
PHYSICAL REVIEW E 96, 033004 (2017)

Avalanche precursors in a frictional model
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We present a one-dimensional numerical model based on elastically coupled sliders on a frictional incline
of variable tilt. This very simple approach makes it possible to study the precursors to the avalanche and to
provide a rationalization of different features that have been observed in experiments. We provide a statistical
description of the model leading to master equations describing the state of the system as a function of the angle
of inclination. Our central results are the reproduction of large-scale regular events preceding the avalanche,
on the one hand, and an analytical approach providing an internal threshold for the outbreak of rearrangements
before the avalanche in the system, on the other hand.
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I. INTRODUCTION

Identifying precursors to avalanches has inspired numerous
works with the hope of being able to detect catastrophic events
before they occur. A physicist approach consists in simplifying
the system in order to single out the fundamental mechanisms
underlying the phenomenon. For example, models based on
cellular automata have been proposed to study avalanches
[1]. From an experimental point of view, a model setup to
study the behavior of a granular material before an avalanche
takes place consists of the progressive inclination of a box
filled with a granular material [2–6]. In such experiments, it
has been evidenced that the response of the system consists
of the superposition of two different behaviors: on the one
hand, small rearrangements implying only a small number of
grains occurring without any obvious synchronization across
the system, and on the other hand, large correlated events
implying a large fraction of the system. Those last events have
been shown to emerge from an angle at about half the avalanche
angle [4] and then to occur at regular angle increments as
the inclination increases until the destabilization of the pile
[2–4]. To our knowledge, no explanation of the regularity of
those preavalanche events exists in the literature, nor does
any numerical observation of the phenomenon [7–9]. Yet,
such microevents have been observed in different loading
configurations [2,10,11] and are reminiscent of precursors
observed in studies of the onset of frictional sliding [12].

Here, we present a one-dimensional frictional model that
reproduces most of the features reported in the experiments.
In particular, the regular microruptures are reproduced and an
interpretation of the origin of the regularity of the phenomenon
as a stick-slip response is given. Synchronization of this
periodic response in large, disordered systems is exhibited
by incorporating a global coupling in the model. The physical
origin of this coupling is discussed. The simplicity of our
model makes it possible to provide master equations to
describe the evolution state of the system as the inclination
is increased. This analytical approach reveals an internal angle
indicating an intensification of the process.
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The article is structured as follows: Sec. II is devoted to the
description of the numerical model. Section III presents the
results obtained for three typical sets of parameters: a small
system without global coupling, a large system without global
coupling, and finally a large system with global coupling.
Section IV details a statistical approach to rationalize our
observation. The last part discusses the understanding of the
preavalanche behavior that can be obtained from our approach
and compares our results to previous studies from the literature.

II. NUMERICAL MODEL

A. Description

The system under study is very close in spirit to the
one-dimensional uniform Burridge-Knopoff model [13]. This
seminal work has inspired numerous studies aimed at under-
standing the dynamics of earthquake faults using spring-block
models [13–15]. Similar models are also studied to understand
the onset of frictional sliding between two interfaces in
tribological studies [16,17]. In our case we build on a model
which has been previously proposed to study the effects
of minute temperature changes on the stability of granular
materials [18,19]. The main features of the present study
compared to previous ones are the following: (i) we consider
an homogeneous gravitational loading due to the progressive
inclination of the blocks, (ii) we are interested in the evolution
of the system from an initial preparation to the critical
state which immediately precedes the avalanche, and (iii) we
propose an implementation of some long-range coupling in the
system. We discuss the physical origin of this global coupling
in Sec. V.

We consider N identical frictional sliders of mass m lying
on a rigid incline making the angle α with the horizontal
(Fig. 1). The sliders are connected to one another by linear
springs of stiffness k. In addition, each slider is connected
to a rigid upper plate by a cantilever spring of stiffness kc.
The upper plate ensures a global coupling between the sliders.
The springs as well as the upper plate are massless. In this
configuration, the sliders are subjected to the elastic forces due
to the springs, to their own weight mg, with g the acceleration
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FIG. 1. Sketch of the system under study.

due to gravity, and to the reaction force from the incline which
includes a frictional force. The notations used in the following
are shown in Fig. 1.

One of the fundamental differences between the system
under study and the usual Burridge-Knopoff (BK) models is
found in the loading process. Indeed, we focus on the response
of the system to a progressive increase of the inclination
angle α, whereas, in BK models, the system is usually loaded
by pulling it at one extremity. We prepare the system at
the horizontal, and then progressively increase the tilt in a
quasistatic way until all the sliders descend the slope, which
corresponds to the final avalanche. We are interested in the
temporal and spatial distribution of the rearrangements that
lead to the avalanche. In particular, we want to study how the
distribution of the static frictional forces exerted on the sliders
is modified from an initially uniform preparation because of
the progressive loading.

