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The generation of droplets at low Reynolds numbers is driven by nonlinear dynamics that give rise to complex
patterns concerning both the droplet-to-droplet spacing and the individual droplet sizes. Here we demonstrate an
experimental system in which a time-varying energy landscape provides a periodic magnetic force that generates
an array of droplets from an immiscible mixture of ferrofluid and silicone oil. The resulting droplet patterns are
periodic, owing to the nature of the magnetic force, yet the droplet spacing and size can vary greatly by tuning a
single bias pressure applied on the ferrofluid phase; for a given cycle period of the magnetic force, droplets can
be generated either at integer multiples (1, 2, . . .), or at rational fractions (3/2, 5/3, 5/2, . . .) of this period with
mono- or multidisperse droplet sizes. We develop a discrete-time dynamical systems model not only to reproduce
the phenotypes of the observed patterns but also to provide a framework for understanding systems driven by
such periodic energy landscapes.
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I. INTRODUCTION

Discrete-time dynamical systems have been used to study
physical phenomena such as population dynamics of predator-
prey behavior [1,2], spatial ecological patterns [3], control
theory [4], and chaotic electronic circuits [5]. These systems
can often be modeled by recursive mathematical relations and
iterative maps to describe behaviors such as convergence to
stable points, limit cycles, and chaos [6–8].

In fluidic systems, droplet generation can be thought of
as a discrete event, corresponding to the moment when a
droplet breaks free from the bulk phase, making droplet
generation well positioned to be studied as a discrete-time
dynamical system. Indeed, droplet or bubble dynamics have
been described using discrete-time approaches including not
only the generation of droplets in dripping faucets [9] or
bubbles in microchannels [10], but also the circulation of
droplets in microfluidic networks [11,12]. These descriptions
are important given the significance of droplet generation
either for technological purposes [13–16] or for fundamental
physical understanding. With regard to the latter, there is
a conceptual connection between discrete-time dynamical
systems and the study of droplet pattern generation, which
relates the size of the droplets to their spacings, often revealing
asymmetries even at low Reynolds numbers under laminar
flow [17–19]. Such patterns further enable self-organization
phenomena where generated droplets are driven into ordered
structures [20,21].

Unlike microchannel configurations for droplet generation
[22] that induce shearing between the two phases through
T junctions [17,18,23] or flow focusing [24–26], where the
time scales of droplet generation arise from balance between
viscous and capillary forces, in this work, we report a microflu-
idic system with an intrinsic driving frequency determined by
the time-varying magnetic energy landscape with a two-phase
immiscible mixture of water-based ferrofluid (FF) and silicone
oil. The magnetic energy landscape generates an oscillatory
force that produces the droplet arrays whose patterns depend

on the energy of breakup, the oscillation frequency, and a bias
flow rate. The same concept of magnetic energy landscapes has
previously been utilized to synchronously manipulate water-
based FF droplets and, through droplet-to-droplet interactions,
perform physical logic operations [27]. In this paper, we use
this platform to demonstrate control over periodic droplet
patterns, characterized by different droplet-to-droplet spacing
and droplet sizes, and develop a discrete-time dynamical
system model to explain the dynamics driving the formation
of these patterns.

II. EXPERIMENTAL METHODS

We supply the FF through an inlet tubing (diameter dtube =
300 μm) that is placed at a distance d = 50−200 μm from
a substrate covered with a 3–5-mm-thick film of silicone oil
[Fig. 1(a), side view, and Appendix A]. The FF reservoir is
held at a height hff from the substrate, that creates a differential
pressure �P = ρffghff, where ρff = 1.28 g/cm3 is the density
of the FF and g = 9.81 m/s2 is the acceleration of gravity. Due
to this pressure, �P , there is flow of bulk FF with a rate Q.

