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We consider pressure-driven flows in wide microchannels, and discuss how a transverse shear, generated
by misaligned superhydrophobic walls, impacts cross-sectional spreading of Brownian particles. We show that
such a transverse shear can induce an advective superdiffusion, which strongly enhances dispersion of particles
compared to a normal diffusion, and that maximal cross-sectional spreading corresponds to a crossover between
its subballistic and superballistic regimes. This allows us to argue that an advective superdiffusion can be used for
boosting dispersion of particles at smaller Péclet numbers compared to known concepts of passive microfluidic
mixing. This implies that our superdiffusion scenario allows one efficient mixing of much smaller particles or
using much thinner microchannels than methods, which are currently being exploited.
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I. INTRODUCTION

Superhydrophobic (SH) textures in the Cassie state, where
the texture is filled with gas, have motivated numerous
studies during the past decade [1,2]. Such surfaces are
important due to their superlubricating potential [3–7]. The
use of highly anisotropic SH textures with generally tensorial
effective hydrodynamic slip, beff [7–10] (due to secondary
flows transverse to the direction of the applied pressure
gradient [11,12]), provides new possibilities for hydrodynamic
flow manipulation [10,13–15]. Recent studies have employed
transverse components of flow in SH channels to fractionate
large non-Brownian microparticles [16,17] or enhance their
mixing [18,19]. However, we are unaware of any previous
work that has addressed the issue of diffusive transport of
tiny Brownian particles by generating transverse flows in SH
devices.

Diffusive transport controls diverse situations in biology
and chemistry [20], and its understanding is very important in
many areas including such as nanoswimmers propulsion [21]
or interpretation of modern nanovelocimetry experiments [22].
Dispersion of tiny Brownian particles in a cross section of a
microchannel with smooth walls at low Reynolds number Re,
which is relevant to many applications, is difficult since the
normal diffusion (characterized by the linear time dependence
of the mean squared displacement, σ 2 ∝ t) is slow compared
with the convection of particles along the microchannel.
Our strategy here is to enhance such a dispersion by using
advective diffusion, which can be induced by generating a
transverse component of flow. Transverse flow generated by
herringbone patterns in the Wenzel state (when liquid follows
the topological variations of the surface) has already been
successfully used for a passive chaotic mixing of particles in a
microchannel of thickness H comparable to its width W and
at very large Péclet number, Pe [23–25]. Here we suggest
that dramatic improvement of a cross-sectional dispersion
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in a very wide channel, W � H , and at much smaller Pe
(which is equivalent to significantly reduced particle sizes
or channel thickness) could be achieved by inducing a
superdiffusion, i.e., a situation, when σ 2 ∝ tα with α > 1.
Depending on the value of α one usually distinguishes between
subbalistic (1 < α < 2), ballistic (α = 2), and superballistic
(α > 2) regimes of superdiffusion [26]. The superdiffusion
in a flow field has been studied by several groups for
various macroscopic systems. Subballistic regime has been
reported for a random velocity field [27,28], and superballistic
dispersion has been predicted for turbulent [29] and for linear
shear [30] flows, and for a solute transport in a heterogeneous
medium [31]. Some efforts have also gone into investigating
a role of confinement in the emergence of superdiffusion
[32]. However, advective superdiffusion on microscales has
never been predicted theoretically, nor has it been used for
microfluidic applications.

The presence of an additional variable H in the system
implies that diffusive behavior in a confined complex flow
should be different than it would be in bulk liquid or near
a single interface. Could various superdiffusive regimes be
induced in microchannels with realistic parameters of the
flow? How will they differ from the bulk systems if induced?
What are possible implications for microfluidic mixing? These
questions still remain open, and we are unaware of any
previous attempts describing answers to them.

In this paper we present a general strategy for inducing
an advective superdiffusion in microchannels of a high aspect
ratio, W/H � 1, that can be used for boosting dispersion
of Brownian particles between streams of main (forward)
Poiseuille flows. To enhance the mixing (homogenization)
of particles over the cross section of the channel we use
secondary (transverse) shear flows generated in microchannels
decorated by crossed identical SH stripes [14] as sketched
in Fig. 1. We show that such a flow configuration allows
one to induce various scenarios of a superdiffusion, and
argue that a crossover between subballistic and superballistic
regimes provides large transverse dispersion of particles,
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FIG. 1. (a) Sketch of the superhydrophobic channel with identi-
cal, but misaligned striped textures at the walls. Main flow direction
is from left to right. (b) Top view of particle dispersion.

which would be impossible in standard microchannels with
smooth homogeneous walls or in devices, which are currently
widely used as microfluidic mixers.