Another difference is found in the modeling of the frictional
contact. Whereas in most of the BK models velocity weakening
of the friction force is introduced, we here characterize the
frictional contact between the incline and the sliders by static
and dynamic frictional coefficients. However, we consider that,
due to the heterogeneity of the local properties of the incline
surface, the static coefficient μs,n takes a different value for
each of the individual sliders, indexed by n (from 1 to N ,
Fig. 1). By contrast, because the sliders in motion see average
properties of the incline surface, we consider a single value
μd of the dynamical frictional coefficient for all the sliders.
Note that, in addition, we consider that μd < μs,n (∀n). Thus,
in summary, we write that the slider n starts moving if

|fn+1→n + fn−1→n + fC→n + mg sin α| > μs,n mg cos α,

(1)

where fn+1→n and fn−1→n are the elastic forces due to the
neighbor sliders n − 1 and n + 1, and fC→n is the elastic
force due to the cantilever spring that connects it to the upper
plate. When the slider n is in motion with the velocity ẋn, the
frictional force exerted by the incline is

fd,n = −μdmgS(ẋn) cos α, (2)

where S denotes the sign function [S(u) = 1 if u > 0 and
S(u) = −1 if u < 0].

B. Dimensionless set of equations

The dynamics of the system is characterized by the time
scale τdyn = √

m/k. We can then introduce the dimensionless
time t̃ = t/τdyn and position x̃ = x/gτ 2

dyn. We then denote l̃

the dimensionless natural length of the springs that link the
sliders to one another and define ξ ≡ kc/k, the ratio of the
stiffnesses of the two kinds of springs introduced previously.

Using these latter dimensionless variables, we can write the
equations governing the dynamics of a slider in motion. We
have [Eq. (2)]

¨̃x1 = − [x̃1 − x̃2 + l̃] − ξ
[
x̃1 − x̃

(c)
1

]
− μdS( ˙̃x1) cos α + sin α (n = 1), (3)

¨̃xn = − [2x̃n − (x̃n+1 + x̃n−1)] − ξ
[
x̃n − x̃(c)

n

]
− μdS( ˙̃xn) cos α + sin α (n �= 1,N ), (4)

¨̃xN = − [x̃N − x̃N−1 − l̃] − ξ
[
x̃N − x̃

(c)
N

]
− μdS( ˙̃xN ) cos α + sin α (n = N ), (5)

where

x̃(c)
n = 1

N

N∑
i=1

x̃i +
(

n − N + 1

2

)
l̃∗ (6)

with l̃∗ the dimensionless, constant distance (l̃∗ ≡ l∗/gτ 2
dyn)

between the attachment positions x(c)
n of the cantilever springs

to the upper plate (Fig. 1; see next section addressing the
preparation of the system). Equation (6) reflects the fact that
the upper plate moves with the barycenter of the sliders.

Depending on its position indexed by n, a slider, initially
at rest, starts moving if the following condition is fulfilled
[Eq. (1)]:

∣∣x̃2 − x̃1 − l̃ − ξ
[
x̃1 − x̃

(c)
1

] + sin α
∣∣ > μs,1 cos α (n = 1),

(7)∣∣x̃n+1 + x̃n−1 − 2x̃n − ξ
[
x̃n − x̃(c)

n

]
+ sin α

∣∣ > μs,n cos α (n �= 1,N ), (8)∣∣x̃N−1 − x̃N + l̃ − ξ
[
x̃N − x̃

(c)
N

]
+ sin α

∣∣ > μs,N cos α (n = N ). (9)

C. Numerical method

In this section, we detail the numerical methods, starting
with the crucial preparation of the initial state of the system.

1. Preparation of the system

First, the initial set of static frictional coefficients μ(0)
s,n

accounting for the contact between the slider n and the incline
(angle α = 0, initially) are drawn at random from a Gaussian
distribution:

p(μs) = 1√
2πσ 2

μ

exp

[
− (μs − μ̄s)2

2σ 2
μ

]
, (10)
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where μ̄s is the mean value and σμ the width of the distribution.
However, if μd exceeds μs , we draw μs again at random until
we have μd < μs .

Once the initial set of static frictional coefficients μ(0)
s,n is

chosen, we set the initial positions of the sliders, x̃(0)
n , ensuring

the mechanical stability of the initial configuration in absence
of global coupling. (The cantilever springs are disconnected,
i.e., ξ = 0.) To do so, a set of random frictional forces
is drawn according to a uniform distribution in ] −μ̄s,μ̄s[.
The corresponding positions, x̃(0)

n , of the sliders are then
computed. When considering the behavior of the system in
the absence of coupling (ξ = 0), the obtained configuration is
our initial condition. When the behavior of the system with
coupling (ξ �= 0) is considered, we alter the configuration in
the following way. First, we set l̃∗ ≡ (x̃(0)

N − x̃
(0)
1 )/(N − 1),

the average distance between the sliders. Then, the coupling
is introduced by connecting the cantilever springs to the upper
plate (by setting ξ to a nonzero value). In response, some
sliders can lose stability. If so, the dynamical equations (3)–(5)
are integrated until a mechanically stable configuration is
reached. The final positions, x̃(0)

n , of the sliders are then our
initial condition.

