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Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface
covered with an insoluble surfactant
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As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context
streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the
transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes
surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore,
the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that
are different from those resulting when only one of these effects is present. The present paper focuses on this
interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an
appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately
small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen
that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the
strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases.

These regimes show fairly universal power-law behaviors.
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I. INTRODUCTION

Oscillatory flows in confined and low-viscosity fluid sys-
tems develop oscillatory boundary layers near solid walls
and interfaces. Reynolds stresses exhibit nonzero temporal
mean values in these layers, where they drive a mean flow.
This interesting effect was first shown in a pioneering work
by Lord Rayleigh [1] when explaining the anomalous sand
accumulation at the bottom of a vertically vibrated container,
observed 50 years earlier by Faraday [2]. Rayleigh also noted
that the same mechanism was seemingly responsible for
nonuniform dust accumulation (known as Kundt figures) at the
walls of sound tubes [3] and for the formation of steady vortical
structures in vibrated soap films, already observed by Sedley
Taylor [4]. This latter problem has been more recently studied
by Vega et al. [5]. They concluded that, under reasonable
assumptions and according to Rayleigh’s insight, the observed
vortical structures are most seemingly due to the streaming
flow in the air surrounding the soap film. Rayleigh made a
careful analysis of the (nowadays called) boundary layer at-
tached to a (no-slip) solid boundary, obtaining the steady mean
flow responsible for sand or dust nonuniform accumulation
near the boundary. Rayleigh’s work was completed 50 years
later by Schlichting [6] (see also Ref. [7]), who noticed that
the streaming flow velocity was nonzero at the internal edge
of the boundary layer, which is a driving mechanism for the
generation of mean flows in the fluid bulk. Longuet-Higgins
[8] made a similar analysis for the streaming flow within
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the boundary layer attached to a free surface, which again
was nonzero at the internal edge of the layer and thus also
responsible for the generation of a global mean flow in the bulk.
An important well-known property is that the time-averaged
velocity or stress converges to a generally nonzero value as
viscosity goes to zero, while it would vanish if viscosity were
identically zero (i.e., when the boundary layer is absent) [9].
This seemingly surprising effect is explained by the singular
perturbation character of the inviscid limit.

More recently, the mean flow (also called steady or acoustic
streaming [10,11]) has been studied in various contexts. In
particular, the streaming flow induced by no-slip boundaries
has been studied in connection with flows in blood vessels [12],
generation of mean motions in the ear [ 13], interaction of sound
waves with bodies [14], flows around vibrating bodies [15],
and streaming-flow-jets produced by acoustic waves [16]. On
the other hand, the streaming flow produced in the boundary
layer attached to a vibrating free surface has an effect on the dy-
namics of oscillating bubbles [17], is of interest in water wave
theory [18-22], and has been shown to play a role in the insta-
bility of the ocean Langmuir circulations [23]. In different con-
texts, the streaming flow has been studied in microfluidic sys-
tems [24] and in conjunction with thermal effects for various
purposes, including the control of thermocapillary convection
at low viscosity [25-28] and cooling in narrow channels [29].

For nearly resonant systems at small viscosity, the stream-
ing flow is not just a byproduct of the primary waves, but
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generally affects the dynamics of those waves, as repeatedly
shown for various flow configurations and vibrating devices
[30-34]. This is because the streaming flow velocity scales
with the square of the wave amplitude and produces an effect
in the amplitude equations governing the dynamics of the
primary waves that is proportional to the product of the primary
waves amplitude and the streaming flow velocity. Thus, this
latter effect scales as the cube of the primary waves amplitude,
which is the order of magnitude of the cubic nonlinearity that
saturates the dynamics in these systems [35].

The streaming flow is responsible for the effective mass
transport in the fluid system and, in particular, for the overall
motion of passive scalars and surfactants. Therefore, the
mean flow is expected to exhibit a nontrivial interaction with
Marangoni convection. The understanding of this interaction
has been pursued in a number of papers. For instance, Martin
and Vega [36] included the effect of Marangoni elasticity in
a previous theory for clean free surfaces [32] to study the
drift stability of standing Faraday waves in annular containers,
previously found experimentally by Douady et al. [37]. More
recently, Strickland et al. [38] have pointed out that materials
(such as crude oil, biogenic slicks, or industrial and medical
surfactants) absorbed at the fluid free surface are expected
to move in response to surface waves. They have experi-
mentally studied such effect for Faraday waves in a shallow
cylindrical container with an insoluble surfactant monolayer.
They distinguished the effects of the meniscus waves near the
boundaries and the travelling waves in the far field, which
resulted in very complex spatiotemporal patterns. The case
of Faraday waves in a rectangular container was considered
in Ref. [39], where no specific surfactant was added. In this
study, surface contamination was seemingly present due to the
use of tap water, which is easily contaminated. In fact, water
contamination was also most probably responsible for some
striking mean flow effects due to wave-maker oscillations that
have been recently reported [40].

The streaming flow theory and systems mentioned above
all deal with the low-viscosity limit, in which the thickness
of the oscillatory boundary layers are very small compared to
the characteristic lengths of the primary surface waves. This
sets an upper limit to the surface waves oscillation frequency.
If that condition does not hold, the streaming flow can still be
analyzed by appropriate time-averaging of the trajectories of
fluid elements calculated via direct numerical simulation. This
task has not been addressed in the literature, to our knowledge.