II. SCALING THEORY

We first present the scaling approach which we have
developed to evaluate hydrodynamic dispersion in a Poiseuille
flow with superimposed uniform transverse shear:

Ux = Usx + U0(1 − 4(z/H )2), Uy = 2Usyz/H, (1)

where U0 = −H 2∇P/(8μ) is the maximal velocity of a flow
generated by pressure gradient ∇P with no-slip walls, μ is the
dynamic viscosity, and Usx and Usy are the (positive definite)
averaged forward and transverse slip velocities at channel
walls located at z = ±H/2. We note that the transverse shear
rate is equal to 2Usy/H .

Brownian particles are injected from a point source located
at (x,y,z) = (0,0,0) and then advected by the flow satisfying
Eq. (1). The flux of particles across channel walls is equal to
zero, we neglect their inertia and focus on the diffusive regime.

Since both Ux and Uy depend only on z, particle distribution
in the z direction will be governed by normal Brownian
diffusion with zero average displacement. For an unbounded
space we have 〈z〉 = 0, σ 2

z = 〈(z − 〈z〉)2〉 = 2Dt , where 〈·〉
denotes averaging over the ensemble of particles, and D is
the diffusion coefficient. In our case diffusion is constrained
by channel walls, so that sometime later particles become
uniformly distributed between them:

σ 2
z = 2Dt, t � td , σ 2

z = H 2/12, t � td . (2)

Here we have defined the diffusion time scale, td = H 2/(2D),
as a typical time for a single particle to cross the channel in
the z direction.

Particle dispersion in the y direction reflects an interplay
between diffusion and transverse shear rate. Depending on
t different scenarios of the particle spreading may occur. In
the short time regime, i.e., for t � td , our shear flow could
be treated as unbounded, since the spreading of particles is
still unaffected by confinement. By substituting the expression
for a transverse shear rate into a solution for a mean square
displacement of Brownian particles in an unbounded linear
shear [30] we obtain

σ 2
y = 2Dt

[
1 + 1

3

(
2Usyt

H

)2
]
, t � td . (3)

This expression defines a second time scale ts = H/(2Usy),
which is associated to a transverse shear.

We note that depending on the value of the Péclet number,
Pe = U0H/D, the ratio td/ts = UsyPe/U0 can vary in a large
interval. Two limits can now be discussed depending on the
ratio td/ts . When td/ts � 1, which is equivalent to Pe �
U0/Usy , the normal Brownian diffusion of particles provides
their efficient spreading in the channel since D is large.
However, if td/ts � 1, which corresponds to Pe � U0/Usy

(or small D), the normal diffusion is slow. Therefore, below
we discuss this larger Pe limit in more detail. We note that
in this situation if t � ts , the mean square displacement of
particles scales as σ 2

y ∝ Dt , indicating a normal Brownian
diffusion. However, for t � ts , we deduce from Eq. (3) σ 2

y ∝
Dt3U 2

syH
−2, which suggests a superdiffusion of particles in a

superballistic regime.
In the long-time regime, t � td , multiple rebounds of

particles from the channel walls should inevitably lead to a
random variation of the transverse velocity even in our directed
shear flow. This situation is similar to considered in prior work
[27,28] on Brownian particles in a (bulk) random velocity
field, which predicted σ 2

y ∝ t3/2. The characteristic velocity
and length are determined by Usy and H , so that dimensional
analysis immediately leads to

σ 2
y ∝ D−1/2U 2

syH t3/2, t � td . (4)

We now summarize the different scaling expressions for
σ 2

y , which determine several diffusion-advection regimes when
Pe � U0/Usy , and turn to dimensionless parameters:

σ 2
y /H 2 ∝

⎧⎪⎨
⎪⎩

t/td , t � ts

(Usy/U0)2Pe2(t/td )3, ts � t � td

(Usy/U0)2Pe2(t/td )3/2, td � t.