2. Numerical integration

From the initial horizontal state (α = 0), the tilt angle α

is progressively increased. From the knowledge of the static
frictional coefficients μ(0)

s,n and positions x(0)
n , we can determine

the value of the angle α(1) leading to a first rearrangement
using Eqs. (7)–(9). The dynamical equations are then solved
to obtain the set of new steady positions x(1)

n of the sliders
that moved. To do so, we set the angle α to α(1) and integrate,
using a standard velocity Verlet integrator (with a time step
�t � τdyn), the dynamical equations (3)–(5) for all the sliders
that enter in motion. At each integration step, we check if any of
the motionless sliders are destabilized by any displacement of
their neighbors. In case of such an event, the integration step is
reduced until the initiation of the motion of the corresponding
slider. In the same way, we check if any slider in motion
comes to rest and we adapt the integration step accordingly.
A new value of the static frictional coefficient is drawn at
random, according to Eq. (10), for those sliders that come to
rest. We consider that the rearrangement ends when all the
sliders have come back to rest. The new state of the system is
then accounted for by the sets of new steady positions x(1)

n and
static frictional coefficients μ(1)

s,n.
From those new initial conditions the procedure can be

iterated, leading to a set of destabilization angles α(k) asso-
ciated to positions x(k)

n and static frictional coefficients μ(k)
s,n.

The procedure ends when the angle α reaches a critical value,
αc, such that all the sliders enter in motion and continuously
accelerate downwards. This final angle is, by definition, the
avalanche angle.

III. NUMERICAL RESULTS

In order to get insights into the behavior of the model, we
report numerical results obtained for three typical systems,
small and large systems with or without coupling:

(a) N = 10 sliders without coupling (ξ = 0).
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FIG. 2. Behavior of a small system without global coupling
upon inclination. (a) Hot map of the displacements �x̃i vs angle
α. Each horizontal line corresponds to one slider. The darker the
points are, the larger is the displacement of the slider. The vertical
dashed line corresponds to the avalanche angle and �μ = μ̄s − μd .
(b) Tangential force F̃t (F̃t = f̃n+1→n + f̃n−1→n + f̃C→n + sin α) vs
angle α. (The slider number is indicated by the color bar.) The upper
dashed line is the stability limit μ̄s cos α. The lower dashed line is the
arrest limit (2μd − μ̄s) cos α. The dash-dotted line is sin α (N = 10,
ξ = 0, l = 10, μd = 0.55, μ̄s = 0.6, and σμ = 0.01).

(b) N = 400 sliders without coupling (ξ = 0).
(c) N = 400 sliders with coupling (ξ �= 0).
In all the simulations we set the parameters to typical values:

l = 10, μd = 0.55, μ̄s = 0.6, and σμ = 0.01.

A. Small system with no global coupling

In Fig. 2 we report results obtained for a small system
of N = 10 sliders in the absence of coupling (ξ = 0). We
observe in Fig. 2(a) that, far from being uniformly distributed
either between the sliders or during the inclination process,
the displacements are gathered in bursts of displacements
of adjacent sliders at given angles separated by quiescent
inclination intervals. Moreover, the interval between the
inclination angles α that leads to rearrangements seems to
be almost constant.

These features can be understood by considering the
evolution of the tangential component of the force, due to the
springs and the weight, on each of the sliders as a function of
α [Fig. 2(b)]: F̃t = f̃n+1→n + f̃n−1→n + f̃C→n + sin α. While
α is increased, the component of the weight along the
incline increases as sin α (dash-dotted line). Starting from the
horizontal (α = 0), we observe that the first rearrangement
occurs for α 	 0.1, when the most unstable slider loses
stability. The displacement of this slider leads to a drop of the
force it is submitted to. Simultaneously, the tangential forces
exerted on its two direct neighbors present a sudden increase.
At about α 	 0.2, the same block again loses stability, and
drags downwards one of its neighbors which then also loses
stability and moves. A further increase of the inclination by a
few degrees leads to another rearrangement that involves three
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FIG. 3. Behavior of a large system without global coupling upon
inclination. (a) Hot map of the displacements �x̃i vs angle α.
(b) Tangential force F̃t vs angle α. The upper dashed line is the
stability limit μ̄s cos α. The lower dashed line is the arrest limit
(2μd − μ̄s) cos α (N = 400, ξ = 0, l = 10, μd = 0.55, μ̄s = 0.6,
and σμ = 0.01).

sliders and thus a larger region. Sliders that were unperturbed
up to now are now adjacent to sliders that move, and the
tangential forces they are subjected to exhibit sudden increases,
which places them closer to the instability threshold. Hence,
step by step, the bursts of reorganizations imply more and
more sliders. Finally, a critical angle, αc 	 0.5, is reached
at which all the sliders destabilize and accelerate down the
incline. Note in Fig. 2(b) that the tangential forces exerted on
the sliders that rearranged at least once are bounded by two
well-defined values.