The droplets are generated through the interaction of the
bulk FF with soft-magnetic (permalloy) tracks (characteristic
length ∼1 mm) on the substrate via exposure to two magnetic
fields. The first magnetic field, |Bz| = 250 G, is perpendicular
to the substrate, has a fixed magnitude, and polarizes the
bulk FF in a uniform manner [Fig. 1(a), top view]. The
second magnetic field, |Bxy | = 40 G, is in the plane of the
substrate, is rotating with a radial frequency ω, and polarizes
the tracks. As a result, these magnetic fields create a dynamic,
spatiotemporal magnetic energy landscape, where the FF will
be driven towards the minimization of its potential energy.
To accomplish this, the lower end of the bulk is subject to
a magnetic force

−→
F mag that extracts submillimeter-diameter

droplets [Fig. 1(a), side view]. For this study, we restrict
ourselves to tracks that have shapes of “T” and “I” bars that
ensure that they can be polarized effectively by the

−→
B xy and
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FIG. 1. (a) Schematic of the droplet generator. Top view: Periodic
tracks of “T” and “I” permalloy bars (gray) with FF droplets (black)

propagating under magnetic fields
−→
B z,

−→
B xy . The numbers 1–4 on

the bars correspond to the locations that the droplets occupy as
−→
B xy

obtains the angular orientations “1–4” [27]. Side view: Droplet array

generated from reservoir with height, hff, via a magnetic force
−→
F mag

(red) from the coupling of the droplet magnetization
−→
M (white) with

the magnetic field of the bar,
−→
B bar (blue). The letters N and S denote

polarizations. (b) Top-view sequential snapshots of generated droplets
propagating on winding tracks of “T” and “I” bars. Red dashed circles
indicate the inlet and outlet. Bz = 250 G, Bxy = 40 G at frequency
f = 2 Hz. Scale bar 5 mm.

suffice not only to generate droplets but also to propagate them
along the tracks [Fig. 1(a), top view]. For a fixed position of the
inlet tube, we show both droplet generation and propagation
along the tracks of the substrate [Fig. 1(b) and Video 1
in the Supplemental Material [28]]. To avoid overcrowding
the substrate with droplets, we use outlet lines connected to
a negative pressure line that remove the droplets from the
substrate [Fig. 1(a), and Appendix A].

III. EXPERIMENTAL OBSERVATIONS

For given magnetic fields and fixed positions of the inlet and
outlet tubes, we apply pressures in the range �P = 0.5–8 kPa.
We observe that the system is in a constant flow and pressure
regime (Appendix A) and generates droplet arrays converging
to a steady-state pattern within two or three cycles of

−→
B xy .

After converging to a steady-state pattern, we define Cd as
the number of cycles of

−→
B xy required to generate a droplet.

The parameter Cd is constant for arrays that have constant
droplet-to-droplet spacing. There is a minimum of one full

FIG. 2. (a) Plot of C̄d , the average number of cycles of
−→
B xy

needed to generate a droplet, versus the hydrostatic pressure �P .
(b) Snapshots from the experiments of (a) with droplet-to-droplet
spacings corresponding to different C̄d values. Bz = 250 G, Bxy =
40 G, and f = 2 Hz. Scale bar 2 mm.

cycle of
−→
B xy required to generate a single droplet (Cd = 1).

For decreasing �P , more cycles are required for the generation
of a single droplet (Cd � 1), resulting in droplet arrays that
are less tightly spaced [Fig. 2 and Video 2 in the Supplemental
Material [28]]. The parameter Cd is nonconstant for arrays
that have nonconstant spacings between consecutive droplets,
while still preserving a periodic pattern; for example, there can
be periodic alternation between one and two cycles per droplet
(i.e., Cd exhibits the sequence . . . ,1,2,1,2, . . .), resulting in an
average of C̄d = 3/2 [Fig. 2(b)]. In these cases, the volumes
of the droplets can also be different.

IV. MODEL

To explain the different droplet-to-droplet spacing and
individual droplet volumes in our generated arrays [Fig. 2(b)],
we develop a theoretical model. We write a tractable ex-
pression for the magnetostatic energy of the droplet, which
theoretically is defined as U = ∫ −−→

M · −→
B bar dV , where

−→
M

is the magnetization of the droplet,
−→
B bar is the magnetic

field generated by the bars [Fig. 1(a)], and V is the volume
of the droplet. To simplify the complicated expression for
U (Appendix C), we base our model on the following five
assumptions: First, we consider the droplet as a point mass and
write U = −−→

M · −→
B barV. Second, we assume that

−→
M = Mẑ

with V increasing linearly over time t for a given flow
rate Q, allowing us to write the magnitude of the magnetic
moment −→μ = −→