(5)

Equation (5) includes the ratio Usy/U0, which depends on
the superhydrophobic texture topology only. We focus here on
microfluidic applications, and therefore it is not the time, but
the channel length x = λH , that serves as a main independent
parameter of the problem. So we have to reformulate Eq. (5)
in terms of λ. A time required for particles to migrate along
the channel is t = λH/Um, where Um is a mean forward flow
velocity in the locus of the assembly of particles. At t � td it is
equal to the velocity at the midplane of the channel, Um = U0,
but at t � td this will be the mean forward velocity in the
channel, Um = 2U0/3. Note that in both cases the relationship
between λH and t is linear, t/td ∝ λ/Pe. Therefore, Eq. (5)
can be rewritten as

σ 2
y /H 2 ∝

⎧⎪⎨
⎪⎩

Pe−1λ, λ � U0/Usy,(
Usy/U0

)2
Pe−1λ3, U0/Usy � λ � Pe,(

Usy/U0
)2

Pe1/2λ3/2, λ � Pe.

(6)

In the other limit of Pe � U0/Usy , a normal diffusion is
expected as discussed above, so that in this case we should
also get σ 2

y /H 2 ∝ Pe−1λ. For a given diffusion coefficient we

obtain for the superballistic regime σ 2
y ∝ U 2

0 t3 ∝ U−1
0 (when

the flow is too fast the migration time is too small) while for
the subballistic regime we get σ 2

y ∝ U 2
0 t3/2 ∝ U

1/2
0 . These two

scalings imply the existence of optimum U0 and corresponding
Pemax.
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FIG. 2. Schematic representation of various diffusion regimes in
a microchannel. The colorbar values ascend from bottom to top.

To illustrate this effect it is useful to divide the (λ,Pe) space
into three regions of normal, subballistic, and superballistic
diffusion, where the above scaling expressions for σ 2

y /H 2

approximately hold. Such a diagram is plotted in Fig. 2. The
crossover loci here simply indicate that limiting solutions for
σ 2

y /H 2 given by Eq. (6) coincide for different regimes of diffu-
sion. Apart from the curve λ = Pe3/2(U0/Usy)2 (separating the
normal and superballistic diffusion), other crossover loci, λ =
Pe (separating the subballistic and superballistic regions) and
λ = U0/Usy (between the normal and superballistic diffusion)
are straight lines. Of course, in reality at those curves, the
limiting solutions for σ 2

y /H 2 cross over smoothly from one
diffusion regime to another. We can now conclude that when
λ is below U0/Usy only normal diffusion is expected. In
other words, advective superdiffusion cannot be generated
without large slip at SH walls. When λ is above U0/Usy

three regimes can be attained depending on the value of Pe.
A very small Péclet number will lead to a normal diffusion,
but at larger Pe one can induce a subballistic and at very
large Pe a superballistic regime. Figure 2 also immediately
shows that the maximal spreading is attained at the crossover
between subballistic and superballistic regimes. This means
that it happens when the time required for particles to migrate
forward to a given cross section and to diffuse to the channel
walls are comparable.

III. SIMULATION METHOD

We model a motion of Brownian particles, i.e., a situation
when inertia is neglected and Langevin equations are reduced
to first order

ẋ = u(x) + r(t), (7)

where x is a particle position, u(x) is the velocity field of a fluid
and r(t) is a random velocity component with a correlation time
much smaller than other time scales in the system. To discretize
the equation we introduce a time grid {tk} with the step �t and
keep the random component rk = (rx,ry,rz) constant over the
time step [tk,tk + �t] with random variables rx,y,z taken from
the Gaussian distribution with zero average and dispersion ur .

To validate that we model a dispersion of particles correctly
we first measure their diffusion coefficient. We integrate the
equation of particle motion for an ensemble of 500 particles
released at x0 = (0,0,0) in a velocity field involving a uniform

y/L
0 0.2 0.4 0.6 0.8 1 1.2 1.4

z/
L

-0.25

0    

0.25 

0

0.2

0.4

U
x

FIG. 3. Cross section of the fluid velocity field (uy,uz) at φ = 0.5
and λ = 0.5. Colorbar shows the forward velocity Ux .

u = (U0,0,0) and a random component rk = (0,ry,rz), and
then measure the dispersion of particle positions σy,z(t) at
t � T . We then fit the dispersion curves using the standard
scaling σ 2

y,z(t) = 2Dy,zt . The diffusion coefficient is the same
in all directions, Dz = Dy = D, and depends on the time step
�t and the dispersion ur as D = D∗u2

r /(2�t), where D∗ is
a renormalization coefficient. We have computed the values
of D∗ using U0 = 1, T = 10, several ur in the range from
0.05 to 0.5, and �t varying from 0.01 to 0.1. In all the cases,
the simulations give D∗ = 1, which confirms that the scaling
holds in the whole range of our parameters.