B. Large system with no global coupling

For a large system, we observe the same typical behavior of
the system with the main difference that bursts of rearrange-
ments are observed at different places in the system [Fig. 3(a)].
The picture is more complex as the rearrangements that occur
in different regions are not synchronized. In addition, the
intervals between the inclination angles α are, on average,
smaller than previously observed in a smaller system. Note
also that, upon increasing inclination, the typical size of the
active regions increases, which leads to their coalescence.

Reporting the tangential components of the forces
[Fig. 3(b)], we observe that rearrangements initiate at different
locations as the instability threshold is reached by several
sliders early in the inclination process. Upon further increase
of the inclination angle, each of the active regions evolves, and
grows in size, as previously described for the smaller system,
which leads, finally, to the avalanche of the whole system.

C. Large system with global coupling

From now on, it is of particular interest to observe the
behavior of the exact same system when a slight global
coupling is introduced. To do so, we set the ratio of the spring
constants k and kc to the small, but nonzero, value ξ = 0.001.

FIG. 4. Behavior of a large system with global coupling upon
inclination. (a) Hot map of the displacements �x̃i vs angle α.
(b) Tangential force F̃t vs angle α. The upper dashed line is the
stability limit μ̄s cos α. The lower dashed line is the arrest limit
(2μd − μ̄s) cos α (N = 10, ξ = 0.001, l = 10, μd = 0.55, μ̄s = 0.6,
and σμ = 0.01).

Comparing the behavior of the system with (Fig. 4) and
without (Fig. 3) coupling, we immediately notice the coupling
leads to larger rearrangements, involving more sliders and
larger displacements than in the uncoupled system. In addition,
in Fig. 4, we observe two main active regions involving the two
extremities of the system. From an angle of α ∼ 0.4, the upper
region extends over more than half the size of the system. We
also note that the two active regions synchronize at α � 0.42
even if they do not overlap until the avalanche of the whole
system which occurs for α 	 0.51.

In Fig. 4(b), we observe that the tangential components
of the forces behave as previously observed in the absence
of coupling [Fig. 3(b)]. Those components, for the sliders
that moved at least once, are bounded by two well-defined
values. The effect of the global coupling is clearly visible in
the evolution of the tangential component of the forces for
α � 0.42: for each rearrangement, the tangential component
corresponding to the sliders that are not involved exhibits
a large increase. This synchronization is also visible by
focusing on the behavior of the forces between the two
dashed lines in Fig. 3(b) which correspond to the sliders that
moved.

IV. ANALYTICAL MODEL

We present in this section a simple approach which
allows one to understand the main features that have been
observed in the simulation. First we study the case of a single
slider surrounded by two immobile blocks (Sec. IV A). In
Sec. IV B 2, we see how a statistical model can be built from
the results obtained with a single slider. In this section no
global coupling is ever considered (ξ = 0). The effect of the
coupling, as well as the comparison with experiments, is the
subject of the discussion (Sec. V).
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FIG. 5. Tangential force F̃t vs angle α. The upper dashed line is
the stability limit μ̄s cos α. The lower dashed line is the arrest limit
(2μd − μ̄s) cos α. Inset: Sketch of the system under study (μd = 0.55
and μd = 0.6).

A. A single slider

Let us first consider a single slider bonded by two springs
to two immobile walls as sketched in Fig. 5. We consider
that the walls are located at x∗

− and x∗
+. Initially, the system

is horizontal (α = 0) and the slider is at stable position x(0).
For the sake of simplicity, we assume that static frictional
coefficient is constant and equal to μs . Indeed, in practice
σμ � 2μs , such that the associated width of the distribution
of the static frictional force can be neglected when compared
to the variation of the tangential force associated to the choice
of x(0).

From Eq. (1), we can determine the angle α(1) correspond-
ing to the limit of stability of the slider:

F̃
(0)
t + sin α(1) = μs cos α(1), (11)

where

F̃
(0)
t = x̃∗

+ + x̃∗
− − 2x̃(0).

Once α(1) is reached by tilting the system, for this simple case
the dynamical Eqs. (2) can be solved analytically, which leads
to

�x̃(1) ≡ x̃(1) − x̃(0) = (μs − μd ) cos α(1). (12)

The tangential force exerted on the block in its new position is

F̃
(1)
t = μs cos α(1) + �F̃ (1), (13)

where

�F̃ (1) = −2(μs − μd ) cos α(1).