MV as μ(t) = MQt . Third, we assume that−→
B bar varies as a sine wave over time, consistent with the
oscillatory nature of

−→
B xy , and write

−→
B bar = Bbarẑ, where

Bbar(t) = B0 sin(ωt + ϕi) with B0 > 0 being the maximum
amplitude of

−→
B bar, ω the angular frequency, and ϕi the phase

of
−→
B xy . Fourth, we assume that a droplet breaks up from

the bulk when its energy U is minimized to a threshold
Ubreakup which has no effective dependence on droplet volume
based on geometric calculations (Appendix D). Additionally,
for the rest of this work, we refer to the absolute value of
the energy U . Fifth, we assume that droplet breakup can
occur only in the attractive phase of the oscillation when
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FIG. 3. (a) Schematic for recursive model. Assuming that the droplet i (red) is generated at time t = τi when
−→
B xy is at φi , the next

droplet i + 1 (blue) will be generated at t = τi+1 and φi+1, when the energy of droplet i + 1 becomes Ui+1 = Ubreakup, after a number of
cycles Cd = 1,2, . . . (black spiral), based on Eq. (2). Ui+1 (black) is the total product of the normalized magnetic moment qt (yellow) and
normalized magnetic field f (t,ϕi) = max(sin(2πt + ϕi),0) (gray). (b) Plot of φi+1 versus φi (solid black curve) based on the solution of Eq. (2)
for q = 1.1. The dashed line indicates the y = x line and the red lines indicate the convergence of initial random φ1 of transient-state droplets
(white circles) to a φs of steady-state droplets (black circle). The gray inset shows a zoomed-in graphical solution converging to φs . (c) Graphical
solutions of φi+1 versus φi for q = 1.1, 0.9, and 0.864 corresponding to C̄d = 1, 3/2, and 5/3 with respective illustrations of sizes and spacings
of droplets.

sin(wt + ϕ) > 0 and Bbar(t) > 0. In the repulsive phase, the
droplet is pushed away from the magnetized bar, which then
reduces the applied magnetic force on the droplet, preventing
breakup from occurring.

Combining all five of these assumptions, we write the
equation for the magnetostatic energy of the model as

U (t) =
{
B0MQt sin(ωt + ϕ), sin(ωt + ϕ) � 0
0, sin(ωt + ϕ) < 0.

(1)

Once a droplet is released, only the phase of
−→
B xy at the

previous breakup is needed to determine the time to next
breakup. This allows us to write Eq. (1) as a recursive formula;
assuming that a droplet i is generated at time t = τi when−→
B xy is at angle ϕi , then the next droplet, i + 1, will be
generated at time t = τi+1 and φi+1, which occurs when the
droplet magnetic energy is equal to U (τi+1) = Ui+1 = Ubreakup

[Fig. 3(a)]. Without loss of generality, we reduce Eq. (1) by
setting B0MQ = q (s−1), ω = 2π (rad/s), and Ubreakup = 1,
and write the recursive expression as

qτi+1F(τi+1,ϕi) = 1, (2)

where F is the waveform of the magnetic field relevant
for breakup and is given by F(t,ϕi) = max(sin(2πt + ϕi),0)
[Fig. 3(a), gray field magnitude curve]. Next, we solve Eq. (2)
to reproduce the phenotype of the droplet arrays generated ex-
perimentally [Fig. 2(b)]. For given q and angles ϕi in the range
[0,π ], we find the corresponding values of τi+1. We restrict our
parameter range for ϕi to an upper bound of π since no breakup
can occur from π to 2π . Then, we calculate both the angle ϕi+1

based on the equation ϕi+1 = mod 2π (2πτi+1 + ϕi) and the
number of cycles Cd required to generate a droplet i + 1 based
on Cd = quotient2π (2πτi+1 + ϕi), therefore generating phase
maps for specific q values that relate ϕi to ϕi+1 [Figs. 3(b)
and 3(c)]. For q = 1.1, ϕi converges to a single steady-state
angle ϕs [Fig. 3(b)] resulting in monodisperse limit cycles

of droplets with C̄d = 1 [Fig. 3(c)] independent of the initial
ϕ0. In other cases, for example at q = 0.9 and q = 0.864, ϕi

periodically alternates, respectively, between two and three
steady-state angles [Fig. 3(c)], resulting in multidisperse limit
cycles of droplets with average C̄d = 3/2 (Cd = . . . ,2,1, . . .)
and C̄d = 5/3 (Cd = . . . ,2,2,1, . . .) in qualitative agreement
with experiments [Fig. 2(b)].