As mentioned above, Faraday waves in vibrating containers
may produce meniscus oscillations that further complicate
the dynamics, and may mask the interaction between the
streaming flow and Marangoni convection. To overcome this
difficulty, we consider a vibrating liquid bridge with the
contact lines attached to the edges of the supporting disks,
as we have done in other related works dealing with surfactant
monolayer dynamics [41,42]. This geometry has the additional
advantage that direct numerical simulation is feasible at a
reasonable computational price. The liquid bridge geometry
has already been considered in connection with the streaming
flow produced by vibrations, focusing on weakly nonlinear
oscillations [43] and the effect of free surface waves [44].
However, these studies dealt with the low viscosity limit. On
the contrary, viscosity is not necessarily small in the present
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paper. Our analysis is based on direct numerical simulation for
arbitrary values of that parameter.

Concerning the interaction of the streaming flow with
Marangoni convection, we may anticipate here that there is
a tradeoff between both. Without Marangoni elasticity (the
surfactant is treated as a passive scalar), the surfactant is trans-
ported by the streaming flow, which gives rise to nonuniform
passive scalar concentrations at the free surface. However,
Marangoni elasticity reacts against surfactant concentration
gradients, decreasing the tangential velocity at the free surface
and counterbalancing the effect of the streaming flow alone.
Thus, the resulting streaming flow patterns are expected to be
highly affected by Marangoni stresses, at least near the free
surface.

The main object of this paper is to analyze the interaction
between the streaming flow and Marangoni elasticity in a
vibrated liquid bridge using direct numerical simulation. For
simplicity, we consider an insoluble surfactant monolayer on
top of the interface of a vibrating liquid bridge. We ignore
gravity, consider the symmetric case in which the disks
supporting the bridge have equal radii, and neglect surface
viscosities. The streaming flow velocity and the time average
of both the liquid bridge shape and the surfactant distribution
will be calculated in two ways, one asymptotic assuming that
the oscillatory flow intensity goes to zero, and another “exact”
that does not take that assumption into account. In the former
case, the streaming flow velocity is calculated as the sum of the
mean Eulerian velocity and the Stokes drift, while in the latter
case that velocity is obtained through the time-averaging of the
trajectories of the fluid elements. These two approaches rely
on the appropriate post-processing of the results obtained by
direct numerical simulation, and their outcomes will be used
for cross-checking.

The remainder of the paper is organized as follows. The
theoretical background is considered in Sec. II. This section
includes the problem formulation and a description of the
numerical solver in Sec. II A, and the derivation of the
equations giving the streaming flow velocity and the time
average of both the liquid bridge shape and the surfactant
distribution in Sec. II B. The main results of the paper are
presented in Sec. III, considering separately the influence of
the Marangoni elasticity and the intensity of the oscillatory
flow in Sec. IIT A and Sec. III B, respectively. The paper ends
with some concluding remarks in Sec. I'V.

II. THEORETICAL BACKGROUND

As anticipated, the analysis of the interaction between the
streaming flow and Marangoni stress will be conducted by
post-processing “exact results” obtained upon direct numerical
simulation. The theoretical background in Sec. IT A includes
the problem formulation, the description of the numerical
solver, and the nondimensional parameter range considered.
The post-processing formulas to compute the streaming flow
is derived and discussed in Sec. II B.

A. Governing equations and numerical solver

We consider a liquid bridge (sketched in Fig. 1) of length L
and volume V), held between two circular disks of equal radius
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FIG. 1. Liquid bridge configuration.

R, and surrounded by another fluid medium of negligible
density and viscosity. Nondimensionalization of the governing
equations is made by using R and o = (o R>/00)'/? as units for
length and time, respectively, where p is the liquid density and
o0y is the equilibrium (initial) surface tension. For axisymmetric
flows, the incompressible Navier-Stokes equations are

(ru), +rw, =0, (D
u; +uy +wu, = —p, +Cluy +@/r) +u;l, 2)

w; + uw, + ww, = —p; + C [wy +w,/r +w], (3)

where r and z are the radial and axial cylindrical coordinates,
respectively, ¢ is the time variable, the subscripts r, z, and
t denote hereinafter partial derivatives with respect to those
variables, u and w are the radial and axial velocity components,
respectively, p is the (hydrostatic) reduced pressure, and C =
w(pooR)™!/? is the volumetric Ohnesorge number defined in
terms of the bulk viscosity .

As boundary conditions, we consider the regularity
conditions ¥ = w, = p, = 0 at the symmetry axis r = 0, as
well as the kinematic compatibility condition

Ji+ fow —u =0, 4)

and the equilibrium of normal and tangential stresses,

2C [u, — fo(w, +uy)+ fzzwz]

— B(t)z — 0ok —
p— B 172

:07

[1 - fzz](wr +u) + 2 f(uy — wy) o,

C = —,
NEE

1+ f2 (©)
at the free surface, r = f(z,t). It must be noted that these
boundary conditions do not apply if overturning takes place,
which may occur just before the pinch-off for vibration
amplitudes larger than those considered in this paper. In the
above equations,

it
O+ 2"

is (twice) the mean curvature of the free surface, B(¢)
is the unsteady Bond number defined in Eq. (12), and
0 = 0/0oy is the ratio of the local surface tension value o
to its equilibrium value oy. The dependence of the surface
tension on the surfactant concentration obeys different

)
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relationships, depending on the surfactant. Here, we shall use
the Szyskowski-Frumkin equation of state [45],

—) ®)
=%

where 7 = ¥ /ys and %) = yo/y~ are the local surface
coverage and the equilibrium surface coverage, respectively.
These quantities are defined in terms of the local surfactant
surface concentration y, its equilibrium value yp, and its
maximum value y,, corresponding to the maximum surfactant
packing density. In addition, Ma = yR,T,/0¢ is the
(Marangoni) elasticity number defined in terms of Y, the gas
constant R,, the temperature 7,, and the equilibrium surface
tension op. On the other hand, the surfactant concentration
along the free surface must obey the surfactant conservation
equation [42],

3=1+Maln<

F(+ ) 729), + (1 + 1) w7,
S 7% _
= [Pes m]zat r= f(z,1), )

where Pe’ = R?/(tyD?) is the surface Peclet number, and D
is the surface diffusion coefficient.