In the same way, upon further inclination, the slider
destabilizes for α(2), verifying(

F̃
(1)
t − sin α(1)

) + sin α(2) = μs cos α(2). (14)

Assuming that �α(2) = α(2) − α(1) is small, we get to the first
order

�α(2) = 2(μs − μd )

1 + μs tan α(1)
, (15)

which remains small provided that μs − μd � 1. The reason-
ing can be reproduced for any of the rearrangements, leading
to

�α(i+1) = 2(μs − μd )

1 + μs tan α(i)
. (16)

Thus, a generic behavior emerges as shown in Fig. 5.
We observe, first, a loading phase, which depends on the
initial position x̃(0). The tangential component of the force, F̃t ,
increases continuously until it reaches the instability threshold
for α = α(1) and suddenly drops by �F̃

(1)
t . Then, rearrange-

ments occur for successive values α(i) of the inclination angle.
They are marked by sudden drops �F̃

(i)
t of the tangential

component, followed by continuous increase towards the next
threshold. In a first-order approximation in α, the force drops
�F̃ (i) do not depend on the initial position of the slider. In
addition, for small enough angle α(i), the interval �α(i+1) is
almost constant and equal to �α 	 2 (μs − μd ). Such periodic
behavior is reminiscent of the well-known stick-slip motion.
Finally, note that a sliding event leading to a drop �F̃

(i)
t

of the force exerted to the slider results in an increase by
�F̃

(i)
t /2 = (μs − μd ) cos α of the force exerted on each of the

walls.

B. Statistical point of view

As seen in the discussion in Sec. V, the simple analysis of a
single slider between two walls helps one to understand most
of the features observed for a small system. For large systems,
however, where the pattern that emerges is more complicated
(Sec. III B), a statistical approach is more appropriate to model
the system.

In the present section, we seek master equations describing
the evolution of the distribution of the tangential forces F̃t in a
system as a function of the inclination angle α. We make strong
approximations to be able to provide an analytical model, but
we compare the solutions we obtain to numerical simulations
of large systems in the absence of global coupling (ξ = 0).

1. Qualitative analysis

We report in Fig. 6 the probability distribution function
of the tangential forces, F̃t , exerted on the sliders at different
values of the inclination angle α, in absence of global coupling
(ξ = 0).

Initially, at α = 0 (dark blue curve in Fig. 6), the distribution
is flat in the interval ] −μs,μs[, which corresponds to the
initial, random preparation of the system at the horizontal
(Sec. II C).

Upon inclination, we observe that the distribution functions
exhibit two main parts: (1) a rather flat part for F̃t � 0.4
with a well-defined plateau at the constant initial value (the
lowest values of F̃t are slowly depleted) and (2) a peak, for
0.4 � F̃t � μ̄s , that grows rapidly. The qualitative behavior of
the distribution function can be understood as follows. Upon
inclination, the lowest values of F̃t are depleted because of
the increase of the projection of the weight along the incline.
By this simple effect, the lower bound of the distribution
increases according to −μ̄s cos α + sin α. Conversely, upon
increasing inclination, sliders lose stability. The upper bound,
which equals μ̄s cos α according to Eq. (1), slightly decreases,
but this variation can be neglected at the first order. The value
of F̃t for the sliders that moved remains close to the upper
bound. The peak grows as their number increases. This picture
holds as long as the plateau and the peak are well separated,
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FIG. 6. Probability distribution function of the tangential force
F̃t upon inclination, at different values of the inclination angle. Each
distribution corresponds to an average, at a given α (indicated by
the color scale), over 20 numerical runs. Inset: Enlargement of the
distribution for F̃t < 0.4 (N = 100, ξ = 0, l̃ = 10, μd = 0.55, μ̄s =
0.6, and σμ = 0.01).

i.e., for α � 0.25. Then, the contribution of the sliders that are
involved in the rearrangements becomes predominant.

In order to get more insights in the contribution of the
rearrangements, we focus on the distribution of the values
of F̃t for only the sliders that moved (Fig. 7). Defining
F̃ ∗

t ≡ (2μd − μ̄s) cos α, we observe that, for small inclination,
the distribution function is peaked around F̃t /F̃

∗
t = 1. This

observation shows that the rearrangements initially involve
single sliders, and the width of the peak is directly linked
to the width of the distribution of μs . By contrast, for large
inclination, the distribution function exhibits a peak close to
the value F̃t /F̃

∗
t 	 1.1, which is an upper limit for all the

distribution functions.

FIG. 7. Probability distribution function of the ratio F̃t /F̃
∗
t for

the sliders that moved upon inclination. The data are from the same
20 numerical runs as in Fig. 6 [(N = 100, ξ = 0, l̃ = 10, μd = 0.55,
μ̄s = 0.6, and σμ = 0.01).
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FIG. 8. Schematic representation of the histogram equivalent to
the probability distribution function of the tangential force F̃t at a
given inclination angle α. The arrows indicate the main modification
of the distribution upon further inclination by δα (see Sec. IV B 2).

