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Imperfections, impacts, and the singularity of Euler’s disk
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The motion of a rigid, spinning disk on a flat surface ends with a dissipation-induced finite-time singularity.
The problem of finding the dominant energy absorption mechanism during the last phase of the motion generated
a lively debate during the past two decades. Various candidates including air drag and different types of friction
have been considered, nevertheless impacts have not been examined until now. We investigate the effect of
impacts caused by geometric imperfections of the disk and of the underlying flat surface, through analyzing the
dynamics of polygonal disks with unilateral point contacts. Similarly to earlier works, we determine the rate of
energy absorption under the assumption of a regular pattern of motion analogous to precession-free motion of
a rolling disk. In addition, we demonstrate that the asymptotic stability of this motion depends on parameters
of the impact model. In the case of instability, the emerging irregular motion is investigated numerically. We
conclude that there exists a range of model parameters (small radii of gyration or small restitution coefficients) in
which absorption by impacts dominates all previously investigated mechanisms during the last phase of motion.
Nevertheless the parameter values associated with a homogeneous disk on a hard surface are typically not in this
range, hence the effect of impacts is in that case not dominant.
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I. INTRODUCTION

Euler’s disk is a popular scientific toy. Its dynamic behavior
captured the attention of many scientists over the past decades.
Euler’s disk consists of a flat disk, which is spun over a hard,
slightly concave surface similarly to a spinning coin on a
table. Its spinning motion often goes on for several minutes,
while its mechanical energy is slowly dissipated. During the
final phase of the motion, the inclination angle α of the disk
approaches zero, while the rate of spinning appears to diverge
towards infinity. The motion is accompanied by loud noise
whose frequency also appears to approach infinity until the
disk abruptly stops with one of its faces resting on the table.

Attempts to identify the dominant energy absorption mech-
anism responsible for the finite-time singularity of the spinning
disk generated a lively debate among researchers. This was
initiated by a letter of Moffatt to Nature in 2000 [1], in which
he argued that the dominant absorption mechanisms during the
last phase of motion is viscous damping of the thin air layer
between the coin and the underlying surface. In a followup
letter,Van den Engh et al. [2] argued that slipping friction
caused by small-amplitude precessional motion of the disk,
not visible to the bare eye is the dominant factor instead. (Here,
and throughout the paper, precession, refers to oscillation of the
inclination angle of the disk.) This was followed by a series of
other papers and notes involving critical treatment of modeling
assumptions [3,4]; analytical investigations [5,6]; numerical
simulations [5,7,8]; and experiments [6,9–12] (including ones
in vacuum [2]). A review of this body of works was published
by Leine [6], who analyzed the effect of various models
of friction as well as of air drag in a unified approach.
He concluded that dry and viscous contour friction (force
opposing the velocity of the contact point) are likely to govern
the motion during the last few seconds of the motion, and the
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effect of air drag is likely to become dominant over friction
only during the last milliseconds. His analysis was based on the
assumption of precession-free motion and did not investigate
how precession effects energy dissipation.

The ideally dissipation-free dynamics of a rigid, rolling
disk has a one-parameter family of precession-free, “steady”
solutions, for which the inclination of the disk remains constant
and its center of mass remains immobile [13–16]. On the short
run, the observed motion of Euler’s disk appears to mimic one
of these solutions. In line with this observation, the theoretical
analysis of the singularity is often based on the assumption
that the disk slowly drifts along this one-parameter family of
solutions as dictated by the rate of energy dissipation [6]. This
model seems plausible due to the low rate of dissipation in
the system, except at the very end of the motion when the
dissipation rates of certain mechanisms blow up according
to theoretical models. This kind of analysis typically predicts
energy profiles of the form

E(t) = a(tf − t)c, (1)

where t is time, E is the total mechanical energy of the
system, tf is the time of the singularity, and a,c are positive
constants where the exponent c depends on the type of
dissipation mechanism. Clearly, the dissipation mechanism
with the lowest exponent c will dominate over all others at the
end of the motion. It was found that the exponent associated
with air drag is 1/3 [1] or 4/9 [4] (the latter is based on an
improved model of boundary layer effects) and the exponents
associated with various models of friction are 1/2, 2/3, or
2. In addition, some models of friction create asymptotic
convergence of E to 0 rather than a finite-time singularity
(which largely corresponds to c = ∞).

Other works focused on qualitative differences between the
actual motion of a disk and the idealized picture sketched
above. The steady motion of the dissipation free disk corre-
sponds to a (Lyapunov stable) center of the dynamics in a
rotating frame. The works [8,17] point out that the frequency
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of small-amplitude oscillations around this center (which we
refer to here as precessional motion) matches the frequency of
the audible noise produced by the disk. Numerical simulation
and experiments both confirm the presence of the precessional
component [7,11]. In addition, [18] also showed that the disk
may slip during its motion (but see a somewhat controversial
result in [12]). The recent paper [19] shows via physical
experiments that it loses and reestablishes contact with the
ground, whereas several earlier works [3,7,18] formulated
the hypothesis that the onset of lift-off and impacts are
responsible for the abrupt halt at the end of the motion.
Nevertheless, the effect of precession, slip, and impacts on the
energy absorption rates has not been examined systematically
so far.

This paper examines how contact detachment and impacts
caused by geometric imperfections contribute to energy
absorption near the singularity of the disk and how they affect
precessional motion. Impacts may arise as a consequence of
elastic vibrations [7,18] but they also emerge in an ideally
rigid model if either the shape of the disk or that of the
ground surface is imperfect. Importantly, as we approach the
singularity of the motion and the rate of spinning increases,
even the slightest vibration or imperfection (or alternatively an
arbitrarily small dust particle between the disk and the ground)
will lead to lift-off and impacts. Impacts absorb energy, hence
we expect that they have important effect on the energy balance
of motion.

We will use a thin, regular n-gon shaped rigid disk as a
conceptual model of an imperfect rolling disk. The rotational
symmetry of this model will simplify the analysis, while we
believe that the assumed symmetry of the imperfection does
not alter the results qualitatively. For simplicity, we assume
frictionless contact interaction in line with the observation
that dissipation-free rolling motion does not require frictional
forces in the limit of vanishing inclination angle α [6]. We
will define the “self-similar motion” of the system in the case
of α << 1, which is an analog of the “steady rolling motion”
of a dissipation-free, perfect rolling disk. Nevertheless self-
similar motion incorporates energy dissipation via impacts,
and it naturally leads to a scaling law similar to Eq. (1) [but
due to the discrete nature of impacts, E(t) will now be a
piecewise constant function]. As we will see, the exponent
associated with self-similar motion is c = 2, which predicts
that energy loss due to impacts is not dominant when the disk
approaches its singularity. In addition, we will also examine the
stability of the self-similar motion by looking at eigenvalues
of its linearized Poincaré map. Interestingly, we find that the
self-similar motion may be asymptotically stable or unstable
depending on choice of the impact model. In the latter case, the
motion of the disk will have a gradually increasing precessional
component. Hence, the main contribution of this part of the
paper is to provide a possible explanation of the experimental
and numerical results indicating that the spinning motion of the
disk tends to be accompanied by small-amplitude precession
[6,7,11].