To study the stability and pattern space of the model,
we conduct a parameter sweep of q in the range [0.15,1.5]
(Fig. 4). The phase-stability map reveals (steady-state) limit
cycles of two types: the first concerns monodisperse limit
cycles with integer C̄d values [Fig. 4(a); black lines for
which ϕi = ϕi+1], and the second concerns multidisperse limit
cycles with noninteger C̄d values [Fig. 4(a); red lines]. These
multidisperse limit cycles occur at discontinuous boundaries in
the phase map [qualitatively as in Fig. 3(c), C̄d = 3/2,5/3]. In
addition, for the explored parameter range, we find that given
any initial ϕi value, the subsequent ϕi+1 is always narrowed to
a band of [0.509,1.771] rad [Fig. 4(a), color bar].

Furthermore, to illustrate the richness in potential droplet
spacing and volume patterns, we calculate droplet volume
over discrete cycle intervals at different q values [Fig. 4(b)].
The pattern space includes monodisperse and multidisperse
droplet arrays at C̄d [Fig. 4(c)] values that were observed
experimentally [Fig. 2(b)].

V. COMPARISON OF EXPERIMENT AND MODEL

To understand the relationship between the droplet volume
and pressure, we study one configuration at an in-plane
frequency f = 2 Hz, describe the measured physical quantities
in detail, and test our analytic model by comparing to the
experimental results (Fig. 5\ ).

Decreasing pressure down from 8 kPa, we find monotoni-
cally increasing C̄d values [Fig. 5(a)]. For a given C̄d value,
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FIG. 4. Simulation parameter sweep of Eq. (2). (a) Phase map where each row corresponds to a mapping from ϕi (x axis) to ϕi+1 (color
bar), for a given flow rate q. The black lines correspond to monodisperse limit cycles of droplets where phase maps intersect the unity lines
with positive slope at exactly one point. Red lines denote multidisperse limit cycles of droplets for ϕi → ϕi+1 mapping. Low and high bounds

in color bar correspond to mapping limits given any initial ϕi . (b) Plot of droplet volumes for discrete cycles of
−→
B xy as a function of flow rate

(q). White cells indicate cycles where no droplet was generated. Cell shade indicates dimensionless droplet volume at a given cycle (color bar).
(c) Plot of C̄d as a function of q. Red dots correspond to regions of multidisperese limit cycles as in (a).

average droplet volume decreases with decreasing pressure.
As C̄d transitions from 1 to 2, 2 to 3/2, and 3/2 to 3, droplet

FIG. 5. Experimental droplet generation. (a) Plot of C̄d , over
pressure �P . Colors serve as a legend for (b) and (c). Dashed black
line is the theoretical minimum of C̄d given the average minimum
droplet volume (Vmin = 0.59 μl). Gray line is fit of C̄d from the
solution of Eq. (2) given a single-parameter fit using Vmin. (b)
Droplet volumes as a function of pressure. Large colored circles are
average values for generated droplet volumes at a given pressure.
Smaller colored dots correspond to individual droplet volumes.
Dashed horizontal line is the average minimum droplet volume. Gray
lines are values of droplet volumes from model solutions given Vmin.
(c) Plot of flow rate over �P with linear fit.

volumes jump abruptly to higher values before decreasing
again [Fig. 5(b)]. We find that the average minimal droplet
volume for all integer C̄d is Vmin = 0.059 μl [Fig. 5(b), dashed
line]. Plotting the flow rate, Q = Vdropf/C̄d , as function of
�P gives a linear relationship with a slope of 26.2 × 10−3

μl s−1 kPa−1 [Fig. 5(c), R2 = 0.997]. The linearity of this
relationship confirms that the flow rate Q of the FF is
determined by the pressure difference �P as typically seen in
Hagen-Poiseuille flow [29] where there is a balance between
viscous and pressure forces. Given this balance, the magnetic
force from the bars and the interfacial forces at the exit of the
inlet tube determine the breakup of the supplied fluid volume
to generate droplets with certain volumes and spacings.