The boundary condition Eq. (5) and the conservation Eq. (9)
must be complemented with the anchoring condition for the
free surface and impenetrability of the surfactant at the liquid
bridge disks,

f=1 and p,=0 at z=0and2A, (10)

where A = L/(2R) is the slenderness. Also, the nondi-
mensional volume V = V/(7xR*L) and the total amount of
surfactant are both conserved, namely,

24 24 2A
i frdz= [ fidz=2AV, /0 L+ f2 [y dz
2A
=/ L+ £2 fopodz, (11)
0

where fj is the initial value of the free surface position.

The initial liquid bridge shape is calculated by integrating
the Young-Laplace equation, and the initial surfactant con-
centration is set as spatially constant. For # > 0, a rigid-solid
acceleration with magnitude aw?e’®’ + c.c. is applied, where
a and w are the forcing amplitude and frequency, respectively,
i is the imaginary unit, and c.c. stands hereinafter for the
complex conjugate. Therefore, the unsteady Bond number
becomes

B(t) = Be'” +c.c., (12)

where B = paw?R? /oy is the dynamical Bond number. The
above theoretical model is formulated in terms of the eight
nondimensional parameters:

A, V, C, P, Ma, 7%, o, and B. (13)

We have selected the values of those parameters according to
the following considerations:

(i) Because of the large dimension of the parameter space,
the analysis will be restricted to (equilibrium) cylindrical
shapes (V = 1) with A = 1.25.

033101-3



CARRION, HERRADA, MONTANERO, AND VEGA

(i) The volumetric Ohnesorge number will be selected
as C = 0.01, which corresponds to a typical experimental
realization with millimetric water liquid bridges. To analyze
the influence of the liquid viscosity, the volumetric Ohnesorge
number C = 0.001 will be considered too.

(iii) The surfactant surface diffusivity is typically of the
order of 10710~ mm?/s [45], which leads to surface
Peclet numbers in the range 10°-10% when those surfactants
are added to millimetric liquid bridges. Thus, the influence of
surface diffusion on the liquid bridge dynamics can be ignored.
However, ignoring surface diffusion makes the surfactant
conservation Eq. (9) (hyperbolic and) quite stiff. Because the
physics of the high-Peclet-number limit is well captured using
much smaller values of Pe®, we will consider Pe’ = 1000 in
the numerical simulations.

(iv) The elasticity number Ma = 1 corresponds to a strong
surfactant. For this reason, we will consider the interval 0 <
Ma < 1.

(v) The formation of micelles for 7 2 1 may add rheolog-
ical effects not considered in this paper. For this reason, the
value 7 = 0.5 will be selected as typical for the surfactant
concentration.

(vi) The main goal of this paper is the analysis of the
influence of the Marangoni convection on the streaming flow
caused by the liquid bridge oscillation modes. However, both
the thickness of the boundary layers and the axial characteristic
length decrease as the oscillation frequency increases, which
leads to a considerable increase of the spatial resolution
required in the simulations. For this reason, all the calculations
will be made for forcing frequencies around the first resonance
frequency of the liquid bridge. The value of this quantity is
about 2.1 for the equilibrium shape considered in the first
item.

(vii) The strength of the oscillation must be not too large
for the quasi-linear theory developed in this paper to be valid.
In particular, the steepness of the free surface deflection must
be sufficiently small. Taking into account these considerations,
0 < B < 0.05 is an appropriate range for the dynamical Bond
number.

Summarizing the above, the following values of the nondi-
mensional parameters listed in Eq. (13) will be considered in
most of the paper:

A =125 V=1, C=0.010or0.001,

$=1000, 0<Mac< 1, (14)

7% =05 2<w<22, and0< B <0.05.

The problem formulated above will be solved with the
numerical method recently proposed in Ref. [46]. The time-
dependent fluid domain is mapped onto a fixed rectangular
domain (0 < n < 1,0 < z < 2A) through the radial coor-
dinate transformation n = r/f(z,t). The numerical domain
is discretized (after some calibration) using n, =41 and
n, = 101 grid points along the 1 and z directions, respectively.
The spatial derivatives are calculated with fourth-order finite
differences. The (implicit) time advancement is performed
using second-order backward-differences with a fixed time
step At = T/80, where T = 27 /w is the period of the forced
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FIG. 2. Time evolution of the axial component w of the velocity
numerically calculated (solid line) and of the axial component w” of
the Lagrangian mean velocity (dots). These quantities were evaluated
at the liquid bridge position (r = 1, z = 3A/2). The component w’
was obtained from the difference between the fluid element positions
at the instants # and ¢ — T [Eq. (24)]. The simulation was conducted
for A =125V =1,C=0.01,Ma=0,0=2.1,and B = 0.005.

oscillation. At each time step, the resulting set of algebraic
equations are solved with the iterative Newton-Raphson
technique. The elements of the Jacobian of the discretized
system of equations are computed via standard symbolic
software at the outset, before running the simulation. These
functions are evaluated numerically in the Newton-Raphson
iterations to find the solution at each time step, which reduces
considerably the required CPU time. The initial guess for the
iterations at each time step is the solution at the previous
instant.

B. Streaming flow

Under the conditions mentioned above, we assume that
the oscillatory flow velocity and free surface deflection are
both conveniently small. Thus, after a transient stage (see
Fig. 2), this flow is assumed to be quasilinear, periodic, and
quasimonochromatic with the forcing frequency w. To the
approximation relevant in this paper, the velocity components,
the free surface deflection, and the surfactant concentration
can be written as

(u,w) = e[(U(r,z),W(r,z)e' +c.c.]