Next we also examine the effect of imperfections in the
flat ground and the flat facets of the disk. Generically, if two
nearly flat, rigid surfaces are pushed against each other, they
will have three points of contact. Thus, we hypothesize that
the last phase of the motion (with α very close to 0) will be

bouncing (or rolling) on three point contacts. To understand
motion with three point contacts in the presence of gravity, we
revisit existing results about the bouncing motion of a rod on a
flat ground (with only two possible contact points). We find that
the energy profile of a bouncing rod is again similar to Eq. (1)
with 0 � c � 2. In particular, c is a monotonically increasing
function of the coefficient of restitution of impacts and of the
radius of gyration. It may take values arbitrarily close to zero.
We then demonstrate via a series of numerical simulation that
bouncing on three contacts results in similar energy dissipation
profile. We do not present analytical proof of this conclusion
because three contact points appear to give rise to complex
sequences of impacts, which cannot be analyzed via the simple
approach used in the case of self-similar motion. The main
conclusion of this part is that for certain combinations of the
model parameters, c may go well below 4/9 in which case
impacts become the dominant energy absorption mechanism
of the disk as it approaches its singularity.

II. MECHANICAL MODEL OF THE IMPERFECT DISK

A. Notation and kinematics

Consider a “global” orthogonal coordinate frame []g

spanned by the pairwise orthogonal unit vectors uX, uY , and
uZ . We will denote any vector expressed in this global frame
by an upper index ∗g . The horizontal ground P is in the plane
spanned by uX,uY . The vector uZ points vertically upwards.
The acceleration of gravity is thus −guZ , where g is the
gravitational constant.

We also consider a “local” coordinate frame [ ]l fixed to the
moving disk B. It is spanned by the unit vectors ux , uy , uz with
its origin at the center of mass rc of B. Any vector expressed
in this frame will be denoted by upper index ∗l . For example,
we always have rl

c = 0.
Our model of the imperfect disk is an infinitely thin regular

n-gon (large n) with vertices

rl
i =

⎛
⎜⎝

cos(2iπ/n)

sin(2iπ/n)

0

⎞
⎟⎠, i ∈ {0,1 . . . n − 1}. (2)

The position vectors of vertices (as well as any other vector)
can be expressed in [ ]g as

r
g

i = rg
c + Hl,gr

l
i , (3)

where Hl,g = [ug
x,u

g
y,u

g
z ] is a rotation matrix. The velocity vi

of point i with respect to [ ]g is expressed as

v
g

i = vg
c + ωg × Hl,gr

l
i , (4)

where ω is the angular velocity of B and vc is the velocity of
the center of mass.

Let m and θ denote the mass and the moment of inertia
tensor of B. The infinitesimal thickness and the rotational
symmetry of B implies that θ takes the form

θ l = m

⎡
⎢⎣

ρ2 0 0

0 ρ2 0

0 0 2ρ2

⎤
⎥⎦, (5)

where ρ ≈ 1/2 if B is homogeneous and n � 1.
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B. Continuous dynamics

Assume that the object is subject to gravity as well
as frictionless contact forces ηiuZ at points ri . Then its
acceleration and angular acceleration are determined by the
Newton-Euler equations:

(
−mg +

∑
i

ηi

)
uZ = m

dvc

dt
, (6)

∑
i

((ri − rc) × ηiuZ) = θ
dω

dt
+ ω × θω, (7)

where t denotes time. Unilateral contact forces can be
determined from the requirement that ηi > 0 implies sus-
tained contact, i.e., uT

Zri = uT
Zvi = uT

Zdvi/dt = 0. The last
constraint can be expanded using the time derivative of Eq. (4)
as

uT
Z

(
dvc

dt
+ dω

dt
× (ri − rc) + ω × (ω × (ri − rc))

)
= 0. (8)

In the case of free fall, we have ηi = 0 for all i and the
acceleration is determined by Eqs. (6) and (7) as

dvc

dt
= −guZ, (9)

dω

dt
= −θ−1(ω × θω). (10)

We will also investigate motion with one sustained contact,
in which case dv

dt
, dω

dt
, and one unknown contact force ηi are

determined uniquely by the system of seven scalar equations
formed by Eqs. (6), (7), and (8):

dvc

dt
= uZ(−g + ηi/m), (11)

dω

dt
= θ−1(((ri − rc) × ηiuZ) − ω × θω), (12)

ηi = g + uT
Z(ω × R×ω − R×θ−1(ω × �ω))
uT

z [θ−1 − R×θ−1R×]uz

, (13)

where R× is the matrix representation of the cross product
(ri − rc) × ∗ (i.e., R×x = (ri − rc) × x for all x ∈ R3). Mo-
tion with two sustained contacts is determined similarly by
using two constraints of type (8). More than two sustained
contact implies that the whole disk lies on the floor.

C. Impacts

The object undergoes a single-point impact if one of the
vertices hits the plane

uT
Zri = 0 uT

Zvi < 0 (14)

for some i whereas all other vertices are separated.
Let ζuZ (ζ ∈ R) denote an instantaneous impulse the

underlying plane exerts upon B in a single-point impact. The
pre- and post-impact values of the velocity of the center of
mass, the angular velocity and the velocity of vertex i will

be distinguished by superscripts − and +. The conservation of
linear and angular momentum yield

m(v+
c − v−

c ) = ζuZ, (15)

θ (ω+ − ω−) = ri × ζuZ. (16)

We assume that all impacts have the same Newtonian
coefficient of restitution 0 � γ < 1, i.e., every impact satisfies

uT
Zv+

i = −γ uT
Zv−

i . (17)

The unknowns v+
c , ω+, and ζ are uniquely determined by

Eqs. (15)–(17) as follows:

ζ = −uT
z (γ + 1)(v−

c + (ω− × ri))

uT
z [m−1I − R×θ−1R×]uz

, (18)

ω+ = θ−1((ri − r) × ζuz) + ω−, (19)

v+
c = m−1ζuz + v−

c , (20)

where I stands for the 3×3 identity matrix.
Simultaneous impacts at multiple points occur if one vertex

hits the ground while at least one other is also in contact with
it. Our model for single impacts is applicable to this scenario
in some cases. If vertex i hits the ground while another vertex
j is in sustained contact (and all other vertices are separated),
moreover Eqs. (18)–(20) predict post-impact velocities, which
respect the unilateral contact constraint uT

Zv+
j � 0, then we

assume the single-impact model is valid. As we will see, this
requirement is very often satisfied during the motion of an
n-gon with n >> 1.

Simultaneous impacts not obeying this requirement are
in general highly unpredictable. Thus we do not attempt to
specify a particular impact model. Instead, we declare that
the dynamics of the disk is undecidable within our simple
modeling framework if such a situation occurs.

D. Linearization and general coordinates

Without loss of generality, we may assume that the global
and local frames coincide at the end of the motion. In addition,
we assume that the disk becomes immobile after the singularity
has been reached (importantly, no “yaw” motion with the local
z axis as axis of rotation is allowed).