The velocity field in the SH channel is calculated using the
solution of Stokes equations valid at H/L � 1 [14]:

u = 〈u〉 + u1 + u2. (8)

Here 〈u〉 = (Ux,Uy,0) is the averaged flow profile defined by
Eq. (1), and u1, u2 are perturbations with zero mean over the
cell volume due to heterogeneous slippage at the lower and
upper walls, respectively. The perturbation fields u1 and u2 are
obtained using Fourier series with 50 harmonics [33].

In simulations of superdiffusive regimes we also use an
ensemble of 500 particles. To calculate the contribution of
the fluid velocity field, u(x), the equation of motion, Eq. (7),
is solved using fourth order Runge-Kutta method with the
time step �t = 0.01L/U0. In these simulations bounce-back
boundary conditions are applied at the channel walls.

IV. RESULTS AND DISCUSSION

In order to assess the validity of the above scaling approach
we now model a situation when the transverse shear is created
by SH walls [14], as sketched in Fig. 1. Specifically, we
consider a pressure-driven flow between two parallel SH
surfaces separated by the distance H , which are decorated
with identical periodic stripes of a period L and a fraction
of the gas area φ. We assume SH surfaces to be flat with no
meniscus curvature, so that the gas area is characterized by a
local slip length b only, and solid area has no-slip. The lower
and the upper wall textures are misaligned by an angle π/2,
and we align the x axis and the pressure gradient with this
angle bisector. The Reynolds number Re = ρU0H/μ, where
ρ is the fluid density, is considered to be small, i.e., Re � 1,
so that the flow satisfies the Stokes equations.

The typical velocity field in such a channel has been
calculated following the method described before [14], and
its typical cross section is shown in Fig. 3. Figure 3 illustrates
that the transverse velocity is strongly inhomogeneous. The
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FIG. 4. Dispersion σy/(HPe) as a function of time t/td simulated
for φ = 0.5. The Péclet numbers are (a) Pe = 200, 300, 400, 500
(circles, squares, diamonds, triangles) and (b) Pe = 10, 50, 75, 100
(circles, squares, diamonds, triangles).

inverse average transverse velocity, U0/Usy , which controls
the hydrodynamic dispersion, can be obtained by averaging the
three-dimensional velocity field u(x,y,z) over the periodic cell
in the x,y plane. If H = O(L) or larger, it can be evaluated by
using a simple expression U0/Usy � (1 + 2β+)/(4β−), where
β± = (b‖

eff ± b⊥
eff)/(2H ) with b

‖,⊥
eff the eigenvalues of the slip

length tensor, beff , for a channel of a finite H/L with one SH
and one no-slip hydrophilic walls [14]. These eigenvalues have
been calculated before [10], and they depend on b, L/H, and
φ. In our simulations below we use b = ∞ since it maximizes
the effective slip. We employ L/H = 2 since this provides a
significant transverse shear [14]. Finally, we consider several
textures, with φ varying in the interval from φ = 0.25 to 0.9,
which with prescribed parameters give a variation of U0/Usy

from � 11.5 to 1.2. With these values at moderate Péclet
numbers one can expect various regimes of superdiffusion
at an appropriate value of λ.

We now inject a large number of Brownian particles in
the channel, track their instantaneous positions, and evaluate
the dispersion σy at a given time. We have first plotted in
Fig. 4 the simulation results for σy/(PeH ) as a function of
t/td obtained at φ = 0.5 and several Pe. A general conclusion
from this plot is that the above scaling predictions given
by Eq. (5) are in good agreement with simulation results.
Thus, we see that all curves indeed overlap at long time.
For relatively large Péclet numbers, Pe � 200, simulation
data confirm the superballistic scaling (t/td )3/2, but at smaller
Péclet numbers, i.e., Pe � 100, our results fully validate the
predicted subballistic scaling (t/td )3/4.