+ &2[(Ua(r,2), Wa(r,2))e " + c.c.
+ W™ (r,2),w" (r,2))] + O(&?), (15)

f — fo=€eF@)e® +cc. + 2 [F(2)e¥ +c.c.
+ ™)1+ 0(eY), (16)

7 — 7 = eD(2)e' + c.c. + X [P(2)e¥ ™ +c.c.
+7™(2)] + O(e?), (17)

where ¢ is small. The leading-order terms collect the “exact”
first harmonic of the periodic oscillation, which can be
computed from the exact solution as

T
S(U(F,Z), W(r,z)) = %f (M(V,Z,t),U)(I’,Z,l)) e*ia)t dt,
0
(18)
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- I ,
E(F(z),l“(z))=7/0 (f(z.0,7 @) e @ dr.  (19)

In addition to the second harmonic, the second-order terms in
Egs. (15)—(17) comprise the mean values of the velocity field,
2™ (r,z),w™(r,z)), the free surface deflection, 82f’" (z), and
the surfactant concentration £29™(z). These mean values are
calculated in terms of the exact fields as

W wk) = 2" (r,z),w"(r,2))
T
= lf (u(r,z,t),w(r,z,t)) dt, (20)
T Jo

(FE7E) = 2™, 7"(2))

1 T
- /0 (FGt) — fol)P@t) — (@) d.
@1

As can be seen, computing these values requires an accuracy
O(€?) in the numerical solver.

Equation (20) defines the components (u”,w%) of the mean
Eulerian velocity. However, the effective mass transport is not
given by that quantity, but by the mean Lagrangian velocity
defined as the time-averaged velocity along the trajectories of
the fluid elements, namely,

1 T
(" (r0,20),w"(r0,20)) = ?/0 (r'(1),Z (1)) dt. (22)

Here, (r9,z0) is the point where the mean Lagrangian velocity
is calculated, and the primes denote the time derivatives.
The trajectory (r(t),z(¢)) of the fluid element passing through
(r0,z0) is calculated by integrating the kinematic equations for
the velocity field, (u,w) = (u(r,z,t),w(r,z,t)), as

r'(t) = u(r(t),z(t),1), Z'(t) = w(r(),z(r),1), with
r(0) = ry and z(0) = zo. (23)

Equation (22) shows that the exact value of the mean
Lagrangian velocity is
(T) —7r0,2(T) — 20)

(" (ro,20), w" (ro,20)) = T N 2]

However, and as explained below, this is not a good equation
to obtain that quantity. Instead, we may perform a classical
asymptotic analysis (as the intensity of the oscillatory flow
goes to zero) considering Eq. (22) and the Taylor expansions
of the right-hand sides of the kinematic Eqs. (23), namely,

r'(t) = u(ro,zo,t) + u,(ro,z0,0)[r(t) — rol
+uz(r0aZOat)[Z(t)_Z()] +---, (25)

Z'(t) = w(rg,zo,1) + wr(ro,20,)[r (1) — rol
+w(ro,z0,0)[z(t) — zo] + - -~ (26)

Substituting Eq. (15) into Egs. (25) and (26), replacing
the resulting equations into Eq. (23), and integrating the
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result gives

iot __ 1

—— tcc.+0@ED, @D
1X0)

iot __

2(t) — z0 = eW(ro,20)—
iw

r(t) —ro = eU(ro,z0)

+cc. 4+ 0@, (28)

where only the leading order terms have been retained. These
equations show that |r(T) — r(0)| ~ |z(T) — z(0)| ~ 2. In
other words, calculating the “exact” mean Lagrangian velocity
via Eq. (24) is a difficult task because it requires computations
that are exact to this order (errors small compared to ).
Instead, we may complete the asymptotic calculation by
substituting Eqgs. (27), (28), and (15) into Egs. (25) and (26),
and the resulting equation into Eq. (22), which yields

1 — —
@t wh) = 2™, w™) + sz[a(U,U +U,W,W,.U

+ W, W)+ c.c.:| + 0. (29)

Hereinafter, the overbar stands for the complex conjugate. In
addition, we have taken into account that

T
/ ema)tdt:O lfmz:l:l,:l:z, (30)
0

Equation (29) is a classical result: the mean Lagrangian
velocity equals the mean Eulerian velocity plus the Stokes
drift [47], i.e.,

", wh) = WE,wP) + @3P,wsP), (31)