We focus on the last phase of motion of the disk before
reaching its singularity. Its rotations and angular velocities
during this phase are close to zero. Rotations can be repre-
sented by a rotation vector φ ∈ R3 where the direction of the
vector represents the axis of the rotation and |φ| corresponds
to the angle of the rotation. In the case of small rotations, φ is
equivalent of the rotation matrix

Hl,g =

⎡
⎢⎣

1 −uT
Zφ uT

Y φ

uT
Zφ 1 −uT

Xφ

−uT
Y φ uT

Xφ 1

⎤
⎥⎦ + O(|φ|2), (21)

moreover φ is related to angular velocity as ω = d
dt

φ +
O(|φ|2).
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If we neglect O(|φ|2) terms in the kinematic equations, then
Eqs. (3) and (21) imply

r
g

i =

⎛
⎜⎝

xi

yi

uT
Zrc + uT

Xφyi − uT
Y φxi

⎞
⎟⎠, (22)

i.e., the distance of a vertex from P is expressed as a linear
combination of the quantities h := uT

Zrc, φx := uT
Xφ, and

φy := uT
Y φ. This motivates our choice of the generalized

coordinates q = (φx,φy,h)T spanning a three-dimensional
(3D) subspace C of the 6D configuration space. An analogous
3D subspace V of the velocity space is spanned by the
generalized velocities p = dq

dt
= (ωx,ωy,v)T . Motion along

the remaining 3 degrees of freedom (translational motion in
X, Y directions and rotation about Z) does not occur as long
as contact forces are frictionless and as long as O(|ω|2) terms
in the equations of motion (see next subsection) are neglected.

Let us introduce the notation

fi :=

⎛
⎜⎝

yi

−xi

1

⎞
⎟⎠. (23)

Then the height of a vertex above P and its velocity in the
global Z direction can be expressed simply as

hi = f T
i q vi = f T

i p. (24)

E. Linearized equations of motion

The linearized equations of motion in the generalized
coordinates are obtained by elimination of O(|φ|2) and
O(|ω|2) terms in Eqs. (9),(10),(11),(12),(19), and (20). For
free fall we obtain the equation

dp

dt
= −gu3, (25)

where u3 = [0,0,1]T . Note that this means that the acceleration
of every vertex during free fall is constant −g by Eqs. (22),(25).

During motion with a single point contact, we similarly
obtain

dp

dt
= �−1[ηfi − mgu3] := acontact (26)

with

� = m

⎡
⎢⎣

ρ2 0 0

0 ρ2 0

0 0 1

⎤
⎥⎦, (27)

η = mg

1 + ρ−2
. (28)

During this motion, the accelerations of the vertices are
unequal, but all of them are negative except for point i having
zero acceleration.

Finally, an impact ar vertex i corresponds to the linear map

p+ = Uip
−, (29)

where

Ui := I + −(1 + γ )

f T
i �−1fi

[
�−1fif

T
i

]
. (30)

F. Invariance properties of the linearized dynamics

Our model of the imperfect disk possesses n-fold rotational
symmetry. This means that the motion is invariant with respect
to certain rotations. Let qq0,p0,t0 (t) and pq0,p0,t0 (t) denote the
position and velocity of a disk at time t in the case of initial
conditions q = q0, p = p0 at time t = t0. Then,

qRq0,Rp0,t0 (t) = Rqq0,p0,t0 (t), (31)

pRq0,Rp0,t0 (t) = Rpq0,p0,t0 (t) (32)

for any t > t0 where

R =

⎡
⎢⎣

cos(2π/n) − sin(2π/n) 0

sin(2π/n) cos(2π/n) 0

0 0 1

⎤
⎥⎦. (33)

In addition, the linearized equations of motion also admit the
following scaling invariance for any β ∈ R:

qβ2q0,βp0,t0 (t0 + βt) = β2qq0,p0,t0 (t0 + t), (34)

pβ2q0,βp0,t0 (t0 + βt) = βpq0,p0,t0 (t0 + t). (35)

We will exploit these invariance relations in order to define
low-dimensional reduced Poincaré maps, whose invariant
points correspond to interesting forms of motion of the disk.

III. ANALYSIS OF PRECESSION-FREE MOTION

As we have seen, the motion of Euler’s disk on the short run
appears to be similar to the precession-free circular motion of
a dissipation-free rolling disk whose center of mass remains
immobile. On the long run, the disk tends to drift along a
one-parameter family of such solutions as energy is dissipated.
This motion corresponds to a φ rotation vector, which rotates
continuously about the global Z axis, while |φ| is decreasing
monotonically. Our model of the imperfect disk is not capable
of dissipation-free rolling motion because its polygonal shape
creates impacts. Nevertheless,we will define a certain form
of motion reminiscent of precession-free rolling of a round
disk. First, we discuss the case of inelastic collisions (γ = 0)
in detail and then we review the consequences of an impact
model with γ > 0 in the last subsection.

A. Self-similar motion

An ideally inelastic collision means that every vertex
stays on the ground after it has undergone an impact. This
kinematic constraint implies that only one of its neighbors
may hit the ground next. Assume that an impact at vertex
i is followed by another one at i + 1. It is easy to show
that for n � 4, vi will always become positive at the second
impact, and thus the only possible order of impact locations is
0,1, . . . ,n − 1,0,1, . . .. (In contrast, we note without proof that
for n = 3 and sufficiently small ρ, a sequence . . . ,i,i + 1,i, . . .

is also possible.) This motion appears to be “precession-free”
if the values of |φ| evaluated at the times of impacts form a
monotonically decreasing sequence. The invariance properties
of Sec. II F suggest the following definition characterizing
motion similar to the precession-free rolling of a round disk:
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FIG. 1. Values of β depending on the physical properties of the polygonal model. Left: n = 3, right: n = 25.

Definition 1 (Self-similar motion). A set of initial condi-
tions q0, p0, t0 satisfying

f T
0 q0 = 0, (36)

f T
0 p0 < 0 (37)

(pre-impact state at vertex 0) as well as the motion initiated by
such a set are called self-similar if

(i) the motion starts with an immediate impact at vertex 0
followed by impact-free motion until vertex 1 hits the ground
at time t1;

(ii) immediately before the second impact of the system,
the generalized velocity and coordinates are

p1 = βRp0, (38)

q1 = β2Rq0 (39)

with some scalar 0 < β < 1.
The conditions (38),(39) and the invariance relations

(31),(32),(34),(35) imply that “self-similar motion” then con-
tinues with rotated and down-scaled copies of the motion
during the time interval (t0,t1). More specifically, if ti denotes
the time of the (i + 1)th impact, qi and pi are the corresponding
pre-impact values of state variables, and τi = ti+1 − ti then the
vertices hit the ground in the order 0,1, . . . ,n − 1,0,1, . . .;
each vertex remains in contact with the ground until the
impact at the next vertex occurs; the duration τi decreases
exponentially as

τi = βiτ0, (40)

whereas the vectors of state variables decrease exponentially
and rotate around as follows:

pi = βiRip0, (41)

qi = β2iRiq0. (42)

Note that the sequence of qi vectors corresponds to an
exponentially decreasing sequence of |φ| values if 0 < β < 1,
which makes self-similar motion similar to precession-free
rolling of a round disk.