We can understand the accumulation of the tangential forces
at this limit value in the following way. First, let us mention
that F̃t /F̃

∗
t 	 1.1 corresponds to F̃t = μd cos α. For rear-

rangements implying several interacting sliders, the movement
becomes complex enough for the vanishing velocities not to
be determined by a sinusoidal movement, but by the overall
slowing down of the dynamics due to dissipation. At the limit
of vanishing accelerations, the sum of elastic forces and weight
on each block compensates the dynamical friction so that,
when the block stops, the value of the resultant tangential
force is typically less than μd cos α, and thus controlled by the
dynamical frictional coefficient.

In conclusion, after a sliding event, for the sliders implied in
the event, the tangential forces F̃t drop by a quantity comprised
between �μ cos α and 2�μ cos α with �μ = μ̄s − μd . This
is the main ingredient of the model we present in Sec. IV B 2.

2. Model

Here we present a model based on the prior observations.
We consider in Fig. 8(a) a schematic representation as a bar
histogram of the distribution function reported in Fig. 6. To
do so, we discretize the probability density function in bins
of width 2�μ with �μ = μ̄s − μd . In addition, in a first
approach, we neglect the effect of the inclination on the upper
bound, which we assume to equal μ̄s . We denote by ν the
number of bins of width 2�μ, starting from the upper bound,
μ̄s , and including the lower bound, sin α − μ̄s . Thus, ν is a
function of α that decreases with α as ν(α) = � 2μ̄s−sin α

2�μ
�. For

convenience, the bins are numbered from large to small forces
such that the bin 1 denotes the peak on the right-hand side,
corresponding to the peak of the distribution. We denote Pi

the height of bin i. With these definitions, the probability for
a slider to be submitted to a tangential force belonging to bin
i is given by 2�μPi .

As a result of an angular increment δα, all the tangential
forces increase because of the increase of the tangential
component of the weight which goes like sin α. Consequently,
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in the distribution, N cos αPiδα sliders shift from bin i to bin
i − 1, except for bin 1. This process is sketched by the red solid
arrows in Fig. 8. For bin 1, N cos αP1δα sliders lose stability.
From the qualitative description of the system (Sec. IV B 1),
we know that the final value of F̃t after the rearrangement lies
mostly between μd cos α and (μs − 2�μ) cos α. Thus, after
the rearrangements, the sliders remain in bin 1. This process
is sketched by the blue dashed arrow in Fig. 8.

This simple process can be put into equations in the form

dPν

dα
= − 1

2�μ
Pν,

dPi

dα
= 1

2�μ
(Pi+1 − Pi) (i �= 1,ν), (17)

dP1

dα
= 1

2�μ
P2.

Starting from the condition that the distribution is uniform for
α = 0, from Pi(0) = 1

2μ̄s
we get

Pν(α) = 1

2μ̄s

e
− α

2�μ ,

Pi(α) = 1

2μ̄s

[
ν−i∑
k=0

1

k!

(
α

2�μ

)k
]
e
− α

2�μ ,

P1(α) = 1

2μ̄s

⎧⎨
⎩ν − 1 −

ν−2∑
k=0

⎡
⎣ k∑

j=0

1

j !

(
α

2�μ

)j

⎤
⎦e

− α
2�μ

⎫⎬
⎭.

(18)

It is of particular interest to focus on the behavior of the
solution far from the lower boundary. For realistic values of
μs and μd , ν(α) remains large and, in the limit ν − i 
 1, we
have

∑ν−i
k=0

xk

k! 	 ex (∀x). Consequently, for small angle α so
that ν(α) is still large [ν(0) = μ̄s

�μ

 1 for realistic values of

μs and μd ] and for i � ν, i.e., far from the lower bound of the
system, we have

Pi(α) 	 1

2μ̄s

(i �= 1) ∧ (i � ν),

P1(α) 	 1

2μ̄s

(
1 + α

2�μ

)
. (19)

Note that, as is, P1(α) accounts for the amplitude of the peak
at large F̃t as a function of the inclination whereas the constant
Pi(α) corresponds to the plateau.

We can now compare our model [Eq. (18)] and its limiting
case [Eq. (19)] to the results of the numerical simulations. To
do so, we report in Fig. 9 the probability Pi as a function of
the inclination angle α for the data already reported in Fig. 6.

First, we observe that Eq. (19) correctly describes the linear
increase of the amplitude of the peak P1 at large F̃t in a large
range of inclination angle α (zero to typically 0.38). Second,
Eq. (19) also accounts for the constant value of Pi in the
same range of inclination, but only for the largest values of
F̃t . Slightly less crude, Eq. (18) predicts the decrease of the Pi

(i �= 1) upon increasing α. However, reporting the probability
of the smallest value of F̃t , we observe the model underesti-

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3
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6

7

α (rad)

P
i

−0.6
t

0 0.6

F~

FIG. 9. Height Pi vs angle α for the data of Fig. 6. The dashed
straight lines correspond to prediction of the crude model [Eq. (19)].
The exponential decay of Pν(α) is given in Eq. (18). The dotted
line is a guide for the eye. The vertical solid line is the threshold
from Eq. (21) (N = 100, ξ = 0, l̃ = 10, μd = 0.55, μ̄s = 0.6, and
σμ = 0.01).

mates the depletion of the smallest values of F̃t . This point is
further commented on in the discussion (Sec. V).