where the Stokes drift velocity components are given by

SD _ SD :ﬁ— T ow T 777
@SP,wP) = (U, U + U,W,W,U + W, W) +cc. (32)
iw

In contrast to most works mentioned above, the formulas de-
rived here does not rely on the nearly inviscid approximation,
but only on the quasilinear approximation Egs. (15)-(17),
which only requires that the oscillatory field be small. In
this approximation, the mean Lagrangian velocity field is
given to the leading order by Eq. (29) with (U,W) and
(u™,w™) calculated in terms of the (numerically computed)
unsteady velocity components (u,w) from Egs. (18) and
(20), respectively. Alternatively, the mean Lagrangian velocity
can be calculated using Eq. (24), which is much more
computationally demanding. This calculation will be used
for the validation of the asymptotic formulas. Similarly, the
mean values of the free surface deflection and the surfactant
concentration along the free surface are given by Eq. (21).
Using the formulas derived above in the computational
domain is somewhat tricky. Note that the calculation of
the mean Langrangian velocity must be performed within
the physical domain 0 < r < fy + fF, which corresponds
to the time-averaged liquid bridge shape. In addition, such
calculation must be done for fixed r and z, which requires the
time-dependent interpolation from the computational domain
to the physical one. On the other hand, the computation of the
fluid element trajectory used in Eq. (24) requires a double
time-dependent interpolation: one to calculate the velocity
field at (r(¢),z(¢)) from the velocities at the nodes of the fixed
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FIG. 3. (a) Streamlines of the mean Lagrangian velocity field.
The cyan lines (first, third, and fifth vortex starting from the left)
and gray lines (second, fourth, and sixth vortex starting from the
left) indicate clockwise and anticlockwise rotations, respectively. The
arrows are the mean Lagrangian velocities calculated from Eq. (24).
(b) Magnification of plot (a) near the point (r = 0.85,z = 0.9).
The black lines indicate the time-dependent trajectories of the fluid
particles A and B calculated from the integration of Egs. (23).
(c and d) Magnification of plot (b) to show the trajectories of the
fluid particles A and B. The subindexes i and f indicate the initial
and final positions of the fluid particles in a cycle, respectively. The
maximum value of the velocity field is vmax = 1.77 x 10~*. The
velocity magnitude at the points P, A, and B are 0.92vpy,x, 0.98vmax,
and 0.43vm;x, respectively. The values of the governing parameters
are the same as those in Fig. 2, namely, A = 1.25,V =1, C = 0.01,
70 =0.5Ma=0,»=2.1,and B = 0.005.

computational mesh, and another to integrate the kinematic
equations in the (r,z) plane. These details are described in the
Appendix.

To illustrate the formulas derived above, we calculated
the streaming flow for C =0.01, Ma = 0, w = 2.1, and
B = 0.005. We considered a moderately small viscosity, and
ignored the Marangoni stress for simplicity. In addition,
we selected a representative value of the forcing frequency
o and amplitude B. Figure 2 shows the time evolution
of the axial component of both the actual time-dependent
velocity numerically calculated and the mean Lagrangian
velocity. These quantities are evaluated at a representative
point next to the mean free surface. As can be seen, the
time-dependent velocity reaches a strictly periodic state after
the transient stage 0 < ¢ < 100, while the mean Lagrangian
velocity becomes stationary for ¢ 2 50. Consistently with
the quasilinear assumption implicit in Eq. (15), w ~¢& ~
0.05 is small, and w% ~ &2 is much smaller than w in the
periodic regime. Interestingly, the Lagrangian flow reaches
its asymptotic value somewhat before the time-dependent
velocity becomes periodic, which implies that the mean flow
is not a slave of the surface waves. This seemingly means
that the streaming flow does affect the dynamics of the
primary surface waves, as shown in Refs. [30-34] for small
viscosity.

The remaining calculations in this paper will be conducted
in the periodic regime arising after the initial transient stage,
whose length varies from one case to another. The spatial
structure of the streaming flow in the periodic regime is
considered in Fig. 3, where a comparison between the “exact”
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FIG. 4. Mean free surface deflection fZ(z) (left) and mean
surfactant concentration ¥ (z) (right). The values of the governing
parameters are the same as those in Fig. 2, namely, A = 1.25,V =1,
C =0.01,7% =0.5,Ma=0,w = 2.1, and B = 0.005.

and asymptotic formulas [Eqgs. (24) and (29), respectively] is
made. The results calculated in these two ways are consistent
with each other, which constitutes a stringent test for the
numerical procedure. It must be noted that nothing similar
to these computations has been performed so far, to our
knowledge. As can be seen in Fig. 3(a), the streaming flow
is reflection-symmetric in about the mean plane z = 1.25,
which is consistent with the invariance of the governing
equations under this symmetry. Also, the streamlines show
six counter-rotating vortices where the forcing effect of the
boundary layers near the disks and the free surface is evident.
The free surface boundary layer produces four vortices, which
is consistent with the fact that Eq. (29) is quadratic in U
and W. The first resonant mode of the liquid bridge was
excited in this case owing to the selected value of the forcing
frequency w. This mode exhibits two time-dependent vortices
associated with the free surface oscillation. As can be seen,
quadratic effects double the number of vortices appearing
in the streaming flow. The thickness of the boundary layers
scales as /C/w ~ 0.07 in the present case. This value is
not small enough for the asymptotic formulas commonly
used in the literature to apply. On the other hand, the blow
ups in Figs. 3(b)-3(d) illustrate how elongated the fluid
trajectories can be, and how small the drift is compared to
the widths of those trajectories. These remarks are consistent
with the above mentioned difficulties encountered in these
computations.

The mean free surface deflection and the mean surfactant
concentration for the case analyzed in Fig. 3 are given in
Fig. 4. Note that both are reflection symmetric about the
mean plane z = A, which is consistent with the invariance
of the problem under this symmetry. The left plot indicates
that the free surface position is no longer uniform due to the
oscillations, although the induced deformation is small. In
fact, the mean free surface deflection plays only a secondary
role in the context of this paper, and thus it will not be
further considered for the sake of brevity. It is interesting
to note that fZ(z) <0 for all z, which could be seen as
surprising if one takes the conservation of volume into account.
However, the liquid bridge volume depends quadratically on
f [see Eq. (11)], which means that the time-averaged volume
(which must be conserved) does not generally coincide with
the volume of the time-averaged free surface location. This
well-known artifact produced by nonlinear terms is, in fact,
similar to what happens with the time-averaged velocity, which
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is generally nonzero and produces the streaming flow. Note
that the volume of the time-averaged free surface location is
smaller than its initial value in the present case. The mean
surfactant concentration peaks at the liquid bridge center and
at the supporting disks and exhibits two minima near z = A /2
and 3A /2 (right plot). This behavior is consistent with Fig. 3,
which shows that convection caused by the streaming flow
vortices empties the free surface in the regions z >~ A /2 and
3A /2 and fills both the central part of the liquid bridge and the
surroundings of the supporting disks.