In order to find self-similar initial conditions, let us expand
Eqs. (38) and (39) as

(U0p0 + acontactτ0) = Rβp0, (43)(
q0 + U0p0τ0 + acontactτ

2
0

/
2
) = Rβ2q0. (44)

If the matrix R−1U0 has a real eigenvalue λ, then these
equations have a corresponding trivial solution: τ0 = 0; q0 =
0; β = λ and p0 = the eigenvector corresponding to λ.
Eigenvalue analysis of R−1U0 reveals one trivial solution with
β > 0 (if n = 3) or two trivial solutions with β > 0 (if n > 3)
for sufficiently small values of ρ (star markers in Fig. 1).

In contrast, if β is not a real eigenvalue of R−1U0, then we
can express q0 and p0 explicitly from these equations (in terms
of the unknown scalars τ0 and β) as

p0 = (βI − R−1U0)−1R−1 acontactτ0, (45)

q0 = (β2I − R−1)−1R−1
(
U0p0τ0 + acontactτ

2
0

/
2
)
, (46)

where I is an identity matrix. These two expressions can be
inserted into the condition (36), yielding an equation of the
form

τ 2
0 π (β) = 0,

where π is a polynomial of degree 9. This is satisfied on the
one hand if τ0 = 0, which again recovers the trivial solution.
On the other hand τ0 �= 0 means that we must have π (β) = 0.
The roots of π were found numerically (circle markers in
Fig. 1 for various values of n and the radius of gyration ρ.
We have found at least one positive root for all combinations
of model parameters and for all values of n. Each root for β

corresponds to a one-parameter family of initial conditions,
parametrized by τ0 as given by Eqs. (45),(46). Each family
of solutions is generated from one solution by the scaling
invariance Eqs. (34),(35), hence we can consider individual
solutions within each family as identical.

B. Feasibility of self-similar motion

Solutions found by this numerical procedure may be
infeasible. Feasibility means that
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FIG. 2. Border of feasible and infeasible regions for self similar
motion with γ = 0. Notice that homogeneous disk corresponds to
ρ ≈ 1/2, in which case the non-trivial self-similar solution is feasible
for all n > 3.

(1) the initial (pre-impact) velocity of vertex 0 must point
downwards, i.e., f T

0 p0 < 0.
(2) the duration of continuous motion between the first two

impacts must be positive, i.e., τ0 > 0.
(3) none of the vertices penetrates into the ground during

the time interval t0 < t < t1. It is easy to show that checking
non-penetration at time t0 is sufficient.

(4) the β value associated with the motion is positive.
The trivial solutions are either infeasible or marginally

feasible because τ0 = 0. The significance of these solutions
lies in that gravity has no time to act if τ = 0. As we will
see later, there may exist feasible solutions asymptotically
converging to the trivial solutions, which do not rely on the
effect of the gravitational force.

We checked the feasibility of the nontrivial solutions
numerically. and found that the nontrivial solutions are feasible
for large enough values of ρ whenever n > 3 (filled circles
in Fig. 1, see also Fig. 2). The most important conclusion
for the spinning disk problem is that there is a unique
feasible, self-similar motion for a polygonal approximation
of a thin, round disk (n � 1) with homogeneous density
(ρ ≈ 0.5).

C. Stability analysis of self-similar motion

Whether or not the nontrivial self-similar motion found
above is realized by the system depends largely on the stability
of that type of motion. We will test the asymptotic stability of
self-similar motion by investigating a smooth discrete map
induced by the dynamics (similar to the Poincaré maps of
continuous dynamical systems), whose invariant points are in
one-to-one correspondence with self-similar initial conditions.

From now on, we assume that the disk moves in such a way
that the vertices hit the ground in the order 0,1,2, . . . ,n −
1,0,1, . . . (which is definitely true for small perturbations
of self-similar motion and for a limited amount of time).
Nevertheless we do not require that the motion is self-similar.

As before, p0, q0 denote values of the state variables
immediately before an impact at vertex 0, and pi , qi (i =
1,2, . . .) denote the subsequent pre-impact values of the
state variables. Each of these impacts then occurs at vertex
i mod (n). Let Ci denote the maps that transform vectors
composed of these state variables into the next one as follows:[

pi+1

qi+1

]
= Ci

([
pi

qi

])
.

Then, Ci represents the effect of an impact at vertex i mod (n)
and the subsequent continuous motion.

We also introduce a collection of maps Ti (i = 1,2, . . .),
which rotate and normalize vectors of stacked state variables
as [

R−ip/|p|
R−iq/|p|2

]
= Ti

([
p

q

])
, (47)

as well as the transformed state variables[
p̄i

q̄i

]
= Ti

([
pi

qi

])

and the map

C̄(∗) = T1(C0(∗)). (48)

Then, the scaling and rotational invariance of the dynamics
(Sec. II F) imply [

p̄i+1

q̄i+1

]
= C̄

([
p̄i

q̄i

])
, (49)

i.e., the dynamics of the system can be understood by studying
the iteration defined by the map C̄.

The map C̄ can be expressed in closed from as

(
p

q

)
�→

(
R−1(U0p + acontactτ )/|R−1(U0p + acontactτ |
R−1(q + U0pτ + acontactτ

2/2)/|R−1(U0p + acontactτ )|2
)

, (50)

where

τ =
−f T

1 U0p +
√(−f T

1 U0p2 − 2
(
f T

1 acontact
)(

f T
1 q

))
f T

1 acontact

(51)

(see Appendix B for details). This map is formally defined
over the six-dimensional space V × C. Every point is mapped

into the 2D subspace defined by

f T
0 q = 0, |p| = 1, f T

n−1q = 0, f T
n−1p = 0. (52)

Each one-parameter family of self-similar initial conditions
has one member with |p| = 1, and these members are in
one-to-one correspondence with the invariant points of C̄. The
asymptotic stability of these invariant points can be examined
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by eigenvalue analysis of the Jacobian of C̄. The existence
of an eigenvalue with absolute value greater than 1 implies
asymptotic instability and if all eigenvalues have absolute val-
ues below 1, then the invariant point is asymptotically stable.

In our case, the Jacobian always has 0 as a four-fold
eigenvalue due to Eq. (52). In order to determine the remaining
two eigenvalues, we expressed the Jacobian in closed form
by differentiating Eq. (50). The eigenvalues of the Jacobian
were found numerically at the (numerically obtained) invariant
points of C̄.

The analysis outlined above has been completed for various
values of n and ρ and we found that a feasible self-similar
motion is always asymptotically stable. This is a local result,
which does not imply that the motion of the disk must globally
converge to self-similar motion from arbitrary initial condition.
Nevertheless it suggests that the assumption of precession-free
motion (analogous to self-similarity in our model) often used
for the analysis of Euler’s disk is plausible.