Given the experimentally determined Vmin, we can reevalu-
ate Eq. (2) and compare theory to experiment, by parametrizing
q = Q/Vmin and setting ω = 2 × 2π . We use the recursive
Eq. (2) to numerically solve exact values of C̄d [Fig. 5(a), gray
line] and the droplet volumes [Fig. 5(b)] for Vmin = 0.059 μl
over a range of q. With Vmin as the single-parameter fit,
we find good qualitative agreement between experiment and
theory, particularly in the transitions between different C̄d . For
C̄d = 3/2, we find a difference in expected droplet volumes
suggesting that there may need to be important corrections
made to the waveform for Bbar.

VI. CONCLUSIONS

In summary, we have demonstrated an experimental plat-
form in which a periodic force generates droplet arrays
with complex patterns of droplet spacings and sizes. We
have developed a discrete-time dynamical systems model
to explain the observed patterns and found good agreement
with experimental measurements. In future efforts, we can
extend our system to quantitatively describe the generation
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TABLE I. Nominal dimensions of T and I bars.

of droplet patterns by exploring the system’s rich parameter
space including the interfacial tension, the magnitudes of the
magnetic fields, and the frequency of the rotating magnetic
field, and by studying the transient behavior of the system as
well. Our theoretical framework may be of broad interest due to
its generic nature and the ability to be applied to other droplet
generation platforms driven acoustically, (di)electrically, or
magnetically, and in a more complex fashion with arbitrary
forcing functions or multiple drive time scales. We note that
the phase space accessible in this class of problems is rich
and will inspire new experimental platforms replicating these
results in other systems.
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APPENDIX A: EXPERIMENTAL METHODS

Fabrication of fluidic chips. The “T” and “I” bars are
fabricated by etching permalloy foils that are epoxy-bonded on
glass substrates, using a protocol identical to that in Ref. [27].
The “T” and “I” bars have millimeter-size dimensions (Ta-
ble I). The permalloy bars are coated with Teflon (DuPont
AF1601) and the fluidic chips do not have a top cover.

Magnetic fields. The magnetic fields are generated using
the system of electromagnetic coils described in Ref. [27].
The ratio between the magnitudes of the magnetic fields is
|Bz|/|Bxy | � 5, thus ensuring that the induced magnetization
of the generated droplets is along the z axis [Fig. 1(a)].
However, the induced magnetization of the metallic bars is

always in the x-y plane as they are too thin (for example,
t/ l1 ≈ 1/40) to support magnetization in the z axis [Fig. 1(a)].

Two-phase mixture of fluids. The mixture consists of two
phases. The first phase is silicone oil (Sigma Aldrich, CAS:
63148-62-9, kinematic viscosity 5 cSt, density 0.913 kg/m3)
which is pipetted on the surface of the fluidic chip forming
a film of thickness hoil = 3–5 mm beneath the open air-oil
interface. The second phase is water-based ferrofluid (Ferrotec
EMG 700, kinematic viscosity 5 cSt, density 1.28 kg/m3)
which is dispensed on the film using an inlet tubing [Fig. 1(a)].

Inlet tubing. The inlet tubing is made of Teflon [polyte-
trafluoroethylene (PTFE)] with internal diameter 300 μm and
length 1 m. The first tip of the tubing is suspended at a height
d = 50−200 μm above the permalloy bars. This height d is
always smaller than the thickness of the silicone oil film on
the substrate, that is, d < hoil, thus making this tip completely
immersed in the film. The second tip of the tubing is connected
to a ferrofluid reservoir whose top surface is at a height hff =
10–80 cm above the permalloy bars. This height hff creates
a pressure difference �P generating flow that fills the tubing
with ferrofluid and, via the first tip, dispenses it into the sub-
strate. The pressure difference �P is adjusted by adjusting the
height hff of the ferrofluid reservoir. Furthermore, the inlet tub-
ing is threaded through a glass capillary with internal diameter
500 μm, which is mounted on a three-axis translational stage
for adjusting the position of the end of the inlet tubing relative
to the permalloy bars. The height of the oil (hoil) contributes an
insignificant reduction in pressure and is not considered here. It
is also important to note that the open geometry microfluidics
ensures that, once a droplet has broken from continuous phase,
droplets do not generate a significant back-pressure as seen in
narrow channel based microfluidic systems.