The simulation illustrated in Figs. 3 and 4 was conducted
for Ma = 0. Therefore, the surfactant does not alter the surface
tension and behaves as a passive scalar in that case. If the
scalar were a surface active substance (Ma > 0), then this
concentration distribution would cause Marangoni convection
in the direction opposite to that of the streaming flow,
which would alter significantly both the mean surfactant
concentration distribution and the mean flow pattern. This
effect will be analyzed in the next section.

III. RESULTS ON THE INTERACTION OF THE
STREAMING FLOW AND MARANGONI CONVECTION

All the results shown in this section were obtained for the
values Eq. (14) of the governing parameters. The strength
of the oscillatory and mean flows are measured using RMS
values instead of values at particular points, which would
be less robust and less appropriate to obtain scaling laws
when different configurations are considered. Specifically, the
intensity of the oscillatory flow is defined as

bulk 12 st
I = W/o /0 [lU@,2)|* + |W(r,2)|* rdrdz,
(33)

where U and W are given by Eq. (18). The counterpart of
Eq. (33) for the streaming flow in the bulk is defined as

1 2N pfE
i =\ xv /0 /O [t r.2)2 + [whr2)P] rdrdsz.
(34)

In addition, the intensity of the mean flow in the free surface
is defined as

. 1 2A
I;?f‘“f=\/ o / [l P + [ Pl—pe dz,  (35)
s JO

where

24
Ly = 1+ |fE12d 36
/0 VIFHIfFIPdz (36)

is the length of the time-averaged free surface. Finally, the
strength of the mean flow along the axial coordinate is given
by

) fE@)
In(z) = \/2/ [ul(r,2)]> + lwt(r,2)|*1rdr.  (37)
0

The components u” and w’ of the mean Lagragian velocities
in Egs. (34), (35), and (37) are given by Eq. (29).
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In the following two subsections, we consider the influence
on the streaming flow of the two main parameters: the
Marangoni number and the strength of the oscillatory flow.
As will be seen, the Marangoni number affects the shape of
the flow patterns, while the strength of the oscillatory flow
influences quantitatively the intensity of the mean flow. We
aim at uncovering the main physical effects of Marangoni
convection on the streaming flow, rather than a full account of
the results obtained as the values of the governing parameters
are varied.

A. Influence of the Marangoni number on the
flow patterns

In this section, we consider the dependence of the streaming
flow on the Marangoni number for the parameter values
listed in Eq. (14). We are mainly interested in illustrating
how Marangoni stresses completely change the streaming
flow pattern, without intending an exhaustive description of
those patterns. For this reason, we will restrict ourselves to
the Ohnesorge number C = 0.01 and the forcing frequency
o = 2.1. Smaller values of C would give flow patterns that
are more concentrated near the disks and the free surface.
The forcing frequency w = 2.1 is close (but not equal) to
the first resonance frequency of the liquid bridge for Ma = 0,
which means that the oscillatory flow intensity is very sensitive
to the value of the dynamical Bond number B. After some
calibration, B has been chosen such that the maximum over a
cycle of e Wel®! + c.c. at the center of the liquid bridge is 0.05.
This choice makes the intensity of the streaming flow for Ma
= 0 comparable to the strength of the Marangoni convection
in the considered range of Ma. It must be noted that the values
of B resulting from this criterion are physically realistic since
they correspond to accelerations that can be easily produced
in experiments [48].

Figure 5 shows the counterpart of Fig. 3 for the indicated
values of the Marangoni number. As can be seen, all the flow
patterns are reflection-symmetric about the mid plane of the
liquid bridge. However, and surprisingly at first sight, the
streaming flow patterns do not show a monotone behavior as
Ma increases. Instead, the six counter-rotating eddies that are
present for Ma = 0 first merge for Ma = 0.001, 0.005, and 0.05,
and then give rise to just two counter-rotating eddies for Ma =
0.1 and 0.2. As Maincreases further, new eddies appear leading
to a flow pattern for Ma = 1 (very strong Marangoni stress) that
is qualitatively similar to that obtained for a much smaller value
Ma = 0.001. This unexpected behavior is a consequence of
the trade off between two mechanisms: nonuniformities in the
surfactant concentration at the free surface, and the intensity
of the oscillatory flow.

The surfactant concentration along the free surface is
shown in Fig. 6 for the same values of the Marangoni
number considered in Fig. 5. As can be seen, the surfactant
concentration becomes almost spatially uniform for very small
Marangoni stress. This is due to the strong stabilizing effect
of this stress, and is consistent with our guess at the end of
Sec. I B. This behavior explains the streaming flow patterns
shown in Fig. 5 for Ma = 0.001, 0.005, and 0.05. However,
as Ma is increased further, the strength of the oscillatory flow
increases, peaks at Ma =~ 0.2, and decreases again [Fig. 7(a)].
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Ma=0

FIG. 5. Counterpart of Fig. 3 for different Marangoni num-
bers as indicated by the labels in the figure. The values of the
governing parameters are A = 1.25, V =1, C =0.01, 3 = 0.5,
and w = 2.1.

This is due to the fact that the forcing frequency matches
the resonance frequency of the contaminated liquid bridge for
Ma =~ 0.2. Since the intensity of the streaming flow depends
on that of the oscillatory flow, they follow similar trends, as the
comparison between Fig. 7(a) and Figs. 7(b) and 7(c) shows.