D. Energy dissipation during self-similar motion

Now we are ready to investigate energy dissipation due to
impacts as the disk approaches its singularity. We now adopt
the hypothesis that the polygonal disk undergoes self-similar
motion as explained in the previous sections. The scaling law
(40) leads to a finite-time singularity at time

tf := t0 +
∞∑
i=0

τi = t0 + (1 − β)−1τ0

which can also be expressed as

tf − ti =
∞∑
j=i

τj = βi(1 − β)−1τ0 (53)

for arbitrary i.
At the same time, the potential energy of the disk can be

expressed as a homogeneous linear function of q whereas the
kinetic energy is a homogeneous quadratic function of p. The
rotational invariance and the scaling laws (41),(42) imply that
each one of the potential energy, the kinetic energy as well as
their sum in the pre-impact states at time ti form exponentially
decreasing sequences. In particular, if Ei is the pre-impact
value of the total mechanical energy at t = ti , then

Ei = β2iE0. (54)

Equations (53) and (54) yield the relation

Ei = E0τ
−2
0 (1 − β)2(tf − ti)

2. (55)

The total energy of the system is a piecewise constant function
(with jumps at impact times), hence it cannot be expressed in
the form (1). Nevertheless by using Eqs. (53) and (55), it is
easy to show that the bounds

a2(tf − t)c < E(t) < a1(tf − t)c (56)

are satisfied for all t < tf with

c = 2, (57)

a1 = E0τ
−2
0 (1 − β)2, (58)

a2 = β2E0τ
−2
0 (1 − β)2. (59)

We conclude that the exponent of energy dissipation due to
impacts is 2. This is higher than the exponents associated
with other dissipation mechanisms, hence we may draw the
conclusion that impacts due to shape imperfection of the disk
do not become dominant during the last phase of the motion.

E. Self-similar motion under partially elastic impacts

The assumption of inelastic impacts in the previous sub-
sections was merely an a priori modeling assumption. It is
an interesting question if the conclusions of the analysis with
respect to the existence, and the stability of self-similar motion
and the scaling of energy dissipation are sensitive to such
modeling assumptions or not.

In the case of partially elastic collisions (0 < γ < 1),
Definition 1 remains applicable, however impacts are followed
by free-flight rather than by sustained contact.

We can perform the same analysis as in the preceding parts
of Sec. III with the only difference being that Eqs. (43),(44)
are now replaced by

βp0 = R−1(U0p0 − u3gτ0), (60)

β2q0 = R−1
(
q0 + p0τ0 − u3gτ 2

0

/
2
)
. (61)

As before, we find marginally feasible trivial solutions (for
small values of ρ and γ ) as well as one-parameter families
of feasible or infeasible nontrivial solutions parametrized by
τ0. The results of the analysis are illustrated by Fig. 3, where
β values are depicted as functions of γ for ρ = 0.5 and for
various values of n. We also summarized the results in Fig. 4
for all combinations of β, γ , and n values. In some cases
multiple self-similar motions have been found, with different
β values.

To examine the attractivity of self-similar motion, we again
define a map C̄ satisfying Eq. (49). The explicit formula of the
map is similar to Eqs. (50),(51) except that acontact is replaced
by gu3. This map projects the six-dimensional space V × C
onto a four-dimensional subspace given by

f T
0 q = 0, |p| = 1. (62)

Accordingly, the Jacobian of the map has now 0 as a trivial,
two-fold eigenvalue. Numerical investigation of the nontrivial
eigenvalues of the Jacobian revealed, that the stability of
the motion depends on the parameters n, γ , and ρ. Most
importantly, in the case of ρ = 0.5 (the case of a homogeneous
disk) self-similar motion is unstable for all values of n

and γ . Hence the currently investigated model predicts that
micro-impacts destabilize the precession-free motion of a
spinning disk. Together with the results of the previous section,
our findings highlight the sensitivity of the dynamics to fine
details of the contact model (like the coefficient of restitution).
Our numerical results concerning the existence, feasibility,
and stability of self-similar motion are summarized in Fig. 4.
Note that self-similar motion may be unstable for γ → 0. This
result does not contradict stability in the γ = 0 case, since
“impact-free motion” in the definition of self-similar motion
has different meaning in the two cases: free flight for partially
elastic impacts and sustained contact for inelastic impacts. The
same difference explains why self-similar motion becomes
infeasible when γ is close to 0.
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To demonstrate instability, we show results of some direct
numerical simulations of the motion in Fig. 5. In each case, the
initial conditions are slightly perturbed versions of self-similar
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FIG. 4. Feasibility and stability of self-similar motion. At least
one non-trivial solution exists for all parameter values. One feasible
nontrivial solution exists above the dotted curves (each curve
corresponds to a specific value of n), and the feasible solution is
stable for parameter values on the left of the dashed lines. Trivial
solutions exist for parameter values below the solid lines. Notice that
there is a dotted curve right next to each solid curve.

motion. Precession is reflected by the gradually growing
oscillatory components of the kinetic and the potential energy.
Hence precession will become more and more dominant as the
singularity is approached. The divergence from self-similar
motion described above eventually changes the regular order
(0,1,2, . . . ,n − 1,0,1, . . .) of impact locations and gives rise to
more irregular patterns of motion. Our numerical results are in
agreement with the experimental observations of a small pre-
cessional component. Our results question the validity of anal-
ysis based on the assumption of precession-free motion. Never-
theless, in the forthcoming section, we argue that the irregular-
ity of the motion does not affect the exponent of energy decay.

F. Energy exponent of irregular motion

We have seen in Sec. III D that self-similar motion in the
case of inelastic impacts corresponds to energy dissipation
exponent c = 2 in the sense of Eq. (56). It is easy to show that
self-similar motion for partially elastic impacts would lead to
the same exponent. Nevertheless, the instability of self-similar
motion for γ > 0 means that more irregular motion may occur
instead. Nevertheless, under the assumption that Eq. (56) is
satisfied with some values of a1, a2, and c, we are able to
prove that the only possible value of c is 2. The proof of this
statement is sketched in Appendix A. The simulation results in
Fig. 5 also indicate c ≈ 2. These observations bring us again to
the final conclusion that impacts are probably not the dominant
mechanism of energy dissipation of Euler’s disk.

IV. MODELING IRREGULAR SUPPORT SURFACES

So far we have been investigating the effect of the imperfect
shape of the disk itself. Another approach to the question
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FIG. 5. Log-log plot of energy versus time remaining to singularity obtained by numerical simulation of motion for various values of n and
γ . The parameters were, from top left to bottom right: n = 20 γ = 0.6, n = 20 γ = 0.7, n = 25 γ = 0.5, n = 25 γ = 0.6, n = 30 γ = 0.5,
and n = 30 γ = 0.6.

of irregularity is to suppose the supporting surface is not
perfectly planar. If a round disk spins on slightly curved terrain,
the speedup of spinning will cause liftoff as the disk passes
the “bumps” of the underlying surface. This leads to rapid
sequences of collisions on the bumps of the surface and energy
dissipation.

If two nearly flat (but slightly irregular) rigid surfaces
are pushed against each other then they will typically have
three points of contact. Motivated by this simple geometric
observation, our conceptual model to study the dynamics of
the disk over a slightly irregular terrain will be a rigid disk
bouncing on three point contacts (Fig. 6). For simplicity, we
will assume that these points do not vary over time, and also
that they form an equilateral triangle. These assumptions allow
us to rely on the results of the previous sections (but now we
consider the case n = 3).