In our system, the relevant capillary forces are Fcap ≈
γ dtube ≈ 3 μN, where γ is the interfacial tension between
the ferrofluid and the silicone oil, and the shearing forces from
the magnetic fields are Fmag ≈ 10 μN for droplets with radius
of roughly 250 μm [27], suggesting comparable force scales
for droplet breakup. However, both the capillary and magnetic
forces are small in comparison to the force exerted on the
droplet by line pressure (Fline ≈ 50–500 μN). This estimation
suggests a constant flow and constant pressure regime.

Outlet tubing. The outlet tubing is made of Teflon, similar
to the inlet tubing [Fig. 1(a)]. At its lower end that is in
proximity to the substrate, it also contains a blunt-tip pin made
of stainless steel (23 gauge). The magnetic field

−→
B z along

the z axis magnetizes the pin. The magnetized pin attracts the
ferrofluid droplets and, by also using an additional negative
pressure difference across the outlet tubing, the droplets that
reach the outlet tubing are removed from the substrate (Fig. 1,
Fig. 6, and Fig. 7).

Imaging. Droplet volume measurements are performed by
imaging the chip with a digital single-lens reflex (DSLR)
camera (Canon T3i, Canon EF 100 mm f/2.8L IS USM Macro
Lens).

PTFE-oil-ferrofluid surface energy. In order to estimate
the volume of sessile droplets, by only imaging from the top,
we measured the contact angle between ferrofluid, PTFE in
silicone oil. We measured 11 droplets from the side, sessile on
a PTFE surface, for an average surface angle of θ = 24.86 ±
2.72 (Fig. 8).
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FIG. 6. Schematic of droplet generator. Side view: The inlet tube
contains a FF column (black) with controllable hydrostatic pressure
set by the height, hff. The droplets propagate on the tracks covered
with silicone oil with height hoil and exit the substrate through an
outlet tube (shown in inset) connected to a negative pressure line.

APPENDIX B: DATA ANALYSIS

Droplet volume measurement. For each measurement,
droplets are first generated and then all magnetic fields are
turned off, so that the droplets are in a sessile state on the chip
surface. The droplets are automatically tracked using a custom
image analysis code written in MATLAB [27]. The code converts
the frames of the videos to gray scale values from zero to 1.
Due to the opacity of the ferrofluid, a brightness threshold
is selected to identify one contiguous droplet object. To
extract the radii of the droplets, circles are interpolated on the
droplets. For maximal droplet volumes of Vdroplet ≈ 0.12 μl,
the Bond number is Bo ≈ 0.25 (�ρ = ρff − ρoil = 0.2 g/ml;
γ ≈ 3 mN/m [30], therefore justifying the spherical cap

FIG. 7. Top-view sequential snapshots of an experiment where
generated droplets propagate on winding tracks of T and I bars and
are removed from the substrate through the outlet. Red dashed circles
indicate the inlet and outlet. Bn = 250 G, Bi = 40 G, at frequency
f = 2 Hz. Scale bar 5 mm.

FIG. 8. A sessile ferrofluid droplet resting on a glass-PTFE spun
coat surface in 5 cSt silicone oil. Image taken from the side. The
droplet radius is approximately 300 μm.

assumption in calculating the volumes of the droplets, where
Vcap(r,θ ) = (πr3/6)(1 − cos θ )(3 sin θ2 + (1 − cos θ )2).

APPENDIX C: MODEL AND FITS

Computational solution. MATLAB R2014a was used to
numerically solve the recursive Eq. (2). The recursive process
is as follows: after the ith droplet is generated, time is reset to
t = 0 and ϕi is propagated to the subsequent iteration. We next
solve for the time, τi+1, that it takes for the energy to reach
Ubreakup. To plot phase maps, we solve the recursive equation
for a range of ϕ from zero to π in increments of at least 0.001.

Model simplification. The full expression of U is chal-
lenging to calculate because

−→
B bar depends on the relative

position of the inlet tubing with respect to the tracks, as
well as the track’s materials and geometry.

−→
B bar also changes

spatiotemporally with gradients of similar length scale as the
dimension of the tracks [27]. In addition,

−→
M is affected by−→

B bar while the volume and shape of the droplet also change
over time.