Summarizing the above, the Marangoni stress has a great
quantitative and qualitative influence on the streaming flow
patterns. As Ma increases, these patterns do not behave
monotonously due to the fairly complex behavior of both the
surfactant concentration at the free surface and the strength of
the nearly resonant oscillation.

0.5010 T T T T
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FIG. 6. Mean surfactant concentration £ (z). The colors (and
types of lines) correspond to the different Marangoni numbers
as indicated in the left-hand graph. The values of the rest of
governing parameters are A = 1.25, V =1, C =0.01, 3 = 0.5,
and w = 2.1.
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FIG. 7. Intensities I (a), I (b), and I (c) of the
oscillatory flow, the mean flow in the bulk and the mean flow in
the interface, respectively, for the Marangoni numbers considered in
Fig. 5. The values of the rest of governing parameters are A = 1.25,

V=1,C=001,7%=05and v = 2.1.

B. Influence of the oscillatory flow intensity

In this section, we analyze the influence of the oscillatory
flow intensity on the streaming flow intensity for the parameter
values listed in Eq. (14). This analysis is more involved
than that presented in the previous section due to the larger
number of parameters considered, and the fact that hysteresis
could be present because viscous effects are small and the
forcing frequency is close to the resonant one. The results are
obtained by varying the dynamical Bond number. However,
and to uncover the underlying scaling laws for the intensity of
streaming flow in the bulk and the interface, these quantities
are plotted in terms of the oscillatory flow intensity.

Figure 8 shows the influence of 2% on 704 and 7iner for
the indicated Marangoni numbers, C = 0.01 and w = 2.1. As
can be seen, 1% scales as (1292 for all values of Ma. This
quadratic scaling law can be expected in view of Eq. (29).
The curves 129% versus /2% are parallel to each other. The
maximum and minimum values of the scaling factor differ
by one order of magnitude. This factor does not behave

monotonously as Ma increases, but first decreases and then

107 T T 10° T T
o Ma=0 interf 2
Foae ey
10%E » 0.1
v 02
£F F*05
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Ibulk 1b\|lk

osc ose

FIG. 8. I™ (left) and 7% (right) vs. I®¥ for the indicated

Marangoni numbers. The values of the rest of goveming parameters
are A =125V=1,C=001,%=0.5and w = 2.1.
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FIG. 9. Counterpart of Fig. 8 for the indicated oscillation frequen-
cies. The values of the rest of governing parameters are A = 1.25,
V =1,C=0.01,% = 0.5, and Ma = 0.2.

increases. This is consistent with the non-monotone behavior
of the streaming flow patterns as Ma increases (Fig. 5). The
curves 1Mt versus I clearly show two power-law regimes:
one for small Ié’s"clk and another for large Ié’;‘clk, with a fairly
well defined threshold at 72 ~ 0.02. Moreover, the curves
for Ma > 0 are very close to each other, and clearly deviate
from that for Ma = 0.

The same behavior is found for other forcing frequencies,
as shown in Fig. 9 for Ma = 0.2. As in the previous cases, this
figure shows a unique scaling law for 724 and two scaling laws
for 1°4% with a well defined threshold in 724%. This threshold is
very close to that in Fig. 8. In addition, the scaling laws almost
coincide for the three values of w, which suggests that these
laws show a fairly weak dependence on the forcing frequency.

The scaling behavior found in Figs. 8 and 9 is also present
for smaller values of C, as shown in Fig. 10. As can be seen, the
scaling laws for I’ and Ilil;“fterf coincide with their counterparts
in the previous cases. Moreover, the curve I°%% versus 72Uk
almost coincide for the two values of C, in spite of the fact that
these are disparate. On the other hand, the curves I[ir?fterf versus
1%k glightly deviate from each other. The transition between
the two scaling behaviors is less sharp for the smallest value
of C.

Summarizing the above, the intensity of the streaming flow
in the interface shows two well defined power-law behaviors,
one for small oscillatory flow intensity and another for larger
values of this quantity. These behaviors are fairly universal,
since they show the same exponents and the same transition
threshold for the considered values of the Marangoni number,
forcing frequency, and Ohnesorge number. Such regimes are
reminiscent of those found in Ref. [39] (see Fig. 4 in that

paper) for the streaming flow produced by Faraday waves in
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FIG. 10. Counterpart of Fig. 8 for the indicated values of C. The
values of the rest of governing parameters are A = 1.25, V =1,
% =0.5,Ma=0.2,and v = 2.1.
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FIG. 11. I®% and I®* as a function of the dynamical Bond
number B starting from equilibrium, as well as starting from
the previous point while increasing (up) and decreasing (down)
progressively the dynamical Bond number. The symbols overlap. The
values of the governing parameters are A = 1.25,V =1, C = 0.01,

7 =0.5,Ma=0.2,and ® = 2.1.

a rectangular container with tap water. However, we cannot
ensure that there is a plain analogy between our problem
and those experiments for two reasons. First, the data in Ref.
[[39], Fig. 4] were not plotted on log-log scale, meaning that
the power law for small oscillatory flow intensity could not
be uncovered in that paper. In addition, tap water was most
seemingly contaminated with a soluble surfactant in those
experiments.

Finally, we aim at elucidating whether hystheresis is present
as the dynamic Bond number is varied. As already mentioned,
this could occur since viscous effects are weak and the
forcing frequency is close to the first resonant frequency.
Figure 11 shows the intensities of the oscillatory and mean
flows in the bulk obtained when the periodic regime is
reached starting from equilibrium, as well as starting from the
previous point while increasing or decreasing progressively
the dynamical Bond number B. As can be seen, the liquid
bridge oscillations do not not exhibit hystheresis, i.e., they do
not depend on the liquid bridge history.