Throughout the previous two sections, we focused on self-
similar motion, which was analogous to the precession-free

motion of round disks. Nevertheless, now we have no reason
to restrict our attention to self-similar motion, which makes the
analysis more complicated. As a first step, we review results

FIG. 6. Sketch of the theoretical model accounting for irregularity
of the support surface.
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derived by other researchers with respect to the planar motion
of a falling rod (which corresponds to n = 2 and ωx = ωz = 0
in our notation). Then we use numerical techniques to explore
spatial motion in the n = 3 case. We will focus on the case
of partially elastic impacts γ > 0, since γ = 0 often leads to
simultaneous impacts, for which we lack good impact models.

A. Literature review of the falling rod problem

Consider a rod of length 2 with symmetrical mass-
distribution hitting a flat surface. This system corresponds to
the n = 2 case of the model of the present paper. Let the
mass-distribution parameter ψ be defined as

ψ = 1 − ρ2

1 + ρ2
,

where ρ is the radius of gyration. (ψ = 0 corresponds to mass
concentrated at the endpoints, ψ = 1 to mass concentrated to
the center and ψ = 0.5 to homogeneous mass distribution).
The planar motion (ωx = ωz = 0 throughout the motion) of
such a rod under partially elastic contacts (γ > 0), in the
absence of gravity (g = 0) has been investigated by [20,21].
They found that if

ψ >
2γ 1/2

1 + γ
, (63)

then the motion follows one of the following two patterns
depending on the choice of initial conditions:

(i) (complete chatter)—motion converges asymptotically
to a regular pattern of motion: the two endpoints of the rod hit
the ground in alternating order. Due to the absence of gravity,
the generalized velocities remain constant during episodes of
free-flight. After the j th impact, the generalized velocity is

pj = [ωx,jωy,j vj ]T (64)

with

vj = −|v0|βj
p, (65)

ωx,j = 0, (66)

|ωy,j | = |vj |1 + βq

1 − βq

, (67)

where

βp = ψ(1 + γ ) +
√

ψ2(1 + γ )2 − 4γ

2
, (68)

βq = 2γ

ψ(1 + γ ) +
√

ψ2(1 + γ )2 − 4γ
. (69)

Complete chatter occurs among others if the initial velocity is
rotation-free. The exact range of initial conditions correspond-
ing to this scenario are determined in a previous paper by us
(Sec. 3 of [22]).

(ii) (incomplete chatter)—the rod separates from the
ground after a finite number of impacts. This scenario is
realized among others for all initial conditions such that the
initial velocity of the midpoint of the rod points away from the
support surface.

If the condition (63) is not satisfied, then complete chatter
becomes impossible and any initial condition leads to incom-
plete chatter.

If the same rod moves under the effect of gravity (and the
gravity points towards the support surface) then its behavior
changes significantly. Incomplete chatter becomes impossible
due to energy bounds of the system. The behavior of the
system has been investigated in [23] and [24], where they
find a condition slightly stricter than (63):

ψ >
γ 1/3 + γ 2/3

1 + γ
. (70)

If Eq. (70) is satisfied, then the motion of the rod follows one
of the following scenarios:

(i) an infinite sequence of impacts occurs at one endpoint
(while the other endpoint remains separated). This sequence
terminates in finite time, giving rise to sustained contact at one
endpoint. Some time later, the other endpoint hits the ground
giving rise to a simultaneous impact at the two endpoints.
Our impact model is not applicable to this scenario. Those
authors make some assumptions about simultaneous impacts,
to infer that the object stops immediately after the simultaneous
impact.

(ii) after some initial transient, the two endpoints hit the
ground in alternating order. The flight times shrink with a fast
decay rate such that gravity has less and less influence on
the motion. In addition, motion converges to the gravity-free,
complete chattering sequence described above.

If we have gravity but Eq. (70) is not satisfied, then it is
easy to see that the rod may not separate from the ground
(due to bounded potential energy) and the influence of gravity
may not become negligible (since this would imply separation
according to [20,21]). These two observations imply that the
rod undergoes some kind of motion, in which the effect of
gravity remains significant. This form of motion has not been
investigated in detail.

From the point of view of our analysis the most interesting
task is showing that the power-law relationship (56) applies for
the rod and finding the exponent. We have argued previously
that for any form of motion in which gravity plays significant
role, the only possible value of the exponent is c = 2. This
result applies to the rod as well. Nevertheless it is not applicable
to any of the two possible scenarios if Eq. (70) is true.

The first scenario leads to simultaneous impact, where the
lack of a good model prevents us from detailed analysis.
Nevertheless, if we adopt the hypothesis of other researchers
that the rod stops immediately, then this scenario loosely
corresponds to c = 0.

The second scenario is convergence to gravity-free com-
plete chattering motion. Interestingly, Eqs. (66),(67) show that
this motion obeys the condition (41) of self-similarity with
β = βp, i.e., we have

pi = βi
pRip0. (71)

Nevertheless Eq. (42) is not satisfied. Instead of that, one can
easily show that it satisfies another condition

qi = βi
qR

iq0. (72)
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FIG. 7. Exponents of the falling rod when gravity is negligible.

We also note that βp and βq are two positive eigenvalues of
the matrix R−1U0 with n = 2 (see Appendix C).

The scaling properties imply that the duration of the
episodes of free flight decreases exponentially as

τj = τ0[βq/βp]j (73)

and thus impacts accumulate at a finite-time singularity after
which both endpoints are in sustained contact with the support
surface.

Equation (71) also implies that the kinetic energy of the rod
decreases exponentially as

Ej = E0β
2j
p , (74)

whereas the system has no potential energy due to the absence
of gravity. We can now repeat the calculation presented in
Sec. III D but with Eq. (73) instead of Eq. (40) and with Eq. (74)
instead of Eq. (55). This way, we find that Eq. (56) is satisfied
with exponent

clin = 2 ln βp

ln(βq/βp)
. (75)

The actual values of clin in terms of ψ and γ are shown
in Fig. 7. We notice without detailed proof that clin goes to
infinity if we approach boundaries of the region determined
by Eq. (63); it converges to 0 if either γ → 0 or ρ → 0;
furthermore it is equal to 2 whenever there is equality in
Eq. (70).

Hence, we conclude that the energy exponent of the rod can
be arbitrarily close to 0. Next we will examine the motion of a
bouncing triangle. An analogous result in that case would mean
that energy absorption due to impacts may become dominant
over all previously investigated dissipation mechanisms.