To examine the difference between different advective
superdiffusion regimes we now vary Pe at fixed φ = 0.5
and determine positions of individual particles at a given
cross section λ = 50. For this gas area fraction U0/Usy � 7.4,
therefore, according to Fig. 2, the values of Pe = 10,50, and
300 should lead to a subballistic regime of superdiffusion,
a crossover between subballistic and superballistic regimes,
and a superballistic superdiffusion, correspondingly. The
simulation results are shown in Figs. 5(a), 5(b), and 5(c).
We see that a crossover between subbalistic and superballistic
regimes does lead to a homogeneous distribution of particles. A
subbalistic regime results in a rather homogeneous distribution
of particles by the height of a channel, but σy remains small,
so that particles are still focused near the midplane of the
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FIG. 5. Positions of individual particles at the cross section λ =
50 of a SH channel with φ = 0.5. The Péclet number is 10 (a), 50 (b),
and 300 (c) providing different scenarios of advective superdiffusion.

channel, y = 0. In contrast, in the superballistic regime the
particle spreading in the y direction is large, but due to small
σz the distribution of particles in the cross section is highly
inhomogeneous.

Finally, we explore in more details a situation of a maximal
transverse hydrodynamic dispersion, σmax/H , which occurs
when the scaling law

Pemax ∝ λ, (9)

is valid. Figure 6(a) shows σy/H , versus Pe, calculated at fixed
φ = 0.75 and several λ. It can be seen that σy/H increases
with λ, and that for a given λ there indeed exists a Péclet
number, Pemax, which maximizes the dispersion. Note that
the induced by superdiffusion transverse dispersion is large:
already at moderate λ = 50 it could be several times larger than
the channel thickness, of course, provided Pe is optimal. The
scaling law, Eq. (9), predicts Pemax is growing linearly with λ.
This is indeed the tendency shown by the simulation results.
We now reproduce the data set from Fig. 6(a) in Fig. 6(b), but
scale both coordinates by λ. Remarkably, and in agreement
with our scaling analysis, simulation data obtained for several

Pe
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FIG. 6. (a) Transverse particle dispersion σy/H as a function of
Pe calculated with φ = 0.75 at λ = 25 (squares), 50 (triangles), and
100 (circles). (b) The same data plotted in scaled by λ coordinates.
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FIG. 7. Rescaled maximal dispersion, σmax/(Hλ), (a) and the
Péclet number, Pemax/λ, (b) as a function of the gas area
fraction, φ.

λ do collapse into a single curve. This plot allows us to obtain
a scaling prefactor in Eq.(9), which for a given φ = 0.75 is
found to be � 1 (see Appendix A).

Similar curves, σy/(Hλ) versus Pe/λ, have been calculated
for several gas area fractions, and we have again found that at a
given φ they nearly coincide (see Appendix A). We have then
obtained from these simulation data the values of σmax/(Hλ)
and Pemax/λ (which gives us exactly the scaling prefactor),
and the results are plotted in Fig. 7 as a function of φ. A
first conclusion emerging from this plot is that φ is one of the
key parameters determining the maximal value of a transverse
dispersion, σmax/(Hλ). Figure 7(a) shows that in the low φ the
transverse hydrodynamic dispersion is very small. It grows
with the gas area fraction and reaches the maximum at φ �
0.75 (see Appendix B for interpretation of this result). We also
note that the scaling prefactor in Eq. (9) decays with φ as seen
in Fig. 7(b).

Altogether the above simulation results do confirm our
simple scaling laws. We can therefore conclude that these ex-
pressions provide us with a correct picture of the superdiffusive
behavior of particles in the flow, even though they overlook
many details.

V. FINAL REMARKS

In conclusion, we believe we have provided a satisfactory
answer to several questions posed at the beginning of this
paper. We have shown that by using wide microchannels
with misaligned striped SH walls it is possible to induce
an advective superdiffusion of Brownian particles, which
could not be achieved with standard microfluidic devices with
smooth walls or in devices which are currently used to enhance
mixing at the microscale. We have developed scaling laws for
regimes of advective superdiffusion in such a microchannel,
providing explicit expressions for mean square displacement
of particles as a function of channel thickness and length,
Péclet number, and slip velocity at the walls. These scaling
results have been validated by means of computer simulations.
It has also been shown that the advective superdiffusion
could be used to efficiently mix Brownian particles, which
is important in a variety of applications.

Certain aspects of our work warrant further comments. A
striking conclusion from our work is that the surface textures
which optimize σmax/(Hλ) differ from those optimizing

effective (forward) slip. It is well known that the effective slip
of SH surfaces is maximized by increasing the gas-liquid area
fraction [4,7,10]. In contrast, we have shown that dispersion
of Brownian particles in SH microchannels is maximized by
stripes with a smaller gas fraction, φ � 0.75. In this situation,
the effective slip is relatively small, and yet the dispersion of
particles is very strong.