In spite of this reasonably good agreement between the
model and the numerical results, a trend observed in Fig. 9,
which is not described at all by the model, is the linear increase
of P2 starting at α 	 0.2, followed by a sharp increase for α �
0.4. We observe that, for 0.2 � α � 0.4, the slope dP2/dα =

1
4μs�μ

and thus takes the same value as dP1/dα. The model
fails in accounting for the increase of P2 because we did not
consider the decrease of the upper bound upon inclination (the
maximum force value evolves like cos α). As a matter of fact,
due to the shift of the upper bound, bin 2 takes the place of bin
1 as the inclination proceeds.

Up to now, we commented mainly on the behavior of the
system for limited values of the inclination angle α � 0.38.
For α � 0.38, a drastic change in the behavior of all the
probabilities Pi is observed. Indeed, the probability of the
largest values, i.e., P1 + P2, drastically increases, whereas
the probabilities of smaller values Pi (i > 2) decreases. One
interesting question is whether our model is able to predict
the typical angle, αt 	 0.4, at the transition. To answer the
question, consider the probability P3 of the force just below
the peak:

P3(α) = 1

2μs

[
ν(α)−3∑
k=0

1

k!

(
α

2�μ

)k
]
e
− α

2�μ

	 1

2μs

(
1 − 1

(ν(α) − 2)!

(
α

2�μ

)ν(α)−2
)

.

We previously considered that ν(α) was large enough for the
term on the right-hand side in the parentheses to be negligible.
Let us assume that this is not the case anymore and that this

033004-7



AMON, BLANC, AND GÉMINARD PHYSICAL REVIEW E 96, 033004 (2017)

term is about 1/10, i.e., that

1

(ν(α) − 2)!

(
α

2�μ

)ν(α)−2

= 0.1. (20)

Using the Stirling approximation and the definition of ν(α),
we get

αt 	 2μs

1 + e
	 0.54 μs, (21)

which, we point out, does not significantly depend on the
choice of the value 0.1 in Eq. (20). We thus get αt ∼ 0.32 for
μ̄s = 0.6, which underestimates the observed value. However,
in regard to the crude approximations we made, we can
consider that this last estimate is reasonable.

V. DISCUSSION

A. Discussion of the model

The very simple model of a single slider (Sec. IV A)
provides a good understanding of the occurrence of the local,
quasiperiodic dynamics since the beginning of the inclination
process, i.e., for small tilt angle α (typically � 0.2). Even in
a large system, the first sliders that destabilize are isolated
from one another and behave like the single slider between
two walls, which consist of the two immobile neighbors. The
tangential force applied to it increases until it reaches the
threshold μ̄s cos α [upper dashed line in Fig. 2(b)] and then
drops by 2(μ̄s − μd ) cos α, then reaching the value (2μd −
μ̄s) cos α [lower dashed line in Fig. 2(b)]. Each rearrangement
leads to the increase of the tangential force applied to the
neighbors by (μ̄s − μd ) cos α.

Upon inclination, rearrangements involving initially only
one slider lead to an increase of the tangential force applied to
its neighbors sufficient to destabilize at least one of them. The
pattern is then more complex but the picture of a process con-
sisting of a series of quasiperiodic, localized destabilizations
holds. The number of sliders involved in each rearrangement
increases upon inclination. When several sliders are involved,
the rearrangements repeat with the period �α ∼ (μ̄s − μd )
rather than �α ∼ 2(μ̄s − μd ) (Fig. 2). Indeed, as discussed
in Sec. IV B 1, when several sliders enter in motion, the
progressive slowing down of the dynamics due to dissipation
leads to the value μd cos α [instead of (2μd − μ̄s) cos α for a
single slider] of the tangential force.

However, in large systems, in the absence of global
coupling, the previous picture holds only locally and the overall
dynamics is not quasiperiodic (Fig. 3). The rearrangements
occurring in different regions are not correlated. The growth
in the size of the active regions upon inclination leads them to
merge before the whole system loses stability.

The introduction of a global coupling, even small (ξ =
10−3), leads to the synchronization of the previously iso-
lated local rearrangements and, thus, to the occurrence of
a quasiperiodic dynamics of the whole system (Fig. 4).
This synchronization is reminiscent of the synchronization
of oscillators, which is a well-known phenomenon [20].

A particularly interesting, and striking, result is that one
can distinguish a clear change in the activity of the system,
with or without global coupling, at an inclination angle α of

about 0.25, thus typically half of the avalanche angle αc: for
α � 0.25, the system is rather quiescent with few rearrange-
ments occurring locally, whereas, for larger α, numerous large
events of increasing size occur. The model shows that a change
in the dynamics is indeed expected for αt 	 0.54 μ̄s . For
0 � α � αt , the number of active sliders increases linearly
with α. By contrast, for α � αt , the number of active sliders
drastically increases (Fig. 9). In practice, 0.54μ̄s is close to
half the angle of avalanche, αc, so that we can consider that, to
the level of approximation of our model, the transition is well
accounted for.