IV. CONCLUSIONS

We have developed a consistent theory of the interaction
between the streaming flow produced by axial vibrations
in a liquid bridge and Marangoni convection due to the
presence of an insoluble surfactant monolayer. In contrast
to previous papers in the field, this theory does not rely on
any nearly inviscid formulation, but only on the assumption
that the forcing amplitude is sufficiently low for the steepness
of the free surface deflection to be small. The streaming
flow intensities have been calculated from fully nonlinear
direct numerical simulations. Two sets of formulas have been
derived and used for cross-checking: one “exact” and based
on the average along the trajectories of the fluid elements
and another asymptotic and based on the addition of the
Eulerian mean velocity and Stokes drift. After validation,
the (computationally cheaper) asymptotic formulas have been
used in the rest of computations. The main results of this
paper were obtained for a realistic set of parameter values.
In particular, the forcing frequency was very close to the first
resonant frequency of the liquid bridge.
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The following general conclusions can be established:

(i) The streaming flow pattern is highly affected by
Marangoni stress even for very small values of Ma. Moreover,
the flow patterns show a nonmonotonous behavior as Ma
is increased, which is seemingly due to two main effects:
the tendency of Marangoni stresses to oppose any surfactant
inhomogeneities in the free surface and the nonmonotonous
oscillatory response of the liquid bridge due to resonance peaks
whose frequencies depend on Ma.

(i1) The strength of the streaming flow shows a “universal”
behavior with a unique power law for the intensity in the bulk
and a transition between two power laws for the intensity in
the free surface. This could be seen as somewhat similar to
some recent findings in the literature [39].

The above conclusions are expected to apply to other
vibrating systems despite the peculiarities of the primary
oscillating flow producing the mean flow. In fact, we have
selected the liquid bridge geometry only because it shows
fairly simple oscillatory flow patterns when the first resonant
mode is excited. This allowed us to focus on the main involved
physical mechanisms.

The scaling laws obtained in the present analysis require
that the forcing amplitude be small. For larger amplitudes, the
dynamics are fully nonlinear and much more complex. In this
case, the oscillatory and mean flow components of the state
variables are not expected to be related by simple laws. On
the other hand, the somewhat small viscous effects considered
in this paper might also play a role. Although the quadratic
dependence of the mean flow on the vibrating amplitude also
holds for more viscous fluids, the interaction with Marangoni
convection may change that dependence for not too small
vibrating amplitudes. The analysis of this possibility is beyond
the scope of this paper, where only realistic values of the
parameters have been considered.

Most of surface-active substances in nature are water-
soluble. Surfactant solubility makes our analysis less general
and does affect the results of the paper quantitatively (in
particular, the scaling laws). However, there is a large set of
surfactants characterized by adsorption and desorption time
scales much larger than the liquid bridge capillary time. The
results presented here can be extended to such substances. In
any case, the fact that Marangoni elasticity opposes surfactant
inhomogeneities produced by the streaming flow remains valid
for soluble surfactants as well.
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APPENDIX: COMPUTATIONS OF THE LAGRANGIAN
MEAN VELOCITIES IN THE NUMERICAL DOMAIN

As explained in Sec. II A, the computational spatial coor-
dinates are n = r/f(z,t) and z. The counterparts of Egs. (15),
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(18), and (20) for the velocity components are

(@, w) = el(U(n,2), W(n,2))e"” + c.c.]
+&*[(Ua(n,2), Wa(1,2))e*”

+cco+ @"(n,2), 0", 2)] + 0@, (Al)

~ ~ 1 T - ~ ‘
€(U(U7Z)1W(7],Z)) = TA (M(H,Z,l),w(n,z,t))e_“"’ dt,

(A2)

~ 1t ~
e2(@" (n,2), 0" (n,2)) = 7/ (u(n,z,0),w(n,z,0)dt, (A3)
0

where the tilde indicates that the quantity is evaluated in the
fixed numerical domain. In addition, Eq. (16) implies that

r r |:rF jor ]+0( 2
n=—=——¢|—e c.c. £%).

f f 0 f 0
The Eulearian mean velocity at a fixed point (r,z) can be
calculated from the velocity field in the numerical domain as

(A4)

Lt ~
Wt e = 3 [T/ 02080/ O.z01d.
0
(AS5)
This calculation involves the evaluation of the velocity field
at a moving point (r/f(¢),z) of the numerical domain in the

course of the oscillation. To avoid this evaluation, the above
integral is expanded in the following way

1 7 -
= /0 [/ £ (1,200, B/ £ (0),2.0)] it

1 T
- / @/ fo 20 B/ fouzt)) di

2|:rF(Z)

13

Therefore, the Eulearian mean velocity at a fixed point (r,z)
can be obtained as

WUy (r/ fo,2), Wy(r/fo.2)) + c.c} + 0().

(uEswE) = 82 [(;Zm(UOsZ)vwm(nOaZ))

) F(2) ~
fo2)

(U, (10,2), Wy (10,2)) + c. c:| + 0(%),
(A6)

where 19 =r/fo(z) is a fixed coordinate in the numeri-
cal domain. To leading order, U r/f,2) = U (r/fo,z) and
W(r/f,z) = W(r/fo,z). Therefore, the Lagrangian mean ve-
locity at a fixed point (r,z) can be calculated as

Wt wh) = @™, ")

1 _ A~ _ ~ T~ A~
+82|:— T(UmW)—i- —U,U+U.W,W,U

W W)+ c.c.] + 0, (A7)
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where all the functions are evaluated at (19,z). Finally, the kinematic Egs. (23) are rewritten as

dn _u(n.z.0)  nf:z0W0.2.0)  nfiz0)  dz

— = w(n,z,t). (A8)

dt — f(z.1) f(z,t)

fz,p) ' dt
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