We should also like to stress that in a bulk or near a single
interface the optimal spreading of Brownian particles would
obviously occur in a superballistic regime. Our work has shown
that that contrary to a bulk situation, maximal cross-sectional
spreading at a finite H corresponds to a crossover between
subballistic and superballistic regimes of a superdiffusion.
Therefore, one can conclude that a superdiffusive behavior
of particles in a confined flow is indeed very different from
expected for unbounded systems.

Prior work on passive micromixing [18,24] has exploited
microchannels of W/H = O(1) and very large Péclet num-
bers, Pe = 103–106. This implies that previous methods have
been designed to efficiently mix particles of a micron size
or slightly smaller. We have addressed a different flow
configuration of W/H � 1, and have argued that an advective
superdiffusion can be used for boosting dispersion of particles
at much smaller Pe compared to known concepts of passive
microfluidic mixing. Our optimal Pe has been found to be of
the order of 100 and smaller. This implies that at the same
velocities of a mean flow we could provide mixing of particles
of the size 10–50 nm (i.e., of truly nanoparticles, including
proteins, viruses, etc). Alternatively, our concept allows one
mixing of particles of the size of 0.1–1 μm at the same flow
rate, Q = U0HW , but in channels of much smaller H .
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APPENDIX A: CALCULATIONS OF OPTIMAL PÉCLET
NUMBER AND DISPERSION

To estimate the optimal Péclet number and its dependence
on texture parameters we run simulations for several λ =
25,50,100 and several φ = 0.25, 0.5, 0.75, 0.9. The σy/(Hλ)
versus Pe/λ curves are plotted in Fig. 8. We see that at a given
φ results for different λ collapse into a single curve. To obtain
the position of the maximum we fit these curves to a function

fσ = p1x
2 + p2x + p3

x2 + p4x + p5
, (A1)

where pi , i = 1–5, are the fitting coefficients. To find the best
fit for pi we use the combined data set for all three values
of λ. The values Pemax/λ and σmax/(Hλ) are then calculated
from the fitting function for each φ. The error bars in Fig. 7
for the maximal dispersion �σmax are found by estimating the
root-mean-square deviation between the fit and the data. The
error in Pemax is estimated by expanding the fit function around
its maximum,

�Pe ∼ √
�σmax/f ′′

σ (Pemax/λ). (A2)
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FIG. 8. Particle dispersion σy for (a) φ = 0.25, (b) 0.5, (c) 0.75,
(d) 0.9 and λ = 25, 50, 100 (triangles, squares, circles). Solid curves
show a fit to fσ , given by Eq. (A1).

APPENDIX B: THE EFFECT OF LARGE FORWARD SLIP
ON THE DISPERSION

The scaling equation (6) has been obtained assuming that
the slip velocity at the wall is small compared to that of the
Poiseuille flow, Usx,Usy � U0, so that they do not include a
forward slip Usx . In this appendix, we estimate the contribution
of large forward slip, Usx , to σy and Pemax. When Usx,

Usy � U0 the mean forward flow velocity is

Um =
{
U0 + Usx, t � td ,

2U0/3 + Usx, t � td .

Since t = λH/Um, Eqs. (5) and (6) can be modified to give

σ 2
y

H 2
∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Usy/U0

)2
λ3

(1 + Usx/U0)3Pe
, U0/Usy � λ � Pe,

(
Usy/U0

)2
Pe1/2λ3/2

(2/3 + Usx/U0)3/2 , λ � Pe

and

σ 2
y

(Hλ)2
∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Usy/U0

)2

(1 + Usx/U0)3 Pe/λ, U0/Usy�λ � Pe,

(
Usy/U0

)2

(2/3 + Usx/U0)3/2 (Pe/λ)1/2, λ�Pe.

When φ → 1, both Usy and Usx become large, and
the dispersion for the first regime decays with φ since
σ 2

y /H 2 ∝ U0U
2
syU

−3
sx . However, it grows for the second

regime, σ 2
y /H 2 ∝ U

1/2
0 U 2

syU
−3/2
sx . The values of Pemax and

σmax can be deduced from a crossover between two regimes.
Straightforward calculations lead to

Pemax � λ
2/3 + Usx/U0

(1 + Usx/U0)2 (B1)
and

σmax � λ
Usy/U0

(2/3 + Usx/U0)(1 + Usx/U0)
. (B2)

Therefore, we can conclude that both Pemax and σmax

decay when φ → 1, and the maximal dispersion is attained at
smaller φ.
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