/156856193X00844
https://doi.org/10.1146/annurev.fl.27.010195.001353
https://doi.org/10.1146/annurev.fl.27.010195.001353
https://doi.org/10.1146/annurev.fl.27.010195.001353
https://doi.org/10.1146/annurev.fl.27.010195.001353
https://doi.org/10.1039/b616490k
https://doi.org/10.1039/b616490k
https://doi.org/10.1039/b616490k
https://doi.org/10.1039/b616490k
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1063/1.868619
https://doi.org/10.1063/1.868619
https://doi.org/10.1063/1.868619
https://doi.org/10.1063/1.868619
https://doi.org/10.1103/PhysRevE.71.041608
https://doi.org/10.1103/PhysRevE.71.041608
https://doi.org/10.1103/PhysRevE.71.041608
https://doi.org/10.1103/PhysRevE.71.041608
https://doi.org/10.1103/PhysRevLett.98.226001
https://doi.org/10.1103/PhysRevLett.98.226001
https://doi.org/10.1103/PhysRevLett.98.226001
https://doi.org/10.1103/PhysRevLett.98.226001
https://doi.org/10.1103/PhysRevE.93.023101
https://doi.org/10.1103/PhysRevE.93.023101
https://doi.org/10.1103/PhysRevE.93.023101
https://doi.org/10.1103/PhysRevE.93.023101
https://doi.org/10.1038/438044a
https://doi.org/10.1038/438044a
https://doi.org/10.1038/438044a
https://doi.org/10.1038/438044a
https://doi.org/10.1126/science.1127261
https://doi.org/10.1126/science.1127261
https://doi.org/10.1126/science.1127261
https://doi.org/10.1126/science.1127261
https://doi.org/10.1063/1.4792202
https://doi.org/10.1063/1.4792202
https://doi.org/10.1063/1.4792202
https://doi.org/10.1063/1.4792202
https://doi.org/10.1103/PhysRevE.84.031504
https://doi.org/10.1103/PhysRevE.84.031504
https://doi.org/10.1103/PhysRevE.84.031504
https://doi.org/10.1103/PhysRevE.84.031504
https://doi.org/10.1103/PhysRevLett.93.086001
https://doi.org/10.1103/PhysRevLett.93.086001
https://doi.org/10.1103/PhysRevLett.93.086001
https://doi.org/10.1103/PhysRevLett.93.086001
https://doi.org/10.1103/PhysRevLett.100.206001
https://doi.org/10.1103/PhysRevLett.100.206001
https://doi.org/10.1103/PhysRevLett.100.206001
https://doi.org/10.1103/PhysRevLett.100.206001
https://doi.org/10.1063/1.3292682
https://doi.org/10.1063/1.3292682
https://doi.org/10.1063/1.3292682
https://doi.org/10.1063/1.3292682
https://doi.org/10.1103/PhysRevE.79.026312
https://doi.org/10.1103/PhysRevE.79.026312
https://doi.org/10.1103/PhysRevE.79.026312
https://doi.org/10.1103/PhysRevE.79.026312
https://doi.org/10.1103/PhysRevE.80.036302
https://doi.org/10.1103/PhysRevE.80.036302
https://doi.org/10.1103/PhysRevE.80.036302
https://doi.org/10.1103/PhysRevE.80.036302
https://doi.org/10.1103/PhysRevE.83.021602
https://doi.org/10.1103/PhysRevE.83.021602
https://doi.org/10.1103/PhysRevE.83.021602
https://doi.org/10.1103/PhysRevE.83.021602
https://doi.org/10.1103/PhysRevA.41.6830
https://doi.org/10.1103/PhysRevA.41.6830
https://doi.org/10.1103/PhysRevA.41.6830
https://doi.org/10.1103/PhysRevA.41.6830
https://doi.org/10.1039/a809733j
https://doi.org/10.1039/a809733j
https://doi.org/10.1039/a809733j
https://doi.org/10.1039/a809733j
https://doi.org/10.1103/PhysRevE.75.051605
https://doi.org/10.1103/PhysRevE.75.051605
https://doi.org/10.1103/PhysRevE.75.051605
https://doi.org/10.1103/PhysRevE.75.051605
https://doi.org/10.1016/j.cep.2014.09.003
https://doi.org/10.1016/j.cep.2014.09.003
https://doi.org/10.1016/j.cep.2014.09.003
https://doi.org/10.1016/j.cep.2014.09.003
https://doi.org/10.1063/1.3685490
https://doi.org/10.1063/1.3685490
https://doi.org/10.1063/1.3685490
https://doi.org/10.1063/1.3685490
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.080
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.080
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.080
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.080
https://doi.org/10.1103/PhysRevE.89.062407
https://doi.org/10.1103/PhysRevE.89.062407
https://doi.org/10.1103/PhysRevE.89.062407
https://doi.org/10.1103/PhysRevE.89.062407
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.005
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.005
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.005
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.005
https://doi.org/10.1063/1.2194019
https://doi.org/10.1063/1.2194019
https://doi.org/10.1063/1.2194019
https://doi.org/10.1063/1.2194019
https://doi.org/10.1103/PhysRevE.81.011606
https://doi.org/10.1103/PhysRevE.81.011606
https://doi.org/10.1103/PhysRevE.81.011606
https://doi.org/10.1103/PhysRevE.81.011606
https://doi.org/10.1021/ma960083x
https://doi.org/10.1021/ma960083x
https://doi.org/10.1021/ma960083x
https://doi.org/10.1021/ma960083x
https://doi.org/10.1063/1.474171
https://doi.org/10.1063/1.474171
https://doi.org/10.1063/1.474171
https://doi.org/10.1063/1.474171
https://doi.org/10.1063/1.2796172
https://doi.org/10.1063/1.2796172
https://doi.org/10.1063/1.2796172
https://doi.org/10.1063/1.2796172
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1063/1.4810810
https://doi.org/10.1063/1.4810810
https://doi.org/10.1063/1.4810810
https://doi.org/10.1063/1.4810810
https://doi.org/10.1103/PhysRevE.87.023020
https://doi.org/10.1103/PhysRevE.87.023020
https://doi.org/10.1103/PhysRevE.87.023020
https://doi.org/10.1103/PhysRevE.87.023020
https://doi.org/10.1063/1.474570
https://doi.org/10.1063/1.474570
https://doi.org/10.1063/1.474570
https://doi.org/10.1063/1.474570
https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.019
https://doi.org/10.1063/1.4728106
https://doi.org/10.1063/1.4728106
https://doi.org/10.1063/1.4728106
https://doi.org/10.1063/1.4728106
https://doi.org/10.1080/00268977900101051
https://doi.org/10.1080/00268977900101051
https://doi.org/10.1080/00268977900101051
https://doi.org/10.1080/00268977900101051
https://doi.org/10.1080/00268979300100411
https://doi.org/10.1080/00268979300100411
https://doi.org/10.1080/00268979300100411
https://doi.org/10.1080/00268979300100411
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1103/PhysRevA.11.658
https://doi.org/10.1103/PhysRevA.11.658
https://doi.org/10.1103/PhysRevA.11.658
https://doi.org/10.1103/PhysRevA.11.658
https://doi.org/10.1017/S0022112006009086
https://doi.org/10.1017/S0022112006009086
https://doi.org/10.1017/S0022112006009086
https://doi.org/10.1017/S0022112006009086