Simple theoretical derivation of upper phase band limit.
Though the model is nonlinear and we were not able to find
a close-formed solution for the stable points, we have derived
an expression for the upper bound of ϕi+1 given any initial ϕi .
The upper limit comes from the fact that any droplet that does
not break up before the maximum in the energy waveform has
to wait until the next cycle to break up. The theoretical upper
limit for the band is given by the solution to the equation 0 =
d/dx(t sin(ωt)) = sin(ωt) + ωt cos(ωt), which gives ϕupper =
2.0287 . . . rad for ω = 2π .

Simple theoretical derivation of C̄d lower bound. To find
the bound of C̄d , we take sin(ωτi+1 + ϕi) → 1, which gives
a simple relationship of τ = Vmin/Q, giving a lower limit of
C̄d > Vminf/Q [Fig. 5(a), black dashed line]. The agreement
with the bound across the pressure range confirms that Vmin is
not significantly varying as a function of Q.

Fitting. Linear fitting was done using the first-order Polyfit
function in MATLAB. R2 value was then calculated as an
estimator of linearity.
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FIG. 9. Surface area difference between the oil-ferrofluid inter-
face pre- and post-breakup. Red dashed lines are the bounds on droplet
volumes observed experimentally.

APPENDIX D: INFLUENCE OF DROPLET SIZE ON
BREAKUP ENERGY

When a droplet of volume V and surface area S breaks
from the column of fluid at the lower end of the inlet tube
[Fig. 1(a)], there is an increase �S of the area of the ferrofluid-
oil interface:

�S = Spost-breakup − Spre-breakup. (D1)

In Eq. (D1) the terms Spre-breakup and Spost-breakup are the
equilibrium areas of the ferrofluid-oil interface before and
after breakup, respectively. Only taking into account the
two equilibrium states, the energy of breakup, Ubreakup, is
proportional to the difference between these areas for a given
interfacial tension γ :

Ubreakup = γ�S. (D2)

We estimate these areas Spre-breakup and Spost-breakup using
two geometric assumptions. First, we assume that, before

droplet breakup, the fluid volume at the tip has the shape
of a spherical cap defined by the height of the cap, h, and the
cap radius which is equal to inner radius the inlet tube a. This
assumption is justified as the Bond number for this system is
Bo ≈ 0.25 (Appendix B). Therefore, the cap has a surface area
S = π (a2 + h2) and a volume V = πh(3a2 + h2)/6. Next, we
combine these two equations by substituting h and through
algebraic calculations we write

S3 + [3a2π ]S2 + [−36V 2π − 4a6π3] = 0. (D3)

The root of Eq. (D3) gives the surface area of the spherical cap
for given volume V and inlet radius a, that is, Spre-breakup =
S(V,a).

Second, we assume that, after droplet breakup, the fluid
volume that used to be a cap is now a free droplet with volume
V = πd3/6 and surface area S = πd2, where d is the droplet
diameter. In addition, the newly formed interface at the tip after
the breakup has a flat circular surface equal to the cross section
of the inlet tube with radius a with area πa2. Therefore, we
write the area of the ferrofluid-oil interface after the droplet
breakup as a function of V and a as

Spost-breakup = π1/3(6V )2/3 + πa2. (D4)

Next, we evaluate Eq. (D2) by taking Spre-breakup as the
root for Eq. (D3) and evaluating Spost-breakup from Eq. (D4)
for a fixed radius of inlet tube a = 150 μm (Appendix A)
and a range of droplet volumes V = 0.00–0.15 μl (Fig. 9).
We observe that in our experimental range of droplet volumes
V = 0.06–0.12 μl the difference in surface area varies within
less than 3% (Fig. 9).

Due to the small variation in the surface area before and
after breakup within our experimental range, the variation of
breakup energy is also small. For a given γ = 3 mN/m, V1 =
0.06 μl, and V2 = 0.12 μl, we calculated respectively from
Eqs. (D2)–(D4), Ubreakup,1 = 40.3 nJ and Ubreakup,2 = 41.3 nJ,
which have a relative difference of 2.4%, thus justifying
our assumption that the threshold for energy breakup can be
assumed to be constant.
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