B. Energy exponent of a bouncing disk with three contact points

We have seen that for low γ and ρ values, a rod either
undergoes motion culminating in a simultaneous impact, or
complete chatter if gravity is absent. In a previous paper [22],
we have demonstrated by using analytical and numerical tools

that a flat polygonal disk with multiple contact points behaves
in the same way in the absence of gravity. In that paper, we
have found that the motion always leads to an infinite sequence
of impacts at two vertices (terminating in finite time), followed
by a simultaneous impact if it satisfies the following criterion:

Definition 2. A system possesses the partial complete
chattering (PCC) property, if the matrix U0RU0R

−1 has no
complex eigenvalues, that is,

URUR−1p = νp ⇒ ν ∈ R. (76)

Furthermore it is also shown there that a polygonal body
in a gravitation-free environment undergoes complete chatter
resulting in simultaneous contact at all vertices if it satisfies
the following criterion:

Definition 3. A system possesses the complete chattering
(CC) property, if the dominant eigenvalue of the matrix U0R

−1

is real and positive, i.e., if

sup({λi}) = sup({|λi |}) and sup({λi}) ∈ R, (77)

where λi (i = 1,2,3) are the eigenvalues of matrix R−1U0.
Due to the difficulties of modeling simultaneous impacts

if both Eqs. (76) and (77) are satisfied, we will focus on
systems with the CC but without the PCC property. We show
in Appendix C that a triangle also has a self-similar motion
in the sense of Eqs. (71) and (72). The corresponding energy
exponent is again of the form (75) where now βp,βq denote two
positive eigenvalues of R−1U0 with n = 3. Nevertheless we
also find by numerical analysis of a Jacobian that this motion
is unstable unlike in the case of the rod (details omitted).

To account for irregular motion and to see if the role
of gravity becomes negligible during the final stage of the
motion, we conducted a series of numerical simulations
with g = 1, in which γ ∈ [0 1] and ρ ∈ [0 1] were varied
systematically over a rectangular grid. At each point of the
grid 100 simulations were conducted. In each simulation,
the value of c was estimated by linear regression over the
logarithm of energy vs. time. The simulation often terminated
due to simultaneous impacts for which we lack a good
model. In these cases no value has been recorded for c. For
each simulation, the initial values of p and q were given
as p = [0.1χ1; 0.1χ2; −1]T and q = [0.001χ3; 0.001χ4; 1]T

where the variables χ1 . . . χ4 were drawn randomly from a
uniform distribution over the interval [−0.5 0.5]. The result of
this process is summarized in Fig. 8, where the average values
of the 100 simulations are shown. Where no value is provided,
all 100 simulations ended in simultaneous collisions. The
theoretical boundaries of Eqs. (76) and (77) are also provided.
In Fig. 9 we also show the estimated exponents as a function
of γ for four values of ρ with results of the simulations as a
comparison.

Our results suggest the following:
(i) if Eq. (76) [and thus Eq. (77)] is satisfied, then the

motion includes a simultaneous impact and our model is not
capable of predicting the final outcome of the motion.

(ii) if Eq. (77) is satisfied while Eq. (76) is not; then
the object undergoes irregular motion, in which the effect of
gravity becomes negligible. The values of c estimated from
simulations are close to the values clin predicted by Eq. (75)
and are mostly below 2 (Fig. 9).
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FIG. 8. Numerically obtained exponents in the case of n = 3.
Lack of values means simultaneous impacts. The curves labeled by
CC and PCC are the boundaries of parameter regimes with the CC
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(iii) if Eq. (77) is not satisfied, then the effect of gravity
remains significant throughout the motion, and we have
c ≈ 2. The simulation often but not always terminates due
to simultaneous impacts.

The estimated exponents are significantly above 2 near the
boundary of the region (77). We believe that this is a numerical
artifact, which was caused by the finite lengths of simulations.

Our results show that the exponent may be very low.
Unfortunately, we were not able to find low values of c

in the case of ρ = 0.5, which corresponds to Euler’s disk
with homogeneous mass distribution. This shortcoming of
our results is due to the emergence of simultaneous impacts.
Nevertheless, lower values of ρ often lead to low values of c,

FIG. 9. Sections of Fig. 8 (dots) with predictions of Eq. (75)
(dashed curves).

in which case energy dissipation due to impacts becomes the
dominant dissipation mechanism.

V. CONCLUSIONS

We have examined in this paper how impacts initiated by the
geometric imperfection of a spinning disk affect the singularity
at the end of its motion. Two types of imperfection have been
analyzed: the imperfect rotational symmetry of the disk was
modeled by a polygonal profile, and the imperfections of the
flat underlying surface were modeled by considering a rigid
object with three point contacts to the ground.

In order to simplify the analysis, we used impacts with
constant coefficient of restitution and frictionless contact inter-
actions (during continuous motion and impacts). In addition, a
discrete rotational symmetry has been assumed in both models.

In accordance with the majority of the previous works we
focused on the rate of energy dissipation shortly before the
singularity. This question is usually investigated under the
assumption that the disk undergoes precession-free motion,
i.e., that the slope of the spinning disk decreases mono-
tonically. In the framework of our first model, we defined
the concept of self-similar motion and demonstrated that it
is analogous to the precession-free spinning of a perfectly
round, dissipation-free disk. Nevertheless self-similar motion
naturally incorporates energy dissipation via impacts. We
demonstrated that the energy profiles generated by impacts
have an exponent c = 2, which is higher than the exponent of
many other energy dissipation mechanisms. This means that
impacts are not the dominant dissipation mechanism during
the last phase of motion. Moreover, we also showed that
self-similar motion may be destabilized by impacts, which
provides a new explanation of the significant precessional
component of motion often found in physical experiments.

Our second model revealed that the lack of perfect flatness
of the underlying ground has a much more subtle effect. In
many cases, the motion of our conceptual model includes
simultaneous impacts at multiple points, for which the lack
of an impact model prevented us from detailed analysis.
Nevertheless, we also found a range of model parameters
and initial conditions, for which simultaneous impacts do not
occur, moreover impacts absorb the energy of the disk at an
increasing rate and the exponent of the corresponding energy
profile may take any value in the range c ∈ [0 2]. This finding
is surprising since any other previously examined dissipation
mechanism revealed exponents c = 4/9 or higher. Hence our
results suggest that energy absorption during the last phase
of motion of a spinning disk may be dominated by impacts
in the case of a relatively low coefficient of restitution and
radius of gyration. This result remains partial since we do not
examine the transition from disk-like behavior to bouncing
motion on three point contacts and thus we do not demonstrate
that the second type of motion is initiated with appropriate
initial conditions.

As [6] pointed out, we may find different dominant energy
dissipation mechanisms depending on the time-scale chosen.
The main conclusion of that paper is that rolling friction
(with dissipation exponent 0.5) is dominant over the time
scale of seconds but other effects (with lower exponents)
may become dominant during the last few milliseconds. We
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now provide a rough estimation of the time scale over which
impacts may become dominant. Assume that the actual shape
of the underlying surface deviates from its ideal, planned
shape by � ≈ 10−4...−5 m. and that the diameter of the disk
is d = 10−1 m. Then, the triangle model yields a reasonable
description of the motion, when the inclination angle drops
significantly below α ≈ �/d = 10−3...−4 rad. According to
the experimental results of Leine (Fig. 6 of [6]), the inclination
angle drops below this critical value during the last 0.1 . . . 1
sec of the motion. Hence, we conclude that imperfections may
affect energy dissipation during the last few tenths of second.
This estimation confirms with the observation that the last
second is accompanied by a strong rattling noise that has been
attributed to impacts by some authors. We also believe that
if the system has the CC property, then the effect of impacts
quickly becomes dominant, once the first impacts occur. This
prediction is based on the observation that our triangle model
undergoes intensive energy dissipation with the inclination
angle dropping from 10−4 rad to zero within only ≈10−5 sec.