B. Comparison to experiments

Finally, we underline strong similarities between features of
our model and the experiments mentioned in the Introduction
[2–4].

Upon inclination of a container filled with a granular
material, one observed, for small tilt angle, the occurrence of
small, uncorrelated rearrangements randomly distributed in the
system. At approximately half the avalanche angle, the activity
drastically increases in the form of bursts of synchronized
displacements.

The order of magnitude of the angular period observed
experimentally is typically of a few degrees. In our model,
we predict that the periodicity is linked to the difference
between the static and the dynamic friction coefficients: �α ∼
(μs − μd ). For granular matter, those friction coefficients can
be assimilated to the tangent of, respectively, the angle of
avalanche, at which the granular surface loses stability, and
the angle of repose, which corresponds to where the granular
surface stops flowing. In granular matter (μs − μd ) ∼ 0.1 [21],
leading thus to δα indeed of a few degrees.

In our model, we obtain synchronization only when some
global coupling is introduced, which leads to the question of
the physical significance of this global coupling in experi-
ments. In the classical Burridge-Knopoff model a rearrange-
ment affects only the immediate neighbors. Such a local model
is unrealistic for modeling faults as the bulk materials at each
side of the fault are of finite stiffness and mediate long-range
elastic forces. Taking into account such long-range elastic
redistribution of the stress after a rearrangement has been
taken into account in Burridge-Knopoff models by coupling
blocks elastically to a various number of distant neighbors
[22]. Such long-range elastic coupling has also been discussed
in tribology-related studies (see [23] and references therein).
In granular matter, it has been shown that when a local,
plastic rearrangement takes place, an elastic response with
long-ranged redistribution of the stress is observed [24,25].
This justifies the introduction of a long-range coupling in
the model. Another clue is provided by the observation, in
experiments, that the pseudoperiod of the bursts depends on
the cohesion in the system [4,5]. This is in accordance with a
picture of a synchronization due to a long-range coupling.

It has to be underlined that our model is not in contradiction
with previous works, in particular with studies based on
cellular automata reported in Ref. [3]. The authors reported an
exponential growth of the accumulated plastic activity upon
inclination. This trend, also observed experimentally, has been
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FIG. 10. (a) Cumulated displacement A vs angle α. Upon
inclination, A increases exponentially in spite of the linear increase
of the number of sliders involved in the rearrangements with α.
(b) Average displacement during a rearrangement 〈�x̃〉 vs angle α

(N = 100, ξ = 0, l̃ = 10, μd = 0.55, μ̄s = 0.6, and σμ = 0.01).

considered as a test validating the model. Such an exponential
evolution could seem, at first sight, to be in contradiction with
the linear evolution of the number of active sliders which arises
in our model. However, the contradiction is only apparent.
Actually, reporting the cumulated displacements A(α) in the
whole system from the beginning of the inclination process,

A(α) =
ic∑

i=0

N∑
n=1

[
x̃(i+1)

n − x̃(i)
n

]
,

with x̃(k)
n the position of the nth slider after the ith rear-

rangement and ic the total number of rearrangements, we
also observe a typically exponential increase for our model
[Fig. 10(a)]. This is explained by an exponential increase of
the typical displacement associated to the rearrangements with
the inclination angle α [Fig. 10(b)].

VI. CONCLUSION

We have presented a one-dimensional frictional model
consisting of a chain of elastically coupled sliders in frictional
contact with an incline. The model reproduces most of the
features observed experimentally when quasistatically tilting
a box filled with a granular material. In particular, the
system reproduces the quasiperiodic series of rearrangements
observed in experiments.

We explain the regularity of the bursts of rearrangements as
the result of a combination of stick-slip and synchronization
due to a large-scale coupling. The phenomenon is thus related
to the problem of synchronization of oscillators. The coupling
originates from the redistribution of the forces, at large scale,
in the bulk of the material.

In addition, our toy model provides a statistical approach
to describe the evolution of the state of the system which
approaches the avalanche. In particular, we revealed an internal
threshold before the avalanche occurs. This threshold delimits
the transition, at typically half the avalanche angle, from an
initial smooth increase of the number of active sliders to an
accelerating regime where a dramatic increase of the activity
takes place. In regard to the prediction of avalanches, the
determination of such a threshold is precious as it delimits
a rather regular and predictable evolution of the system and a
rapid growth regime which announces the avalanche.

Our model remains simplistic and, in accordance, provides
no more than a qualitative description of the phenomenon.
In addition, it has to be noted that we considered a unique
preparation, consisting of a uniform distribution of the initial
tangential forces. Nevertheless, considering that the model is
based on very general arguments (disorder, solid friction, and
coupling), we expect that it unveils the core mechanisms at
play in different experimental configurations.
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