The most important restriction of our analysis is the
assumption of ideal rigidity. Clearly, when a thin disk
undergoes rapid sequences of impacts, then its motion may
be accompanied by significant elastic vibrations. When the
inclination angle of the disk is small, then even small-
amplitude vibrations have a strong effect on the locations and
intensities of impacts between the object and the underlying
ground. The analysis of energy dissipation via impacts in a
model including elastic deformations is one of the possible
directions of further research.
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APPENDIX A: ENERGY DISSIPATION EXPONENT
OF AN N-GON

Here we demonstrate that the only possible value of the
exponent c is 2.

The proof will use the following simple property of impacts
with a fixed value 0 < γ < 1 of the restitution coefficient. Let
�E < 0 denote the energy dissipation during an impact and
let �p denote the velocity jump vector during the same impact.
Then for any given finite-sized system with non-singular mass
matrix, there are constants κ1,κ2 > 0 such that every impact
satisfies

κ1|�p| <
√−�E < κ2|�p|. (A1)

Now, let us assume first that Eq. (56) is satisfied with c < 2.
Then for tf − t � 1, the bounds (56) imply that√

E(t) � tf − t.

Together with Eq. (A1), this result means that the total variation
of p due to impacts during the time interval (t,tf ) is much
smaller than tf − t . In other words the effect of impacts
on p is negligibly small in comparison with the effect of
gravity and contact forces during continuous motion. We

must have p(tf ) = q(tf ) = 0 at the time of the singularity,
which means that the center of mass is on the ground and it
has zero velocity. Nevertheless during continuous motion, the
vertical acceleration of the center of mass is always negative by
Eqs. (12),(10). Hence the center of mass must penetrate into the
ground shortly before the singularity, which is contradiction.

Second, let us examine the possibility of c > 2 in Eq. (56).
Similarly to the case of c < 2 we can now conclude that if t

is very close to tf , then the effect of continuous motion on p

during the time interval (t,tf ) is negligible in comparison the
effect of impacts. The bouncing motion of polygonal objects in
the absence of gravity has been investigated by the paper [22].
Our results show that without the effect of gravity, a regular
n-gon shaped object will always separate from the ground
after a finite number of impacts provided that the radius of
gyration is above a certain threshold ρ0(n,γ ), which depends
on n and γ . For high values of n, this threshold becomes very
low, and thus a homogeneous disk may not undergo finite-time
singularity with infinitely many impacts. This completes our
proof that the only possible value of the energy dissipation
exponent is c = 2.

APPENDIX B: EXPLICIT EXPRESSIONS FOR C̄

The map C̄ is composed of three maps. The first one is a
linear map corresponding to impact at vertex 0:

[
p̄i

q̄i

]
→

[
pia

qia

]
:=

[
U0p̄i

q̄i

]
,

where U0 is given by Eq. (30). The second map corresponds
to continuous motion starting at this impact and ending when
vertex 1 hits the ground:

[
pia

qia

]
→

[
pib

qib

]
:=

[
pia + acontactτi

qia + piaτ + acontactτ
2
i

/
2

]
,

where acontact is given by Eq. (26) and τi � 0 is the duration
of motion, which can be determined from the requirement that
vertex 1 hits the ground at the end of the motion, i.e.,

f T
1

(
qia + piaτi + acontactτ

2
i /2

) = 0.

This is a second-order equation for τi with exactly one
non-negative root. Finally, the third component of C̄ is the
transformation T1:

[
pib

qib

]
→

[
p̄i+1

q̄i+1

]
:= T1

([
pib

qib

])
.

These components together yield the expressions (50),(51).

APPENDIX C: SELF-SIMILAR MOTION
IN THE ABSENCE OF GRAVITY

Here, it will be shown for arbitrary value of n, that the
conditions (71) and (72) are together equivalent of requiring
that βp and βq are both positive, real eigenvalues of R−1U0.
The equivalence is demonstrated in to steps
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Step 1: Self-similarity implies that βp, βq are eigenvalues:
The self-similarity conditions (71),(72) can be expanded

as

U0p0 = Rβpp0, (C1)

q0 + U0τ0p0 = Rβqq0. (C2)

The first condition can be rearranged as

R−1U0p0 = βpp0, (C3)

i.e., βp is an eigenvalue and p0 is the corresponding eigenvector
of R−1U0. The second condition can be rearranged to obtain
either one of the following two formulas:

R−1q0 + R−1U0p0τ0 = βqq0, (C4)

R−1q0 = βqq0 − R−1U0p0τ0, (C5)

which will be used below. Also, since U0 represents an impact
at vertex 0, we have f T

0 x = 0 ⇒ U0x = x for any vector x.
We can apply this identity to q0, since it has been defined as
an impacting configuration, i.e., f T

0 q0 = 0. Thus

U0q0 = q0. (C6)

Now we write a simple identity and rearrange it in several
steps in which Eqs. (C4),(C6),(C5), and (C3) are used,
respectively:

(R−1U0)((βp − βq)q0 + βpτ0p0)

= βp(R−1U0)(q0 + τ0p0) − βq(R−1U0)q0 (C7)

= βpβqq0 − βq(R−1U0)q0 (C8)

= βq(βpq0 − R−1q0) (C9)

= βq(βpq0 + R−1U0p0τ0 − βqq0) (C10)

= βq((βp − βq)q0 + τ0βpp0). (C11)

Thus,

(R−1U0)((βp − βq)q0 + βpτ0p0)

= βq((βp − βq)q0 + βpτ0p0) (C12)

which means that βq is also an eigenvalue.
Step 2: Each pair of distinct eigenvalues corresponds to

self-similar motion
Let us consider a pair of eigenvalues βp and βq with the

corresponding eigenvectors being p0 and s. Then, the self-
similarity condition (71) is trivially satisfied.

Next, we seek a vector

q0 = αs + δp0 (C13)

such that Eqs. (36) and (C2) hold. To this end we plug Eq. (C13)
into Eq. (C2) and perform some algebraic manipulation:

αs + δp0 + U0τ0p0 = Rβq(αs + δp0), (C14)

R−1(αs + δp0) + R−1U0τ0p0 = βq(αs + δp0), (C15)

R−1U0(αs + δp0 + τ0p0) = βq(αs + δp0), (C16)

αβqs + δβpp0 + τ0βpp0 = βqαs + βqδp0, (C17)

(δβp + τ0βp)p0 = βqδp0, (C18)

δβp + τ0βp = βqδ, (C19)

δ = βpτ0/(βq − βp) (C20)

which is a valid solution whenever βp �= βq .
The condition f T q0 yields

f T (αs + δp0) = 0, (C21)

α = δf T
0 p/f T s. (C22)

This formula is valid if f T s �= 0, holds, which is provably
always true. Hence we have found values of δ, α such that
that the resulting value of q0 given by Eq. (C13) satisfies all
conditions.
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